Checking Semantics in UML Models: Use Cases Diagrams

Rodolfo Gémez and Pablo Fillottrani

Grupo de Investigacién en Sistemas Orientados a Objetos
Departamento de Ciencias e Ingenieria de la Computacion
Universidad Nacional del Sur, Bahia Blanca, Argentina

[rgomez,prf]@cs.uns.edu.ar

Abstract

Constraints add to the semantics to UML models in the form of statements which are
expected to hold for the model to be considered correct, i.e., to satisfy system require-
ments. Constraints are considered in the UML metamodel as adornments attached to
model elements, and languages like OCL allow for different statements to be expressed.

Despite several CASE-like tools are currently supporting UML diagram and constraint
definition, as far as we know none of them provides support for verification and main-
tainance of constraint consistency. Having this kind of facility helps users in the design of
UML models, specially when these models are complex and the impact of model evolution
is difficult to trace.

This work studies how constraint consistency may be compromised when model el-
ements are introduced or modified during system development. Focus is over use case
diagrams, which suffice to highlight a number of important issues related with consis-
tency maintenance. We introduce procedures for verifying and maintaining constraint
consistency, and illustrate them using a simple constraint specification language. Our
goal is to make a first step in the development of tools for automatic verification and
mantainance of model semantics.

Keywords: Object-Oriented Modeling, Constraints, Semantic Checking, UML

1 Introduction

Modeling is one of the most crucial activities during all the phases in any software development
life cycle. Typically, system development is a very complex task, and working with models
helps to handle this complexity in an organized way, allowing us to reason about the properties
that entities possess. Models have a broad acceptance among all engineering disciplines, mainly
because it supports such general principles as abstraction, decomposition, and generality. In
software engineering, notation, techniques and methodology for object-oriented model building
has been lately the focus of active research work [11, 2].

In the case of object-oriented software development, models are composed by a number of
communicating and well delimited elements. Although such models are sometimes harder to
develop, they are easier to understand, and simpler to maintain and modify[8]. Thus, reusability
of elements among models is enhanced.

In order to maximize these properties, we need tools that support the process of object-
oriented development by serving as repository of previously asserted knowledge, checking the
integrity of the model and maintaining the different views that form each model. The Object-
Oriented Systems Research Group at the Universidad Nacional del Sur is currently working
on such a tool, called HEMOO (Herramienta para Edicin de Modelos Orientados a Objetos,
Object-Oriented Model Editing Tool), for supporting the development of object-oriented models
using UML[4]. The objective is to assist the user in the management of the semantic aspects of
a model, as well as the notational ones. In this sense the tool supplies flexible semantic checks
that can be invoked on demand. Checking on demand means allowing the user to set those
defined properties that will be checked, and the time when this control is done. Flexibility is
achieved by providing the user the possibility to define his/her own checks, guaranteeing their
treatment on an equal basis as predefined ones. Consequently, it is expected this automatic
control will reduce the manual, error-prone work of maintaining model consistency across all
life cycle phases.

UML, Unified Modeling Language is a graphical language for visualizing, specifying, con-
structing and documenting the elements of a software intensive system [9]. UML provides
notation for expressing the model, in the form of graphic and text elements. Attached to these
elements, there is a semantic interpretation that attempts to capture the meaning of the model,
and it is represented by the constraint mechanism[13]. Constraints are one of the three ex-
tensibility mechanisms that UML introduces, although currently the language for expressing
them is not standard (natural language, or OCL[15] can be used for this purpose).

Supporting tools for object oriented development in UML should not only provide a graphic
editor for the notation, but also help to ensure the coherence of its semantic aspects. The
design of the latter is a very difficult task because the intended meaning depends heavily on
the purpose of the model in a specific moment. For example, sometimes it may be desirable to
check the consistency of the relationships among classes, but later it may be more important
to assure the type consistency of every method invocation.

In this paper, we analyze the impact on asserting constraints for different elements in use
case diagrams, showing the conditions these constraints must satisfy in order to be consistent
with respect to standard UML semantics and other, user-defined constraints in the model. In
order to do so, we propose a small formal constraint specification language. It is important
to note that constraint consistency does not guarantee constraint satisfaction, so our tool does
not support a formal methodology for system development. Instead, its objective is to evaluate
all the formal knowledge represented in the model in order to make an earlier detection of

design problems. Such evaluation should be done when the model is considered “stable”, that
is between two consecutive major changes.

