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Abstract 
 

The refinement technique allows us to capture the relationship between specification and 
implementation in software developments. The precise documentation of the refinement 
relationship makes it possible the traceability of the requirements through the refinement steps. 
Unfortunately, the standard modelling language UML suffers from a lack of notation to specify 
complex cases of refinement, which hinders the traceability activities.  In this article we present a 
profile of UML to model Classifier refinements as a composition of elementary refinements, 
allowing for a more precise syntactical specification of the refinement relationship. 
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1 Introduction 
 

Abstraction [4] ?is the key to mastering complexity. Abstraction facilitates the understanding of 
complex systems by dealing with the major issues before getting involved in the detail. Apart from 
enabling for complexity management, the inverse of abstraction, refinement, captures the essential 
relationship between specification and implementation. Abstraction/Refinement relationship makes 
possible to understand how each business goal relates to each system requirement and how each 
requirement relates to each facet of the design and ultimately to each line of the code. Documenting 
the refinement relationship between these layers allows developers to verify whether the code meets 
its specification or not, trace the impact of changes in the business goals and execute test assertions 
written in terms of abstract model’s vocabulary by translating them to the concrete model’s 
vocabulary. 
Refinement has been studied in many formal notations such as Z [2] and B [11] and in different 
contexts, but there is still a lack of formal definitions of refinement in semi-formal languages, such 
as the UML. 
The standard modelling language UML [14] provides an artifact named Abstraction (a kind of 
Dependency) to explicitly specify abstraction/refinement relationship between UML model 
elements. In the UML metamodel an Abstraction is a directed relationship from a client (or clients) 
to a supplier (or suppliers) stating that the client (the refinement) is dependent on the supplier (the 
abstraction). The Abstraction artifact has a meta attribute called mapping designated to record the 
abstraction/implementation mappings, that is an explicit documentation of how the properties of an 
abstract element are mapped to its refined versions, and on the opposite direction, how concrete 
elements can be simplified to fit an abstract definition. The more formal the mapping is formulated, 
the more traceable across refinement steps the requirements are.  
Some recently published works analyze the basis of the refinement relationship concepts in UML.  
In [1], the authors define a formal semantics for the refinement relationship and another subset of 



 

UML elements; in [16] the refinement relationship is deeply analysed and compared with  the 
specialisation relationship; Hnatkowska et al. in [7] and Liu et al. in [12] present two different 
approaches for the definition and use of the refinement relationship, whereas in [9] some formal 
methods for the automatic exploration of the Dependency concept in the context of UML 
specification, are described.  
 Although the Abstraction artifact allows for the explicit documentation of the 
Abstraction/Refinement relationship in UML models, an important amount of variations of this 
relationship remains underspecified by different causes; for example:  

- refinement is  hidden under other notations  
-  some refinements are composed by others more elementary ones that cannot be represented 

in UML, since this language lacks notation for it. 
The former problem was analysed in [19], where the authors study some UML artifacts such as 
generalization, composite association and use case inclusion; which implicitly define 
Abstraction/Refinement relationship.  
In this article, we restrict our attention to study the second problem in a syntactic way: UML models 
representing refinements that are composed by more elementary ones lack precision due to the fact 
that the refinement mapping cannot capture the elementary refinement documentation. Compound 
refinements appear even in the simplest case of refinement, such as the one of classes; composition 
takes place in class refinement due to the fact that a class refinement generally consists of attribute 
and operation refinements. 
The organization of the article is the following one: in section 2 we discuss refinement relations 
between Classifiers such as Use Cases and Classes and their variants, whereas in section 3 we 
express these variants as composition of more elementary refinements. In section 4 we introduce a 
profile of UML based on the definition of new stereotypes, formalizing the proposal presented in 
section 3. Finally we present conclusions and lines of future work. 
 

