
Precompiled knowledge support for dynamic

argumentation

Marcela Capobianco Carlos I. Chesñevar Guillermo R. Simari

Laboratorio de Investigación y Desarrollo en Inteligencia Artificial (LIDIA)
Departamento de Ciencias e Ingenieŕıa de la Computación

Universidad Nacional del Sur - Bah́ıa Blanca - ARGENTINA

e-mail: {mc,cic,grs}@cs.uns.edu.ar

Abstract

Argumentative formalisms have been widely recognized as knowledge representation
and reasoning tools able to deal with incomplete and potentially contradictory informa-
tion. All such formalisms are computationally demanding. Hence, optimizing argumen-
tative systems has been approached from different views.

We have developed a new proposal to solve the aforementioned problem. The key to
our approach consists in maintaining a module associated with the knowledge base of the
system, with additional information that may help to speed up the inference process. As
truth maintenance systems optimize general problem solvers, this module could play a
similar role in argumentative systems.

Keywords: knowledge representation, argumentation, rational agents.

1 Introduction

Argumentative formalisms [16, 19, 20, 9, 17] have been widely recognized as knowledge rep-
resentation and reasoning tools able to deal with incomplete and potentially contradictory
information. The main obstacle to use these system in practical applications is that they are
computationally demanding.

Optimizing argumentative systems has been approached from different views [5, 13]. The
basic idea of our proposal is to maintain a module associated with the knowledge base of the
system, with additional information that may help to speed up the inference process. As truth
maintenance systems [8] optimize general problem solvers, this module could play a similar role
in argumentative systems.

The use of precompiled knowledge for argumentation formalism was previously addressed
in [2]. In that article, the basic idea was to maintain a repository of the conclusions previously
computed to avoid repeating the reasoning process on the same input. The disadvantages of
that formulation were twofold. Firstly, its applicability was restricted as it only helped in the
solution of recurrent queries. Secondly, the recorded information had to be updated each time
the agent acquired a new observation, and the restoring operation was a demanding task.

This paper presents a new proposal that addresses those shortcomings. Basically, we redefine
the inference mechanism of ODeLP [4] to take advantage of a precompiled knowledge component.



This approach was first considered by the authors in [3] and has undergone several refinements
[1]. In this article we summarize the main results obtained through this work.

The remainder of this paper is organized as follows. Section 2 describes the basic ideas in
argumentation and truth maintenance systems. Section 3 presents the language of the ODeLP

formalism and describes the perception mechanisms devised for this system. Section 4 defines
the inference mechanism for ODeLP, incorporating precompiled knowledge. Finally, section 5
states the main conclusions obtained through this work.

2 Preliminaries

This section surveys the basic ideas in argumentation and truth maintenance systems that will
be used in the rest of this paper. Firstly, we present a general view on argumentation formalisms.
Truth maintenance system are analyzed later according to Doyle’s original proposal [8].

2.1 Argumentation

Argumentative systems [16, 19, 20, 9, 17] arose in the late eighties as knowledge representation
and reasoning tools able to deal with incomplete information. In general, argumentative systems
represent the world by means of a knowledge base. Conclusions are drawn from this knowledge
base using an appropriate inference mechanism, defined accordingly.

Usually the knowledge base of an argumentative system allows to represent two different
kinds of information: strict and defeasible. Strict information is assumed to be correct and
irrefutable, while defeasible knowledge is tentative and can be subject to exceptions. Rules
that encode the former are called defeasible or weak, and the rules modelling strict knowledge
are called strong or strict.

In argument-based formalisms, the inference mechanism relies on the construction of argu-
ments. In classical logic rules are chained to obtain a certain derivation, and in argumentative
systems arguments are built to support a given conclusion. The information in the knowledge
base (both strict and defeasible rules) is used to obtain arguments, which represent pieces of
tentative reasoning.

Given an argumentative formalism, different arguments can be derived from its associated
knowledge base. As the inference process is based on tentative knowledge, conflicting arguments
can be obtained. In this situation some preference criterion is adopted to decide which argument
prevails or defeats its opponent and therefore can support its conclusion. The comparison
criterion as well as the definition of conflict between arguments are a particular element of
every argumentation system and may vary accordingly.

Using the notion of defeat among arguments it can be defined when a given argument is
acceptable, i.e., is able to survive every conflict with other arguments. In a first approach,
the system may deem an argument as acceptable if it can defeat every one of its opponents.
Nevertheless, suppose that an argument A is defeated by an argument B which in turn is
defeated by a third argument C. In this case the argument A may be acceptable, as B does not
have the force to eliminate A (since B is a defeated). This gives raise to a recursive definition
of acceptability. Once again, there is no agreement about this notion, and its formalization
depends on the particular system under consideration.

In the past few years numerous contributions to the field of argumentation have been devel-
oped. These works have acknowledged defeasible argumentation as a powerful tool for knowl-
edge representation and common-sense reasoning. Besides, many of applications have been



implemented based on this discipline, mainly in the areas of agent negotiation and argument-
based decision making.

2.2 Precompiled Knowledge

John Doyle pioneered in the formulation and use of precompiled knowledge. He defined the
concept of Truth Maintenance Systems (TMS) [8] as tools for problems solvers. The function of
a TMS is to record and maintain the reasons for the agent’s beliefs. Doyle describes a series of
procedures that determine the current set of beliefs and update it in accord with new reasons.
Under this view, rational thought is deemed as the process of finding reasons for attitudes [8];
that is to say, some attitude (such as belief, desire, etc) is rational if there is some acceptable
explanation for holding it. Next, we describe the basic terminology of Doyle’s TMS.