The structure of this paper is as follows. Section 2 introduces a small constraint specificacion
language and basic concepts. Section 3 describes the kind of constraints appearing over use
case diagrams, and presents a procedure for checking and maintaining consistency among these
constraints. Section 4 shows those actions that are required to be performed for some common
model evolutions, e.g., design changes applied over actors or use cases. Section 5 highlights a
number of issues which have arisen during this first research stage. Future research directions
are also addressed.

2 Defining constraints and constraint checks

Constraints may be thought as statements which add to the semantics of UML model elements.
These statements are expected to hold for the model to be considered correct, i.e., to satisfy
the system requirements. Constraints are modelled by UML metamodel class Constraint, and
can be attached to elements like classes, actors, use cases, associations, operations, etc. In
this paper we will only consider the following: preconditions and postconditions attached to
actor operations, use case operations or use cases as a whole; and invariants attached to actors.
Preconditions (postconditions) are required to hold before (after) a given set of actions could
be performed. On the other hand, invariants are required to hold permanently in every stable
state of the object.

Let A be an atom, i.e., an undecomposable UML model element where constraints may be
enforced such an attribute, an operation parameter, an operation result, etc. Let z € Z be
a constant value, =, <,>, <, > # the relational operators (as usually interpreted over Z) and
— the negation operator (in the clasic first-order logic sense). The syntax for the constraint
specification language is formally provided by the following BNF grammar:

Constraint: C ==BC|IC
Boolean Constraint: BC = A | -A
Integer Constraint: IC 1 =A=z|A<z|A>z|A<z|A>z|A#=z2

It is important to mention that we assume that constraints are well-formed. For instance,
boolean (integer) atoms cannot appear in integer (boolean) constraints, operation results cannot
appear in operation preconditions, etc. Following definitions introduce the concept of constraint
consistency based on the previous language. Although more expressive constraint languages
would require deeper considerations, our consistency definition serves as a ground for explaining
verification procedures and illustrating kew concepts through a number of small examples.

DEFINITION 1 Let ¢ be an integer constraint. We define the interval of ¢ as the set of integers
denoted by c¢. Formally, the interval for ¢, Z., is defined as follows:

Ta—, = {2} Tac, ={ili €Z,i <z} Zps,={ili €Z,i> z}
Ta<.={ili €Z,i <z} Tys,={ili€Z,i>z} Tayz =7/{z} O
DEFINITION 2 Let ¢ be a constraint. The complement of ¢, denoted as ¢, is defined as follows:
Ais —A -Ais A A=zisA#2z A<zisA>z
A>zis A<z A<zisA>z A>zisA<z A#zisA#:z O

DEFINITION 3 Two constraints c;, ¢ are said to be comparable if both refer to the same atom.
Two comparable constraints ¢y, ¢o are said to be inconsistentif: a) both are boolean constraints,

and ¢; and ¢y are complementary literals, or b) both are integer constraints, and Z., N Z., = 0.
Consequently, a set of constraints is said to be inconsistent if it includes at least a pair of
inconsistent constraints, and it is regarded as consistent otherwise. O

EXAMPLE 1 Suppose an actor Customer being part of the use case diagram modeling a video
rental system. Let isVIP and rentalsHeld be a boolean and an integer constraints, respec-
tively. They may appear in operation preconditions like {isVIP} rentSpecialOffers() or in
actor invariants like {rentalsHeld<3}. Then, for instance, a) isVIP and — isVIP are com-
plementary literals, and yet inconsistent constraints, b) rentalsHeld<3 and rentalsHeld>5
are inconsistent but not complementary, ¢) rentalsHeld<3 and rentalsHeld>3 are comple-
mentary and d) rentalsHeld<3 and rentalsHeld<1 are consistent constraints. a

Constraint checking comprises two stages: consistency checking and satisfaction checking.
Consistency checking is a general verification process where constraints attached to model
elements are partitioned into sets (called consistency bases) which are expected to be consistent.
For instance, let a given actor A be attached a set of invariants INV, and a given operation
of A be attached a set of preconditions, PRE. Consistency bases include, among others, the
sets INV, PRE and INV U PRE. One of the objectives of this work is to present a precise
characterization of the consistency bases that are checked, and the verification process itself.

