
Duration Calculus Semantics for Statecharts

Marisa A. S¶anchez1, Pablo Fillottrani2, and Miguel A. Felder3

1 Dpto. de Cs. e Ingenier¶³a de la Computaci¶on
Universidad Nacional del Sur

Avda. Alem 1253, Bah¶³a Blanca
mas@cs.uns.edu.ar

2 Dpto. de Cs. e Ingenier¶³a de la Computaci¶on
Universidad Nacional del Sur

Avda. Alem 1253, Bah¶³a Blanca
prf@cs.uns.edu.ar

3 Pragma Consultores, Buenos Aires
mfelder@pragma.com.ar

Abstract. Statecharts and Duration Calculus are two formalisms used in the development of reac-
tive systems. Statecharts provide a powerful visual formalism to specify systems. Duration Calculus
is a formal logic to specify and reason about temporal requeriments. In this work, we propose a de-
scription of statecharts semantics using Duration Calculus. Thus we build a common semantic model
for Duration Calculus speci¯cations and statecharts. The formalization is done in two steps. First,
the structure of a statechart is represented using Duration Calculus formula. Then, the semantics of
the execution of a step is introduced.

Keywords: statecharts semantics, Duration Calculus, Statemate



1 Introduction

Statecharts and Duration Calculus are two formalisms used in the development of reactive
systems. Statecharts were developed by David Harel in 1983 as a visual formalism to specify
reactive behavior. Statecharts are widely used in the Software Engineering community [1,
2] and di®erent dialects of the language have been employed in several software design
notations, including statemate [3] and UML [4]. Also, several papers include de¯nitions
of semantics. Some examples are [5{8]. In this work, we are interested in the semantics
as implemented in the statemate system [9]. The behavior of a system described in
statemate is a set of possible runs , each of one representing the response of the system
to a sequence of external stimulus generated by the environment. This semantics is of
practical interest since it underlies the tools of statemate, and thus it is relevant for
system designers as well as for developers of tools for statemate.

We propose a semantics based on the rigorous but informal de¯nition of statecharts giv-
en in [9], using Duration Calculus and Mean Value Duration Calculus. Duration Calculus
is a real-time interval logic that has been successfully used for requirements speci¯cation
and design [10{12]. The main reason that in°uenced our selection of Duration Calculus is
that, for the best of our knowledge, the existing approaches to specify semantics do not use
a real-time interval logic. In particular, this work can be seen as a link between statecharts
and Duration Calculus tools [13]. Dynamic system properties are usually represented with
a mixture of timing diagrams, statecharts, di®erential equations, or other ad hoc represen-
tations. For quality assurance purposes, it would be desirable to integrate the analysis of
components that may be described using di®erent approaches.

The paper is organized as follows: Section 2 brie°y introduces Duration Calculus and
Mean Value Calculus. In Section 3 we give a formalization of the structure of statecharts,
and in Section 4 we discuss a formalization of the semantics of statecharts. Conclusions
are presented in Section 5.

2 A Brief Introduction to Duration Calculus

The original Duration Calculus was introduced by Zhou Chaochen et al. [10]. Several ex-
tensions have been proposed, notably the Mean Value Calculus [14], that extends Duration
Calculus to deal with point intervals. In this work we consider the Mean Value Calculus
with continuous semantics.

In both Duration Calculus and Mean Value Calculus, a system is modeled by a number
of functions from the time domain R+ to the Boolean domain f0; 1g. These functions are
called the state variables of the system. For a state variable (or a Boolean combination of
state variables) P , its duration in a time interval, written

R
P in Duration Calculus, is the

integral of P over the time interval. In Mean Value Calculus, durations are replaced by
mean values and interval lengths. For a state variable (or a Boolean combination of state
variables) P , its mean value, written P , is the mean value of P over a time interval if the
interval is not a point interval, and the value of P at the point otherwise. Hence, for a
state variable P and an interval [a; b], the mean value P is de¯ned as:



P [a; b] =

½R b
a
P (t)dt=(b ¡ a) if b > a and

P (b) if b = a

In the following, we present the syntax and the semantics of Mean Value Duration
Calculus based on the presentations given in [14] and [15].

2.1 Syntax

We assume a countably in¯nite set of logical variables V and a countable in¯nite set of
state variables SV. Furthermore, likewise classical logic, we assume a ¯nite set of function
symbols and a ¯nite set of predicate symbols.