2 Classifier Refinements 
 
In [3], authors mention that refinement between Classifiers (or Types) can be realized in two 
different ways: Attribute refinements (or model refinements) and operation refinements. These 
forms of refinements specify that new attributes/operations can be added to a Classifier or that 
existing attributes/ operations can be replaced for new ones, in order to obtain a refinement from an 
abstract Classifier. In this work, we consider these basic refinements and propose other possible 
variants, as follows: 
 

• Attribute refinement: a Classifier can be obtained by replacing one of its attributes by its 
refinement (one o more attributes). For example, figure 1 a) shows that currentPosition 
attribute from Player class is refined by the attributes called previousPosition and 
stepsToMove through the mapping {currentPosition = previousPosition + stepsToMove}.  

 
• Operation refinement: we consider two variants of this refinement:  

- Atomic operation refinement: it express that an operation refines its postcondition. 
The operation signature does not change; only its postcondition changes. The refined 
postcondition must imply the original one. For example, figure 1 b) shows that the move 
operation in the Player class is refined in an atomic way, modifying its postcondition. We 
can observe that when the mapping does not appear in the diagram, the operation maps to 
itself (i.e. mapping contains the identity function). 
- Non-Atomic operation refinement: A Classifier can be obtained by replacing one of its 
operations by its refinement (one o more operations). For example, figure 1 c) shows that 



 

the move operation in the Player class is refined in a non-atomic way by the moveForwards 
and moveBackwards operations through the mapping <move=moveForwards; 
moveBackwards >. 

• Invariant refinement : a Classifier can be obtained by replacing its invariant by its 
refinement (An invariant is an assertion that must stay true for all class instances). The 
refined class has a new invariant that implies the original one. For example, figure 1 d) 
shows the refinement of the invariant in the Player class. 
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c)       d) 
 
 
 
Figure 1: Cases of class refinement: a) attribute refinement, b) atomic operation refinement, c)  non-

atomic operation refinement, d) invariant refinement. 
  
3 Classifier refinements expressed as composition of elementary refinements  
 

In the UML, the specification of the Abstraction Dependency is vague. Even Abstraction 
stereotyped with <<refine>>, for example in the context of class refinement, cannot express which 
elements (attributes, operations, invariant, or a composition of them) are being refined. Figure 2 
shows a UML metamodel instance which corresponds to the diagram in figure 1 c), where the 
refinement is specified between classes (although the actual refinement takes place on the move 
operation). The meta-attribute mapping attached to the relationship contains  an expression 
specifying the connection between the abstract and the concrete operations; however it is not clear 
enough that it is an operation which is being refined. In this sense, UML metamodel lacks precision, 
hindering the traceability process.  

Mappings vary according to which element is being refined (attributes, operations or invariants), 
consequently suppliers and clients of the Dependency relationship should vary accordingly (they are 
attributes, operations or invariants respectively). In order to specify these variations we need a more 
expressive notation to represent Classifier refinement. This notation would allow us to look at a 
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Classifier refinement no just as an atomic piece of documentation, but as a composition of more 
elementary pieces. That is to say, we would be able to express that a Classifier refinement is 
composed by zero or more attribute refinements, zero or more operation refinements and zero or 
more invariant refinements. In the following subsections we will analyze some cases of elementary 
refinements which can take place within a compound Classifier refinement.  

In the first place, we need to specify that a Refinement is composed by other Refinements, that is to 
say we need to declare an Association between Refinements  (notice that the composition is a 
particular case of Association). This is not possible in UML 1.x neither in UML 2.0 because 
Associations can be only established between Classifiers (notice that Dependencies are not 
Classifiers). A solution for this drawback is, on one hand, to define a new stereotype 
<<refinementComposition>> based on  the DirectedRelationship metaclass allowing us to express 
composition between Refinements. On the other hand, we define a hierarchy of new stereotypes 
based on the Abstraction metaclass, representing the different kinds of Refinements (i.e. compound 
refinements and elementary refinements) which will be connected by the stereotyped  relationship. 
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Figure 2: metamodel instance corresponding to diagram of figure 1 c)  

 
 
3.1 Compound Refinement in Class Diagrams 
Figure 3 shows the class refinement corresponding to figure 1c). It explicitly shows that the 
refinement is composed by an operation refinement. Then, Figure 4 shows the diagram in Figure 3 
expressed as an instance of the proposed metamodel. The composition relationship is an instance of 
DirectedRelationship metaclass. Its source is the class refinement and its target is the non-atomic 
operation refinement. Clients of the non-atomic operation refinement form a set specifying the 
refining operations while supplier specifies the refined one. In  [6] we have analyzed in detail other 
elementary Classifier refinements (attribute and invariant). 
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Figure 3: Class refinement composed by non-atomic operation refinement. 
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Figure 4: instance of the proposed metamodel corresponding to diagram in Figure 3. 