On the other hand, satisfaction checking is a specific verification process which only applies
to certain model elements where postconditions can be attached. This process verifies that the
element definition provides at least a way for the postconditions to be satisfied. For instance,
postconditions attached to use cases as a whole should be satisfied by some of their courses
of events. Usually, this process will be performed when the model is considered stable, i.e.,
between major model-evolution periods. Of course, constraints should be defined on the same
shared ontology|[7, 1] for consistency and satisfaction checks to be feasible. For the sake of
brevity, this work will not consider this kind of constraint checking. Nevertheless, it is an
interesting subject of further research.

Before discussing how consistency checking is applied to use case diagrams, there is still an
issue deserving further comments. Every kind of model element has a proper set of consistency
bases, but the kind of model evolution considered, i.e., whether an element is added, removed or
modified, and the time when the check is done may require only some of them to be constructed
or verified. For instance, if a new operation is added to an existing actor, and consistency has
been already verified for that actor, then the only sets to verified are operation preconditions
in isolation, PRF, and against actor invariants, INV U PRE. Clearly, neither the consistency
of actor invariants nor the consistency of preconditions attached to other existing operations
are compromised by these kind of actor evolution. Note, also, that there is a subtle difference
between a consistency base like INV and others like INV U PRE. The former should be built,
checked, and maintained with actor A. The latter, however, is based on two previously-built
and previously-checked consistency bases. So it only stands for the fact that invariants should
consistent against preconditions . There is no need to maintain this base with the actor, nor
to re-check invariants and preconditions in isolation.

DEFINITION 4 A given number of consistency bases By, Bs, ..., B, are said to be cross-checked,
an denoted as By|Bsy|...|B,, if the set B U ByU...U B, is expected to be consistent provided
each B;, 1 <1 < n is known to be consistent in isolation. O

Finally, we should mention that no particular procedure is assumed to be used for check
consistency on a given set, nor for cross-checking consistency bases despite they depend on the

Model Element | Checked in isolation Cross-checked
Actor A INV 4, PRE", and POST", for all | INV 4|PRE",, INV 4|POSTY,,
1<i<n AncINV|INV s, AncINV|PRE",
and AncINV|POST! for all
1<1<n
Use case U INVy, PREy, POSTy, PRE} and | INVy|PREY, INV | POSTy,
POSTi; forall 1 <i<m INVy|PRE};, INVy|POST;, for
all 1 <i<m

Figure 1: Consistency bases in structural checking

expressiveness of the constraint specification language. Research on this subject can be found
on works like [14, 5, 6].

3 Constraint checking on Use Case Diagrams

In use case diagrams, constraints may appear as invariants attached to actors or use cases as
a whole, postconditions and postconditions attached to actor operations, use case operations
or use cases as a whole. The two former types defines the properties that model a course of
event. However, if attached to use cases as a whole, postconditions apply only over the basic
course of events [12], i.e., others such as exceptional paths may have different outcomes and
no postconditions are attached to them. Use case operations model actor interactions, system
responses or internal actions such as state changes. When modeling actor interactions, they
match operations defined in one of the several possible actor interfaces. Other operations are
regarded private to the use case.

Consistency checking is performed on two different grounds. Structural checking verifies the
consistency of actors and use cases in isolation. Behavioral checking verifies the consistency
of courses of events, and it is expected to be performed after the structural check. In the
context of a CASE-like tool, both types of checks are expected to be performed on demand and
after major model evolutions. Typically, the user will complete the use case diagram until a
certain extent, perform structural checking on isolated actors and use cases and finally perform
behavioral checking on particular use-case courses of events. Despite this whole process may be
entirely repeated after the occurrence of major changes over actors and use cases, advantages
may be taken from previous checks (see section 4). This section is devoted to explain how
consistency checking is applied to use case diagrams, and the structures that are involved in
the process and maintained for future checks.