State expressions: the set of state expressions is de¯ned by the following rules:

1. 0,1, and each v 2 SV are state expressions;
2. if P and Q are state expressions, then :P and P _Q are state expressions.

Terms: the set of terms is de¯ned by the following rules:

1. if P is a state expression, then ¹P is a term;
2. each v 2 V is a term;
3. ` is a term;
4. if r1; :::; rn are terms and fni is an n-ary function symbol, then fni (r1; :::; rn) is a term.

Formulas: the set of formulas is de¯ned by the following rules:

1. if Ani is an n-ary predicate symbol and r1; :::; rn are n terms then Ani (r1; :::; rn) is a
formula;

2. true is a formula;
3. if r; r0 are terms, then r = r0 is a formula;
4. if ± is a formula, then :± is a formula;
5. if ±; ¾ are formulas, then ± ^ ¾ and ±;¾ are formulas;
6. if v 2 V and ± is a formula, then (8v)±, is a formula.

The following abbreviations are also frequently used: dPe0 for ` = 0 ^ ¹P = 1, and dPe
for ` > 0 ^ :(` > 0; dP e0; ` > 0). Informally, this means that dPe0 is true at an interval
i® the interval is a point interval and P has the value 1 at that point; and dPe is true at
an interval i® the interval is not a point interval and P has the value 1 everywhere inside
the interval the interval.

2.2 Semantics

We assume that there is a function f n
i

: Rn ! R associated with each n-ary function
symbol f ni , and a relation Ani : Rn ! ftt ;® g with each n-ary predicate symbol Ani . We
write [b; e], where b; e 2 R+ and b · e, for bounded and closed intervals.
The truth of Mean Value Calculus formulas is de¯ned below with respect to an interpre-
tation of state variables and an assignment of logical variables. Let Time be the set of



non-negative reals [0;1). Then an interpretation I over T ime is a function I : SV !
(Time! f0; 1g) where, for each v 2 SV, the discontinuity points of I(v) belong to Time.
Let Intv be the set of bounded and closed Time-intervals: f[a; b] j a · b ^ a; b 2 T imeg.

The semantics of a state expression P under interpretation I over T ime is a function
[P ]I : Time! f0; 1g inductively de¯ned by:

[0]I(t) = 0,
[1]I(t) = 1,
[v]I(t) = I(v)(t),
[:P ]I(t) = 1¡ [P ]I(t),

[P ^Q]I(t) =

½
1 if [P ]I(t) = 1 and [Q]I(t) = 1
0 otherwise

The semantics of a term r under interpretation I over Time and assignment ® is the
functions [r]I® : Intv! R inductively de¯ned by:

[`]I®([b; e]) = e ¡ b

[x]I®([b; e]) = ®(x)

[P ]I®([b; e]) =

½R e
b [P ]I(t)dt=(e ¡ b) if e¡ b > 0

[P ]I(e) = 1 otherwise

[f (r1; :::; rn)]
I
®([b; e]) = f([r1]

I
®([b; e]); :::; [rn]

I
®([b; e]))

The semantics of a formula Á at interval [b; e] 2 Intv under interpretation I over Time
and assignment ®, written I; [b; e] j=® Á, is inductively de¯ned by:

I; [b; e] j=® t,
I; [b; e] j=® r = r0 , [r]I®([b; e]) = [r0]I®([b; e]),
I; [b; e] j=® A(r1; :::; rn), ([r1]

I
®([b; e]); :::; [rn]

I
®([b; e]) 2 A,

I; [b; e] j=® :Á, :(I; [b; e] j=® Á),
I; [b; e] j=® Á ^ Ã , (I; [b; e] j=® Á) ^ (I; [b; e] j=®),
I; [b; e] j=® Á;Ã , for some m 2 Time where m 2 [b; e]; I; [b;m] j=® Á and I; [m; e] j=®

Ã
I; [b; e] j=® 8x ¢ Á, 8d 2 R; I; [b; e] j=®(x!d) Á.

We write I; [b; e] j= Á to indicate that I; [b; e] j=® Á for all assignments ®.

3 Formal Description of the Structure of Statecharts

3.1 States and Transitions

In order to describe syntax we need to describe states and transitions. Statecharts states
can be partitioned into the following types:



{ Compound states (super-states) of type OR that have substates that are related to
each other by \exclusive-or" relation.