 
 
3.2  Compound Refinement in Use Case Diagrams 
 
Frequently, we specify refinements between use cases in UML in an implicit way. Those 
refinements remain hidden in the model. When modelling one or more use cases with an 
<<include>> Dependency between them, actually we are defining a use case operation refinement. 
The set of included use cases form the refinement itself. An example is shown in figure 5. 
Generalization between Use Cases is another way to model hidden refinements. 
 

Play gamePlayer

Roll dice
Calculate positions

Verify end of game

<<include>>
<<include>>

<<include>>

 Verify end of game

 PlayGame

 Roll dice

 Calculate positions

<<refine>>

 



 

Figure 5: Implication between <<include>> Dependency and Classifier Refinement between use 
cases. 

 
Since use cases are Classifiers, use case refinement can be expressed as Classifier refinement 
composed by a non-atomic operation refinement. Figure 6 shows an example, while Figure 7 shows 
its instantiation on the proposed metamodel. In this instantiation, we can see explicitly the operation 
refinement relationship between use cases.  
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Figure 6: Use Case refinement composed by non-atomic operation refinement. 
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Figure 7: Instantiation of proposed metamodel for diagram in figure 6 

 
4 A UML profile to express Classifier refinements 
 
As we discussed in previous section, in order to be able to model elementary class refinements in 
UML, it is necessary to extend UML. On one hand, we introduce the extension to model refinement 
composition. This specific composition is expressed defining a stereotype extending the metaclass 
DirectedRelationship (Figure 8).  
 



 

refinementComposition
<<stereotype>>

DirectedRelationship
<<metaclass>> +base

 
 

Figure 8: The stereotype << refinementComposition>> with base in DirectedRelationship. 
 
On the other hand, we propose a stereotype hierarchy, depicted in figure 9. The hierarchy root is the 
stereotype <<refine>> which already exists in UML with base in Abstraction metaclass. The 
stereotype <<ClassifierRefine>> models compound refinements between Classifiers while 
<<elementaryRefine>> models elementary refinements; in particular, we consider elementary 
refinements of attribute, operation and invariant but the hierarchy is open to future extensions. 

Abstraction
<<metaclass>>

refine
<<stereotype>>

attributeRefine invariantRefineoperationRefine

classifierRefine

atomicOperationRefine non - atomicOperationRefine

elementaryRefine

 
Figure 9: Stereotypes proposed as extension of UML metamodel. 

 
We include well formedness rules (constraints) to express that a refinement with stereotype 
<<ClassifierRefine>> is composed by elementary refinements (i.e. refinements with 
<<elementaryRefine>> substereotypes, such as <<attributeRefine>>, <<operationRefine>> or  
<<invariantRefine>>).  
As well, the stereotype <<operationRefine>> is sub classified with more specific stereotypes: 
<<atomicOperationRefine>> and <<non_atomicOperationRefine>>, allowing for the modeling of 
the different kinds of operation refinements that we introduced in section 2.  
 
The formal definition of the new stereotypes, using OCL [13] constraints to express their well 
formedness rules are as follows: 

 
• STEREOTYPE  <<refinementComposition>>  

 
Base: DirectedRelationship  
 
Constraints: 



 

 1. A << refinementComposition>> relationship must be established between refinements (the ends 
must be stereotyped with stereotypes of the refine hierarchy) 
 
self.source.oclIsKindOf(Abstraction) and self.target.oclIsKindOf(Abstraction) 
and 
self.source.stereotype.allParents -> includes (<<refine>>) and  
self.target.stereotype.allParents -> includes (<<refine>>)  
  
 2. The relationship source must be a compound refinement (that is to say it cannot be an 
elementary refinement) 
 
self.source.stereotype.allParents -> (excludes (<<elementaryRefine>>))  
 