Structural checking

Let A be an actor with operations O4 = {ay,...,a,}, and U a use case with operations
Ov = {uy,...,un}. Let INV4, INVy be the invariants attached, respectively, to A and U,
PREy and POSTy the preconditions and postconditions attached to U as a whole, PRE", and
POST), the preconditions and postconditions attached to a; € Oa, PRE};, and POST}; the
preconditions and postconditions attached to u; € Opy. In the general case, actors may be
part of an inheritance hierarchy. Let AncINV be the set of invariants attached to all ancesters
of actor A in such a hierarchy. Figure 1 shows the consistency bases which are relevant to
structural checking.

ExAMPLE 2 Following example 1, suppose in the earlier development stages there was no

policy regarding the number of rentals a customer may currently held. In addition, consider
the customer may a) request a delayed devolution of his rentals provided he currently hold
more than 3 videos, and b) rent a 10-video pack at promotional price. This is modelled by the
following Customer operations, with properly attached preconditions and postconditions:
{rentalsHeld>3} requestDelayedDevolution()
rent10VideoPack() {rentalsHeld>10}

It is possible that later stages introduce changes that make actor Customer structurally incon-
sistent. For instance, if a new policy imposes that no more than 5 videos may be currently
held, then inconsistences arise on previous operations. If we assume the new policy is mod-
elled as actor invariant INV = {rentalsHeld < b5}, the structural check finds inconsisten-
cies when cross-checking INV|PRE and INV|POST, where PRE = {rentalsHeld > 3} and
POST = {rentalsHeld > 10} are, respectively, the preconditions and postconditions attached
to operation requestDelayedDevolution(). O

Behavioral checking

Use cases model interactions between the system and external entities, i.e., the actors. Use cases
always comprise at least a basic course of events, and possible many alternative or exceptional
paths. A basic course describes a simple, correct and most common interaction in normal
conditions; an alternative path describes a possible correct interaction which usually does not
occur; and an exceptional path describes uncommon, error-handling interactions. All type of
paths will be generally treated, unless otherwise stated , as courses of events.

A course of event is assumed to be expressed as a sequence of operations. Operations may
be one of the following: a) an actor operation, modeling the fact that some actor interaction is
requested; b) a use case internal operation, modeling system responses or some kind of internal
system processing; ¢) an inclusion point, stating that the basic functionality of a given use case
is requested at this point; d) an extension point, denoting this course may conditionally be
extended with the basic functionality of a given use case; or e) a conditional branch, denoting
a possible bifurcation of this course in others like alternative or exceptional paths. While
others, richer classifications may be provided for the operations appearing on a course of event,
this is broad enough to model the interactions appearing in most of the systems and considers
<<include>> and <<extend>> associations. It also suffices to describe the consistency checks
over use case diagrams. For more details about use case diagrams see, e.g., [12], [8] and [10].

Behavioral checking verifies that semantics of individual model elements holds when they
interact in a given course of events. Semantically, a course of events may be thought as an
interleaved sequence of stable and transient periods. Transient periods are represented by
operation execution, and interaction is considered stable a) before it begins, b) between two
consecutive transient periods and c) after it finishes. As constraints are attached to model
elements interacting in the course of events, it is expected a given set of constraint holds at
every stable period as a result of all previous transient periods. Behavioral checking verifies
that constraints remain consistent during stable periods. For instance, postconditions attached
to a given operation may be inconsistent with the preconditions attached to the immediately
following operation appearing in the course of events.

Different kind of constraints are expected to hold during different stable periods. For in-
stance, invariants attached to a use case as whole are expected to hold during all stables periods
in the interaction. On the other hand, preconditions attached to a given operation are only
expected to hold during the stable period before the operation is performed, i.e., it may be the
case they do not hold in next stable periods. Finally, postconditions are expected to hold after
the operation has been performed, and until postconditions of future operations change them.