{ Compound states (super-states) of type AND that have orthogonal components that
are related by \and" relation.

{ Simple states that are those at the bottom of the state hierarchy.
{ The root state, i.e. the state with no parent state.

We use constants to represent a given statechart and the states, transitions, events and
actions in it. We associate each entity with its statechart using predicates, for example,
StateCOR(M;S) is de¯ned to be true i® S is an or-state of M . S and M are constants. In
Table 1 we include all used predicates. Hence, we can de¯ne the predicate State(M;S) as

State(M;S) ´ StateCOR(M;S) _ StateCAND(M;S) _
StateS (M;S) _ StateH(M;S)

which states whether a state S is a state of statechart M .

Table 1. Temporal independent description of a statechart

Predicate is de¯ned to be true i®

State(M;S) S is a state of M
StateCOR(M; S) S is an or-state of M
StateCAND(M; S) S is an and-state of M
StateS(M;S ) S is a simple state of M

StateI(S; Si ) Si is the default (initial) state of S
StateH(M;S ) S is an history state of M
StateR(M;S) S is the root state of M
Transition(M; T) T is a transition of M
Source(T; S) S is the source state of transition T
Target(T;S 0) S0 is the target state of transition T
Trigger(T; E) E is the trigger event of transition T

Action(T;A) A is an action related with transition T
History(H; S) H is a history connector of state S
Event(M; E) E is a trigger event of some transition in M

As another example consider the formula Transition(M;T ) which states that tran-
sition T is included in statechart M. Also, the predicates Source(T; S), Target(T; S 0),
Trigger(T;E), Action(T;A), and Guard(T ), are de¯ned to be true if S, S0, E , and A are
the source state, the target state, the trigger event, the action, and the guard condition
related with T . We use state variables to represent trigger events and actions. Both trigger
events and actions can be a conjunction of particles of trigger events or actions. Note that
all these predicates are time independent.

Example. Based on the set of predicates available for a static description of a statechart
(see Table 1), Figure 2 shows a description of the statechart in Figure 1.

As described in Section 2, Duration Calculus uses states to model behavior of real-time
systems. A Boolean state model of a system is a set of Boolean valued functions over time:



Fig. 1. Example of a Statechart

StateCAND(m;a); StateCOR(m; a1); StateCOR(m;a2); StateI (a1 ; b1);
StateI(a2 ; c1); StateS(m;b1); StateS(m; b2); StateS(m;b3);
StateS(m; c1); StateS(m;c2); StateS(m; c3) Transition(m; t1);
T ransition(m; t2); T ransition(m;t3); T ransition(m;t4); Source(t1 ; b1);
Source(t2; b2); Source(t3 ; c1); Source(t4; c2); T arget(t1; b2);
T arget(t3 ; c2); T rigger(t1 ; e); T rigger(t2; g); T rigger(t3 ; f );
Action(t1 ; f); Action(t3; g); Guard(t4); Event(m; e);
Event(m;f); Event(m; g)

Fig. 2. Description of the statechart example

Time! f0; 1g

where Time is the set of non-negative reals. Each Boolean-valued function (also called a
Boolean state, or state, or state variable) of the system, is a function of a speci¯c aspect
of the system behavior, an the whole set of Boolean-valued functions characterizes all the
aspects of the behavior. We associate state variables with each state to represent whether
the state is active at an instant. This means that when a state is active the respective state
variable is true, and false otherwise. We denote constants with a; b; c; ::: and the respective
states variables with A; B; C; :::.

Example. Consider the statechartm described in Figure 1. Since the atom StateS(m; b1)
is true, let B1 2 Time! f0; 1g be the state variable associated with b1, and

B1(t) = 1, means that B1 is an active state of the
statechart at instant t

B1(t) = 0, means that B1 is not an active state of the
statechart at instant t

The value of B1 depends on the actual behavior of the statechart. This is further discussed
in Section 4.



Similarly, the atom StateCOR(m;A1) is true, A1 2 T ime! f0; 1g, and:

A1(t) = 1, means that A1 is an active state of the
statechart at instant t

A1(t) = 0, means that A1 is not an active state of the
statechart at instant t

We can re¯ne state A1 in di®erent sub-sates, so A1 is a state expression of B1, B2 and B3:

A1
def= (B1 _ B2 _ B3)^ :(B1 ^ B2)^ :(B1^ B3) ^ :(B2 ^ B3)

In general, a super-state S of type OR with n sub-sates Si is represented as:

S
def
= (

n_

i=1

Si)^
^

i 6=j
:(Si ^ Sj)

For the case of a super-state S of type AND with n sub-sates Si we have:

S
def
=

n̂

i=1

Si

Example. For the AND state A in Figure 1 we have:

A
def
= A1 ^ A2

An initial state may be an OR state, an AND state, or a simple state. The root state of a
statechart is always an initial state.