3. The target of the relationship must belong to the elementary refinements hierarchy and it must 
not belong to another composition between refinements (strong composition). 
self.target.stereotype.allParents -> includes (<<elementaryRefine>>) and 
(self.owningPackage.ownedMember -> select (r: DirectedRelationship | 
r.stereotype= << refinementComposition >> and r <> self ))-> forAll (r | 
r.target <> self.target) 
 

• STEREOTYPE <<ClassifierRefine>>  
 
 Base: Abstraction  
Parent:: <<refine>> stereotype  
 
Constraints: 
1. A <<ClassifierRefine>> Abstraction must be established between Classifiers. 
  self.supplier.oclIsKindOf(Classifier) and self.client.oclIsKindOf(Classifier) 

 
2. The mapping between Classifiers is a correspondence relation between the features of the 
supplier Classifiers and the features of the client Classifiers 
 self.mapping.body = [σ(<p1, p2, ..,pn>) = < ƒ(p1), ƒ(p2), .. ƒ(pn)>] 
 
The Classifier specification can be defined by its feature list (its attributes, operations, etc.) that 
describes the Classifier objects [19]. In this case the feature list <p1, p2,..,pn> specifies the supplier 
Classifier (self.supplier); σ  is the function that applied to the supplier Classifier (its specification), 
returns its refinement (self.client); and  ƒ is the function describing the mapping for each property. 
 
σ: Classifier-> Classifier 
ƒ: Feature -> Feature 
 
Note: We have used an abstract representation to express the function associated to the mapping, 
due to the fact that the mappings between features (for example operation composition) cannot be 
expressed in OCL. 
 

• STEREOTYPE  <<elementaryRefine>>. 
 
Base: Abstraction 
Parent:: <<refine>> stereotype.  It is an abstract stereotype. 
 



 

Constraints: 
1. An <<elementaryRefine>> Abstraction cannot exist by itself, it must be "part of" only one 
compound refinement (of Classifier): 

 
self.composites -> size() = 1 and self.composite.stereotype = <<ClassifierRefine 
>> 

 
where the operation composites returns the set of compound refinements containing  self, while 
the operation composite  returns any element belonging to that set: 
 
composites: Abstraction -> Set(Abstraction) 
 

composites = (self.owningPackage.ownedMember -> select (r: DirectedRelationship 
| r.stereotype= << refinementComposition >> and  
r.target = self ))  -> collect (r: DirectedRelationship | r.source ) 
 

• STEREOTYPE <<attributeRefine>> 
 
Base: Abstraction 
Parent:: << elementaryRefine >> stereotype.  It is an abstract stereotype 
 
Constraints:  
1. An <<attributeRefine>> Abstraction must be established between attributes. 
 
self.supplier.oclIsKindOf(Attribute) and self.client-> 
forAll(a|a.oclIsKindOf(Attribute)) 
  
2. The attributes that form the refinement must be defined in the corresponding Classifiers, in 
particular:  

 
 2.1 The client attributes must belong to the client Classifier of the compound  Abstraction 
which contains the elementary Abstraction: 

self.client-> forAll(a |self.composite.client.ownedAttribute -> includes(a))   
 
 2.2  The supplier attribute must belong to the supplier Classifier of the compound  
Abstraction which contains the elementary Abstraction: 

self.composite.supplier.ownedAttribute -> includes (self.supplier)   
 
 

• STEREOTYPE   <<operationRefine>> 
 
Base: Abstraction 
Parent:: << elementaryRefine >> stereotype.  It is an abstract stereotype 
 
Constraints:  
1. An <<operationRefine>> Abstraction must be established between operations.  
self.supplier.oclIsKindOf(Operation) and self.client-> 
forAll(o|o.oclIsKindOf(Operation)) 
 2. The operations that form the refinement must be defined in the corresponding  classes, in 
particular: 



 

2.1 the client operations must belong to the client Classifier of the compound  Abstraction 
which contains the elementary Abstraction: 

self.client-> forAll(o |self.composite.client.ownedOperation -> includes(o))   
 
2.2 the supplier operation must belong to the supplier Classifier of the compound  Abstraction 
which contains the elementary Abstraction: 

self.composite.supplier.ownedOperation -> includes (self.supplier) 
 

• STEREOTYPE <<atomicOperationRefine>> 
 
Base: Abstraction 
Parent:: << operationRefine >> stereotype. 
 