Behavioral checking comprises two stages. First, the outcome of all operations on a given
course of event is calculated as the sets of postconditions which hold at every stable period
in the course. These sets, called states, are checked for consistency and then maintained as a
state sequence attached to the course of events. The second stage collects, for each operation
in the course of events, the set of constraints that are expected to hold before that operation is
performed, and then this set is verified to be consistent with the stable period currently holding
at that point. State sequences are built as follows:

DEFINITION 5 Let U be a given use case. Let the operation sequence Oy =< o0q,...,0, >
represent a given course of events in U. Then SEQ, =< Sp,...,S, > denotes the state
sequence defined over Oy, where S;, 0 < i < n is defined as:

So =10

S; = (Si—1UPB;)/{c|c € S;_1 and exists ¢ € P; such that ¢ and ¢ are inconsistent}
where P; depends on operation o; as follows:

1. If o; denotes a call for a given operation o; defined in actor A, then P; = POST{L‘, ie.,
the postconditions attached to o;.

2. If 0, denotes a call for an internal operation o; defined in use case U, then P, = POST {],
i.e., the postconditions attached to o;.

3. If o; denotes the inclusion of a given use case [U is included, then P, = POST [y, i.e., the
postconditions attached to IU as a whole.

4. If 0; denotes an extension point related to a given extending use case EU, and the extension
is regarded as performed over Oy, then P, = POST gy, i.e., the postconditions attached
to EU as a whole. If o; is an extension point but it is not related to any extending use
case, or the extension is regarded as not performed over Oy, then P; = ().

5. If 0; denotes a branching operation then P; = (). O

Based on the state sequence built during the first stage, the second stage of the process relates
every operation in the course of events with a set of cross-checked consistency bases, collec-
tively known as the previous base attached to that operation. This ensures that stable periods
maintain a consistent set of constraints. Previous bases are defined next.

DEFINITION 6 Let U be a given use case, Oy =< o01,...,0, > a given course of events over U,
and SEQ; =< Sy, ..., S, > the state sequence over Op. Let INV 4y be the set of all invariants
attached to any actor involved during the course Oy, plus all invariants attached to children of
these actors in the possible inheritance hierarchy, plus the invariants attached to U as a whole.
This set must be verified for consistency and maintained with Opy. The previous base related
to operation o; € Oy, PREYV;, is defined as follows:
PREV; = INV ay|P;|Si—1
where P; depends on o; as follows:

1. If o; denotes a call for a given operation o; defined in actor A, then P, = PREi‘, i.e., the
preconditions attached to o;.

2. If 0; denotes an internal operation o; defined in use case U, then P; = PRE{], i.e., the
preconditions attached to o;.

3. If o; denotes the inclusion of a given use case IU is included, then P, = PRFEy, i.e., the
preconditions attached to IU as a whole.

4. If o; denotes an extension point related to a given extending use case EU, depending on
condition ¢, and the extension is regarded as performed over Oy, then P, = PRE gy U{c},
i.e., the postconditions attached to EU as a whole plus the condition ¢ that must be true
so the extension could be performed. If o; denotes an extension point but it is not related
to any extending use case, or the extension is regarded as not performed over Oy, then
P, =c.

5. If o; denotes a branching operation depending on condition ¢, and ¢ is regarded to hold
over course Oy, then P; = {c}. Otherwise P; = {¢}.

Finally, the special cases for the first and last operations are considered

1. If o; denotes the first operation on Oy, then the preconditions attached to U as a whole,
PREy;, must also be cross-checked against PREV;.

2. If o; denotes the last operation on Oy, then the postconditions attached to U as a whole,
POSTy must be cross-checked against the last state of the sequence, S,,. 0

EXAMPLE 3 Suppose, in the video-rental system, a use case modeling a customer registration
with the following (simplified) basic course of events:

1. The system initializes customer’s historic info. The number of rented videos,

and the number of years as a member are set to O.

2. The customer enters the name of up to three people who may rent on his behalf.
The following policy currently holds, where “allowed people” stands for the people who may
rent on behalf of the customer: “Allowed people may only be added during the first year of
membership”. In addition, Customer is attached the invariant {rentalsHeld < 5}.

The course of events may be structured as follows, where operations are adorned with precon-
ditions and postconditions.