Expression Event(M;E) is de¯ned to be true if event E is included as a trigger event of
at least one transition of statechart M:

Event(M;E) ´ (9T )(Transition(M;T )^ T rigger(T;E))

3.2 Con¯guration of a Statechart

The current state of a statechart is de¯ned as the con¯guration for the statechart at instant
t. In [9] a con¯guration is de¯ned as a maximal set of states that the system can be in
simultaneously. Given a root state R, a con¯guration is a set of states C obeying the
following rules [9]:

{ C contains R.
{ If C contains a state A of type OR, it must also contain exactly one of A's sub-states.
{ If C contains a super-state A of type AND, it must also contain all of A's sub-sates.
{ The only states in C are those that are required by the above rules.

When the system is in any state A, it must also be in A's parent state (unless A is the
root state). Hence, to uniquely determine a con¯guration it is su±cient to know its basic
states. In Section 4 we describe how a system evolves from one con¯guration to another.



3.3 History Connectors

Statecharts feature two kinds of history connectors: H and H ¤. Suppose we are executing
a transition t whose target is an H history connector h of state S. If S has history, then
let S0 be the substate of S which the system was in when most recently in S ; t is treated
as if its target is S0. If h is an H ¤ history connector, then let S 0 be the basic con¯guration
relative to S which the system was in when it was most recently in S; t is treated as if its
targets are all the states in S0. If the system was never in S , t is treated as if its target is
S [9].

In this work we only consider the H type history connectors. Also, we use predicates
to describe if a state has this connector. For example, History(Hist; S) is true if Hist is
a history connector of state S1.

4 Semantic Description

In the following discussion, we formalize the execution of a step as described in [9]. A
step is initiated when an external event arrives, causing a cascade of subsequent internal
events. A step is completed when no more internal events are generated or there are no
more transitions triggered by the events that were generated, this means that the system
has stabilized in a state. In our semantic we assume an asynchronous time model. In this
time model, the system reacts whenever an external change occurs, allowing for several
external changes to occur simultaneously. The execution of a step may be viewed as taking
zero time as far as the environment is concerned, since during the execution of the step
itself no external changes have any e®ect [9].

Suppose event E is generated by the environment. We should ¯nd out which transitions
are enabled based on this event. The transitions in the step are executed in sequence, and
the next event is considered after all transitions in the step have been ¯red.

First, we need to determine the transitions whose source state matches the current state
con¯guration C (at instant t). We call these transitions active and we de¯ne the expression
Active(T ) as

Active(T ) ´ (Source(T; S) ^ dSe)
Given an event E we need to ¯nd those active transitions whose trigger event matches

E, and whose guard condition evaluates to true. These transitions are enabled at instant
t and are de¯ned as:

Enabled(T;E) ´ Event(T;E)^Active(T )^ dEe0 ^
Guard(T )

Given a set of enabled transitions some of them may be in con°ict. We can resolve
the con°ict with help of a priority relation. Before determining which transitions can be
e®ectively be ¯red we need to describe the concepts related with con°icting transitions.
1 For convenience, Hist is also described as a state of the statechart. Thus, we can easily include a history

connector as the target state of a transition.



Two transitions are in con°ict if there is some common state that would be exited if any
one of them were to be taken. Consider the example in Figure 3 taken from Harel's paper
[9]. Transitions t1 and t2 are in con°ict because they would each imply exiting state A.
Also, t4 is in con°ict with all of t1, t2 and t3, since if and when t4 is taken, the system must
have been in state E and thus also in one of its sub-states A, B or C. These con°icts are
solved in two di®erent ways. In the ¯rst case, if the triggers of both t1 and t2 are enabled
at the beginning of a step, the system is faced with nondeterminism. In the second case,
we should consider that priorities between transitions are determined outside-in; hence, t4
has priority over t1, t2 and t3.