Constraints:  
1. In each refinement relationship, an operation is refined with only one operation.  
self.client -> size() = 1 
  
2. The client operation postcondition implies the supplier operation postcondition. 
(self.client.ownedRule->any (r| r.stereotype=<<postCondition>>)).specification 
implies (self.supplier.ownedRule->any (r| 
r.stereotype=<<postCondition>>)).specification 
 

• STEREOTYPE   <<non-atomicOperationRefine>>  
 
Base: Abstraction 
Parent:: << operationRefine >> stereotype.  
 
Constraints: 
1. An operation is refined with more than one operation. 
self.client -> size() > 1 

 
• STEREOTYPE << invariantRefine>> 

 
Base: Abstraction 
Parent:: << elementaryRefine >> stereotype.  
 
Constraints:  
1. It is established between Classifier invariants, that is to say client and supplier are constraints 
with stereotype <<invariant>> 
self.supplier.oclIsKindOf(Constraint) and self.client.oclIsKindOf(Constraint) 
and self.supplier.stereotype=<<invariant>> and self.client.stereotype = 
<<invariant>> 

 
2. The invariants that form the refinement must belong to the corresponding Classifiers, in 
particular: 
 

2.1 The client invariant must be an invariant of the client Classifier of the compound  
Abstraction which contains the elementary Abstraction: 

self.composite.client.ownedRule -> includes (self.client)  
  



 

2.2 The supplier invariant must be an invariant of the supplier Classifier of the compound  
Abstraction which contains the elementary Abstraction: 

self.composite.supplier.ownedRule -> includes (self.supplier)   
 

3. In each refinement relationship , an invariant is refined with only one invariant. 
  self.client -> size() = 1 

 
4. The client invariant must imply the supplier invariant. 
self.client.specification implies self.supplier.specification  
 
5 Conclusions and future work 
 
Abstraction/Refinement relationship makes it possible to understand how each business goal relates 
to each system requirement and how each requirement relates to each facet of the design and 
ultimately to each line of the code. The more in detail the documentation of refinements (mapping) 
in the software development is formulated, the more traceable across refinement steps the 
requirements are.  
The problem of lack of formality in the specification of refinements on UML models  has been 
analysed by our research team; to experiment, a tool called ePLATERO [17], integrated in the 
Eclipse environment [8] and based on the formal definition of refinement was created. The tool 
supports the documentation of explicit refinements (i.e. Abstractions artifacts with their 
corresponding mapping expressions) and the semi-automatic discovering and documentation of 
hidden refinements. In addition, it was published a work [18] with the last advances of ePLATERO 
project. 
As a continuation of this previous work, in the present article, we focussed our attention to the study 
of composition of refinements. The standard modelling language UML suffers from a lack of 
notation to specify complex cases of refinement, due to the fact that the UML refinement mapping 
cannot capture the elementary refinements which make up a compound refinement. Consequently, 
compound refinements remain under specified in UML models, which obstruct the traceability 
process. 
As a solution for this weakness we developed a profile for UML to model refinements, based in the 
definition of new stereotypes.  
The refinement relation can be established between elements of the same type (for example between 
classes) or elements of different types (for example a use cases model and a collaboration model 
realising it) [15] [5]. In this work we have studied one form of refinement between elements of the 
same type (the refinement of Classifiers). As a line of future work, we will include the treatment of 
other refinements between elements of different type. The idea is to discriminate the hierarchy of 
the stereotype <<refine>> of Abstraction. One branch will be under the discriminant 
sameTypeElement and the other branch under the discriminant differentTypeElement. In the later 
case, the Client and the Supplier of the refinement relationship have different types.  
This set of stereotypes will add new notations and restrictions which will contribute to the 
improvement of the UML language towards the precise specification of refinements,  with the final 
purpose of increasing the accuracy of the traceability process. 
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