1. Customer.init() {totalOfRentals = 0, yearsAsMember = O}

2. {yearsAsMember = 0} Customer.addAllowedPerson()

Now consider the effect of:

a) A change in the policy: Allowed people may only be added during the first year of membership
and after the Customer has rented more than 20 videos.

b) A change in the course of events: The step ’When a customer registers, he is given
a video for free.’ is inserted in the course between steps 1 and 2.

The modified course is shown next:

1. Customer.init() {totalOfRentals = 0, yearsAsMember = 0, rentalsHeld = 0}

2. Customer.rentVideoForFree {totalOfRentals = 1, rentalsHeld = 1}

3. {yearsAsMember = 0, totalOfRentals > 20} Customer.addAllowedPerson()

We can see that preconditions of addAllowedPerson() are now inconsistent with the pre-
vious stable period. Indeed, conflict arises between constraints {rentalsHeld = 1} and {
totalOfRentals > 20}. This kind of conflicts can be detected by behavioral checking (shown
in boldface). Next we show only the relevant steps of this verification process.

State Operation preconditions Other constraints
1. | {totalOfRentals = 0, {} {rentalsHeld < 5}
yearsAsMember = O,

rentalsHeld = 0}
2. | {totalOfRentals = 1, | {yearsAsMember
yearsAsMember = 0, totalOfRentals > 20}
rentalsHeld = 1}

]
o

{rentalsHeld < 5}

We can also see, for instance, that customer’s invariant {rentalsHeld < 5} is not compro-
mised on any state, and that postconditions of attached to different operations may be contra-
dictory without being inconsistent, such as {totalOfRentals = 0} and {totalOfRentals =
1}. O

4 Impact of model evolutions on consistency checks

Use case diagrams may change in different ways, and in different times during system develop-
ment. Model elements like actors, use cases, operations, associations and constraints may be
added, removed or modified during this process. In this dynamic environment, consistency may
be maintained by means of a simple strategy: just perform structural and behavioral checks
after every change in the model. However, a change may usually compromise only the con-
sistency of certain elements. Furthermore, new consistency checks may benefit from previous
checks and previously-built structures like state sequences. This section traces the effects of
changes on model-element consistency, and describes what actions are required to check and
maintain consistency after a group of changes have been applied to the model.

Additions

Figure 2 shows the actions required to maintain consistency when additions are performed
inside an actor. Notation is as follows. A denotes an actor and o0;, 1 < i < n denotes a
given operation defined on A. NewINV 4, NewPRE'", and NewPOST’, respectively denote a
new set of invariants added to A, a new set of preconditions and a new set postconditions
attached to o;. INV 4, PRE", and POST, respectively denote pre-existent sets of invariants
in A, preconditions and postconditions attached to o;. All bases NewINV 4, NewPRE'", and
NewPOST', are also required to be checked for consistency.

Figure 3 shows the actions required to maintain consistency when additions are performed
inside a use case. Notation is as follows. U denotes a use case and o;, 1 < 7 < n, denotes a
given operation defined on U. NewINV iy, NewPRE, NewPOSTy, NewPRE}; and NewPOST};
respectively denote a new set of invariants, preconditions and postconditions attached to U as
a whole, and preconditions and postconditions attached to o;. PREy, POSTy, PRE}, and
POST}; respectively denote a pre-existent set of preconditions and postconditions attached to
U as a whole, and preconditions and postconditions attached to 0;. NewCOND}, and COND},
respectively denote a new and a pre-existent set of conditions attached to a branching operation
0;. All bases NewPRE;, NewPOSTy;, NewPRE};, NewPOST}, and NewCOND}, are required
to be checked for consistency.

For the sake of brevity we have not described the consequences of adding new operations
to courses of events. The impact of actor additions over an inheritance hierarchy is analyzed
in other work. Nevertheless, these changes are not hard to trace to the consistency checks
and structures that we have defined, and many of them may be decomposed and treated as a
sequence of simpler additions depending on the attached constraints.

Removals and modifications

The removal of model elements does not affect consistency for existing elements, but it may
relax the consistency requirements of further evolutions. For instance, when removing an
actor operation from a course of events the course itselfs remains consistent, but it is possible
that operation postconditions remain part of future states. If this is so, this may prevent
future operation inclusions if their preconditions are not consistent with the now obsolete
postconditions.