Fig. 3. Con°icting transitions

Given a statechart M , and two con°icting transitions Ti and Tj, Tj has priority over Ti
i® the source state of Tj is a super-state that contains the source state of Ti:

Priority(Tj; Ti) ´ Source(Ti; Si) ^ Source(Tj; Sj)^
SubSate(M;Si; Sj))

Given two states X and S , we say that X is a sub-state of S i® the following holds:

SubSate(M;X; S) ´ ((StateCAND(M;S) ^ (S =
n̂

k=1

(Sk) ^

(9k j (X = Sk _ SubSate(X;Sk))))_ (StateCOR(M;S) ^
(S =

Wn
k=1 (Sk) ^

V
k6=r:(Sk ^ Sr) ^

(9k j (X = Sk _ SubSate(X;Sk)))

Now we are in conditions to describe when a transition can be ¯red. Given a con¯guration
C, a transition T can be ¯red at instant t i® it is enabled and there is no transition with
greater priority:



Fire(T;E) ´ Enabled(T;E) ^ (6 9Ti)Priority(Ti; T )^
(8T 0 j Source(T 0; S)^Enabled(T 0; E) ) :Fire(T 0; E))

Notice that we have to deal with nondeterminism (see discussion about con°icting transi-
tions). Each model of the previous formula represents a non-deterministic choice. If there
is more than one transition enabled with the same source state, then only one should be
¯red. This is addressed in the last clause of the formula.

The previous de¯nitions about the transitions that can be ¯red allow us to describe
the statechart con¯guration that we obtain after executing a step. Let C and C 0 be con-
¯gurations such that C 0 is reached by a step at time t from C after the execution of a
sequence of micro-steps : C ; C1; :::Ci; :::; Cn; C0, n ¸ 1. Let Ci and Ci+1 be con¯gurations such
that Ci+1 is reached by a micro-step at time t from Ci. The micro-step is de¯ned as a set
of transitions T1; T2; :::; Tn that appear in di®erent orthogonal states whose source states
belong from the set of states that characterize con¯guration Ci and those transitions that
can be ¯red. Then, a micro-step is initiated when an external event E arrives, and it may
be de¯ned as follows:

Micro(M;E) ´ 8T j (Source(T; S)^ Target(T; S 0)^
Action(T;A)^ F ire(T;E))) Fire(T;E); d:S ^ S0 ^Ae0

which states that all transitions that are ¯red allow the state changes. Also, the actions
related with these transitions are generated as internal events. Note that all the generated
internal events (actions) and all the new active states cause a subsequent micro-step.

To consider history connectors, we need to update the history of all parents of the
exited states. Thus, we update the previous formula as follows:

Micro(M;E) ´ 8T j (Source(T; S) ^ Target(T; S 0)^
Action(T;A)^ F ire(T;E))) Fire(T;E); d:S ^ S 0 ^Ae0 ^

(9S0 j SubState(S; S0)) LastState(S0; S)) _
(6 9S0 j SubState(S; S0) ) LastState(S; S))

where LastState(S0; S) states that S is the substate of S0 which the system was in when
most recently in S0. If S is a root state, then we use LastState(S; S).

A step is de¯ned as the con¯guration that is reached when the system is stable. As
mentioned below, a system is stable when no more internal events are generated:

Stable(M ) ´ (8T j Action(T;A)) ) d:Ae

Finally, the step from con¯guration C to C0, initially ¯red by the external event E, is
de¯ned as:

Step(M;E) ´ Micro(M;E) ^ Stable(M )



Example. Based on the statechart in Figure 1 let C = fB1; C1g be the current con-
¯guration. Suppose event e is generated by the environment. Let E be the state variable
associated with e. Hence, we have

Step(m; e) )Micro(m; e) ^ Stable(m)

and

Micro(m; e)) (Source(t1; b1) ^ Target(t1; b2)^
Action(t1; f) ^ Fire(t1; e)))

Fire(t1; e); d:B1 ^ B2 ^ Fe0 ^ LastState(b1; b1))
The above formula implies Micro(m; f):

Micro(m; f)) (Source(t3; c1) ^ Target(t3; c2)^
Action(t3; g) ^ Fire(t3; f)))

Fire(t3; f); d:C1 ^ C2 ^ Ge0 ^ LastState(c1; c1))
Finally, the truth of the previous formula implies Micro(m; g), and

Micro(m; g)) (Source(t2; b2) ^ Target(t2; c3)^
Action(t2; g) ^ Fire(t2; g)) )

Fire(t2; g) _ d:B2 ^ B3 ^ Ge0 ^ LastState(b3; b3))
Since no more internal events are generated, the system is stable:

Stable(m)) (Action(t1; f)) ) d:Fe) ^ (Action(t3; g)) ) d:Ge)
This formula completes our formalization of the execution of a step.

5 Conclusions

In this paper, we presented a new approach to formalize statecharts semantics, as described
in [9], based on Duration Calculus.

The combination of statecharts with Duration Calculus allows designers to re¯ne re-
al time requirements and to link statecharts with Duration Calculus tools [13]. Given a
statechart, which models a software or hardware system, we obtain a model in Duration
Calculus. Then, for a given property speci¯ed as a Duration Calculus formula, we deter-
mine whether the system satis¯es the formula. In particular, we are interested in relating
safety analysis with speci¯cations. This work allows to give a common semantic frame-
work to di®erent sources of information, such as Fault Trees and statecharts. In [16], Fault
Trees have been given a Duration Calculus semantics. It may then be feasible to check the
consistency of systematically derived properties from a Fault Tree against the speci¯cation
using tools. In this sense, we consider this work as a fundamental step to integrate the
analysis of components which may be described using di®erent approaches.

Soundness or completeness results are not proved since we base our semantics on the
rigurous but not formal de¯nition given by Harel [9].



References

1. D. Drusinsky and D. Harel. Using Statecharts for Hardware description and Synthesis. IEEE Transactions on
Computer-Aided Design, 8:798{807, 1989.

2. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring, and M. Trakhtenbrot.
Statecharts: A visual formalism for complex systems. Sci. Comput. Prgram., 8:231{274, 1987.

3. David Harel and M. Politi. Modeling Reactive Systems with Statecharts: The STATEMATE Approach. McGraw
Hill, 1998.

4. G. Booch, J. Rumbauch, and I. Jacobson. The Unī ed Modeling Language. User Guide. Object Technology
Series. Addison Wesley Longman, Reading, MA, USA, 1998.

5. D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Prgram., 8:231{274, 1987.
6. C. Huizing and W. P. de Roever. Introduction to design choices in the semantics of Statecharts. Information

Processing Letters, 37(4):205{213, 1991.
7. A. Pnueli and M. Shalev. What is in a step: On the semantics of statecharts. In Proceedings of the Symposium

on Theoretical Aspects of Computer Software, volume 526, pages 244{264. Springer-Verlag, 1991.
8. Andrew C. Uselton and Scott A. Smolka. A compositional semantics for statecharts using labeled transition

systems. In International Conference on Concurrency Theory, pages 2{17, 1994.
9. D. Harel. The STATEMATE Semantics of Statecharts. ACM Transactions on Software Engineering and

Methodology, 5(4):293{333, October 1996.
10. Chaochen Zhou, C.A.R. Hoare, and Anders P. Ravn. A Calculus of Durations. Information Proc. Letters,

40(5):269{276, Dec. 1991.
11. A. P. Ravn, H. Rischel, and K. M. Hansen. Specifying and Verifying Requirements of Real-Time Systems.

IEEE Transactions on Software Engineering, 19(1), January 1993.
12. E. R. Olderog, A. P. Ravn, and J. U. Skakkebaek. Formal Methods in Real-Time Systems. Trends in Software

Engineering, chapter Re¯ning Systems Requirements to Program Speci¯cations. John Wiley and Sons, 1996.
13. Jens Ulrik Skakkebaek and Natarajan Shankar. Towards a duration calculus proof assistant in pvs. In Third

International School and Symposium on Formal Techniques in Real Time and Fault Tolerant Systems, Lecture
Notes in Computer Science, LNCS 863, page 660.

14. Zhou Chaochen and Li Xiaoshan. A Classical Mind. Essays in Honour of C.A.R. Hoare, chapter A Mean
Value Calculus of Durations, pages 431{451. Prentice-Hall, 1994.

15. C. A. Middelburg. Truth of duration calculus formulae in timed frames. In 1517, page 22. Centrum voor
Wiskunde en Informatica (CWI), ISSN 1386-369X, 31 1998.

16. K. M. Hansen, A. P. Ravn, and V. Stavridou. From Safety Analysis to Software Requirements. IEEE Trans-
actions on Software Engineering, 24(7), July 1998.