Element added Consequences
invariants NewINV 4 1. Bases INV oA[NewINV 4 and PRE}|NewINV 4, POST}|[NewINV 4
for all 1 <4 < n must be cross-checked.

2. All previous bases related to any course of events in any use case
where A is involved must be cross-checked against NewINV 4.

3. All consistency bases INV4y related to any course of events in
any use case where A is involved must be re-built.

preconditions I. Bases PRE"[NewPRE", and INV s[NewPRE', must be cross-

NewPRE', attached checked.

to o; 2. All previous bases related to calls for o; in any course of event in
any use case where A is involved must be cross-checked against
NewPREY.

postconditions . Bases POST" [NewPOST", and INV 4[NewPOST?, must be cross-

NewPOST!, attached checked.

to o; 2. The state sequence related to any course of events in any use case

where A is involved must be re-built from the point where o; is
called in that course. Consequently, all previous and related to
operations following o; in that course must be re-built and cross-
checked.

Figure 2: Adding new elements to actors.

The only removals requiring some maintenance actions are those concerned with postcon-
ditions and invariants, whether they are caused by whole actor or use case removals, or by the
removal of pre-existent postconditions or invariant subsets. In the case of postconditions the
state sequences related to courses of events where these elements are involved must be re-built.
In the case of invariants, the consistency base INV 4y must also be re-built. As we said before,
there is no need for any kind of consistency check. Modifications are regarded as decomposed in
removals and additions. For instance, if a given postcondition p is changed to p’, consequences
are the same as if p were removed and then p’ were added.

5 Conclusions and further work

We have discussed how semantics assigned to UML use case diagrams may be verified and
maintained through model evolutions. Our analysis relies on constraint consistency. Proce-
dures to check and maintain such consistency were developed and illustrated trough a small,
structured constraint specification language. We have also described how model changes, e.g.,
modifying actor invariants, may compromise constraint consistency, and how previous checks
helps to avoid unnecessary verifications.

This research has been done in the context of development of the HEMOO tool, but it is
worthy to be compared with related works. TCM (Toolkit for Conceptual Modeling) [3] is a
tool supporting edition and verification of UML diagrams, and as far we know it is the only
tool with such verification capabilities. However, TCM maintains consistency only over UML-
predefined constraints, like well-formedness rules and predefined semantics of model elements.
On the other hand, HEMOO is also intended to provide controls over use-defined semantics.

Element added Consequences
invariants NewINV 1. Bases INVy|NewINVy, PRE[|NewINVy, POST{INewINVy
for all 1 <i <n and PREy|NewINV, POSTy|NewINV ; must

be cross-checked.

2. All previous bases related to any course of events over U must be
cross-checked against NewINVy;.

3. The consistency base INV 4y related to courses of events over U
must be re-built.

preconditions 1. Base PREy|NewPRE must be cross-checked.

NewPREy attached to 2. All previous bases related to inclusions of U (or extensions by U)
U as a whole on any course of event must be cross-checked against NewPREy;.
postconditions 1. Base POSTy|NewPOSTy must be cross-checked.

NewPOSTy attached 2. The state sequence related to any course of events must be re-
to U as a whole built from the point where U is included (or extends a base case).

Consequently, all previous and next bases related to operations in
the course following the inclusion of U (or the extension by U)
must be re-built and cross-checked.

preconditions 1. Base PRE},[NewPRE?; must be cross-checked.

NewP RE%] attached to 2. All previous bases related to calls for 0; on any course of event
04 must be cross-checked against NewPRE?;.

postconditions 1. Bases POS T§]|NewPOS Tb must be cross-checked.

NewPOS Tli] attached 2. The state sequence related to any course of events over U must be
to o; re-built from the point where o; is included in the course. Conse-

quently, all previous and next bases related to operations in the
course following o; must be re-built and cross-checked.

conditions NewCONDY; I. Base COND};[NewCOND?, must be cross-checked.

attached to a branching 2. All previous bases related to calls for o; on any course of event
operation o; must be cross-checked against NewCONDY;.

Figure 3: Adding new elements to use cases.

In this first stage of research our verification procedures heavily depends on two key aspects.
First, it was assumed a shared ontology supporting constraint definition: it is not possible to
find inconsistences unless two or more constraints with similar or contradictory meanings can
be compared. Second, use cases are required to be more structured than a simple textual
description. Courses of events are treated as a sequence of operations defined over actors or
use cases, with preconditions and postconditions modelling their intended meaning. Although
operations are classified according to a fixed set, they are flexible enough to express commonly-
found interactions.

Further research should be devoted to consider the consequences of more expressive con-
straint specification languages, the support for a coherent user-defined ontology and the auto-
matic generation of structured courses of events from use case textual descriptions[16]. Once
these issues had been studied, semantic verification of other UML diagrams and constraint
satisfaction are expected to be addressed.

References

1]

EveERETT, J., BORROW, D., STOLLE, R., CROUCH, R., DE Palva, V., CONDORAVDI, C.,
VAN DEN BERG, M., AND PorLanyI, L. Making Ontologies Work for Resolving Redundancies
Across Documents. Communications of the ACM 45, 2 (February, 2000), 55-60.

FaLBO, R., GuizzarDI, G., NATALI, A., BERTOLLO, G., RUY, F., AND MIAN, P. G. Towards
Semantic Software Engineering Environments. Proceedings of the 14th. International Conference
on Software Engineering and Knowledge Engineering (SEKE’02) (2002).

F.DEHNE, AND R.J.WIERINGA. Toolkit for conceptual modeling, user’s guide for tcm 1.2.0.
Tech. Rep. IR-401, Faculty of Mathematics and Computer Science, Vrije Universiteit Amsterdam,
April,1996. url: http://euklid.mi.uni-koeln.de/b/tcm/doc/usersguide/User.html.

FiLLoTrTRANI, P., ESTEVEZ, E., AND KAHNERT, S. Applying Logic Programming Techniques
to Object-Oriented Modeling in UML. Proceedings of the 14th. International Conference on
Software Engineering and Knowledge Engineering (SEKE’02) (2001), 228-235.

FREUDER, E. C., AND ELFE, C. Neighborhood Inverse Consistency Preprocessing. In Proceed-
ings AAAI’96 (1996), pp. 4-9.

GEORGET, Y., CODOGNET, P., AND RossI, F. Constraint Retraction in CLP(FD): Formal
Framework and Performance Results. CONSTRAINTS: An international journal, 4, 1 (1999).
Kluwer.

GRUNINGER, M., AND LEE, J. ONTOLOGY: Applications and design. Communications of the
ACM 45, 2 (February, 2000).

I. JACOBSON AND M. CHRISTERSON AND P. JONSSON AND G. OVERGAARD. Object-Oriented
Software Engineering: A Use Case Driven Approach. Addison-Wesley, 1997.

IvAR JACOBSON, G. B., AND RUMBAUGH, J. The Unified Modeling Language Reference Guide.
ACM Press, Addison-Wesley, 1999.

Ivar JACOBSON, G. B., AND RUMBAUGH, J. The Unified Modeling Language User Guide. ACM
Press, Addison-Wesley, 1999.

IVAR JACOBSON, G. B., AND RUMBAUGH, J. The Unified Software Development Process. ACM
Press, Addison-Wesley, 1999.

KuLAK, D., AND GUINEY, E. Use Cases, Requirements in Context. ACM Press, Addison-Wesley,
2000.

OMG. Unified Modeling Language Specification Version 1.4. Object Management Group, Inc.,
September,2001.

PROSSER, P., STERCGIOU, K., AND WALSH, T. Singleton Consistencies. In Proceedings CP’2000
(2000), Springer, pp. 353-368.

WARMER, J., AND KLEPPE, A. The Object Constraint Language: Precise Modeling with UML.
Addison-Wesley, 1999.

WOUTERS, B., DERIDDER, D., AND PAESSCHEN, E. V. The Use of Ontologies for as a backbone

for use case management. In Proceedings of the 14th. European Conference on Object-Oriented
Programming (ECOOP 2000) (2000).