TMS record arguments 1 for potential program beliefs. It manipulates two basic data struc-
tures: nodes, which represent beliefs, and justifications which model reasons for the nodes. We
say that the TMS believes in a node if it has an argument for the node and believes in the nodes
involved in the argument. Although this may seem circular, there are arguments which involve
no other nodes (these are considered as assumptions).

The fundamental actions of a TMS are:

• create a new node, to which the problem solving program using the TMS can attach the
statement of a belief.

• add (or retract) a justification for a node, to represent a step of an argument for the belief
represented by the node.

• mark a node as a contradiction, to represent the inconsistency of any set of beliefs which
enters into an argument for the node.

A new justification for a node may lead the TMS to believe in it. If the TMS did not believe
in the node previously, this may in turn allow other nodes to be believed by virtue of existing
but incomplete arguments. In this case, a truth maintenance procedure [8] is invoked, to make
any necessary revisions in the set of beliefs.

TMS employ a particular type of justifications, called non-monotonic, to make tentative
guesses. A non-monotonic justification bases an argument for a node not only on current
beliefs in certain nodes, but also on lack of beliefs in other nodes. Any node supported by a
non-monotonic justification is called an assumption.

Every node in the TMS has an associated set of justifications. Each justification represents
a different reason for asserting it. The node is believed if and only if at least one of the
justifications is valid.2 In this case it is say to be in the set of beliefs. Otherwise, the node is
out of this set. It is important to remark that the distinction between in and out is not that
between true and false. The former classification refers to current possession of valid reason for
belief, where as true and false are the result of evaluating inferences according to their truth
value, independently of any reason.

In the TMS, each potential belief to be used as a hypothesis or a conclusion of an argument
must be given its own distinct node. When uncertainty about some inference P exists, nodes for
both P and its negation must be provided. Either of these nodes can have or lack well-founded
arguments, leading to a four-element belief set (neither P nor ¬P are believed, exactly one is

1It is important to note that from section 3 onward the term argument is used with a different meaning
2See [8] for a precise definition.



believed, or both are believed). The author details the procedures needed to establish the state
of every node, and to update these states in case new justifications or facts are added to the
TMS.

As advantages of the TMS, Doyle mentions that the system solves part of the belief revision
problem and provides a mechanism for making non-monotonic assumptions. He also affirms
that performance is significantly improved. In his own words:

... the overhead required to record justifications for every program belief might
seem excessive. However, the pressing issue is not the expense of keeping records of
the sources of beliefs. Rather, we must consider the expense of not keeping these
records. If we throw away information about derivations, we may be condemning
ourselves to continually re-deriving information in large searches caused by changing
irrelevant assumptions...

Doyle’s truth maintenance system motivated the development of a large body of literature [6,
7, 10, 15, 11]. The seminal idea appears not to have been any particular technical mechanism,
but rather the general concept of an independent module for belief maintenance [15]. Moreover,
TMS have been implemented and used in practical applications with satisfying results.

3 ODeLP: Observation-based DeLP

The language of ODeLP is based on the formalism of DeLP [13, 12]. Therefore, it inherits
its advantages as a knowledge representation and reasoning tool. ODeLP also incorporates
mechanism for perception that make it more suitable for dynamic domains, where modifying
the knowledge base in terms of new information is a mandatory issue. In what follows, we
briefly define the language of ODeLP.

Observations and defeasible rules are the main components of ODeLP language. Observa-

tions describe the knowledge of agent about the world and defeasible rules represent ways of
extending observations with tentative information (i.e. information that can be used if nothing
is posed against it). Following we present the corresponding formal definitions.

Definition 3.1. (Signature)
A signature Σ is an ordered tuple denoted as (V,Pred,Func), where V is an enumerable set
of variables, Pred is a finite set of predicates and Func is a finite set of functions such that
V ∩ (Pred ∪ Func) = ∅. �

The concepts of function, predicate and variable are defined as usual. Literals are considered
as atoms that may be preceded by the symbol “∼” denoting strong negation [14].

Definition 3.2. (Observation)
An observation is a ground literal. �

Definition 3.3. (Defeasible rule)
A defeasible rule is an ordered pair, denoted as “Head −≺ Body”, where Head is a literal and
Body is a non-empty finite set of literals such that intersecting the variables in the literals of
Head and Body results in a non-empty set. �

Defeasible rules are not elements of the object language in ODeLP. They play the role of
inference rules for the inference mechanism. Therefore they must contain variables in order
to describe a general rule of the domain under consideration. A defeasible rule with ground



literals codifies only a particular situation that should not be expressed with a defeasible rule.
It must be remarked that variables appearing with the same name in the head and the body
of a given defeasible rule are regarded as the same object. Every defeasible rule is in fact an
scheme representing a set of ground instances.

Definition 3.4. (Ground instance of a defeasible rule)
Let r be a defeasible rule. A ground instance r1 of r is obtained by replacing every variable in
r with a constant of the language such that variables with the same name are replaced by the
same constant. �

Definition 3.5. (Defeasible logic program)
A defeasible logic program is composed by set Ψ of observations and a set ∆ of defeasible rules
such that:

1. Ψ and ∆ are finite sets.

2. Ψ is a non-contradictory set of literals (i.e. it is not the case that p ∈ Ψ and ∼p ∈ Ψ).

When required, we denote P as (Ψ, ∆). �

The second restriction in the definition above demands a kind of internal coherence in the
set of premises (observations). This condition is also used in the formalism of Simari and
Loui [19] and DeLP [13]. In these systems the set of strict knowledge is required to be non-
contradictory.

Example 3.1. The following rules codify an ODeLP program holding information about a
given company and its workers.

poor performance(john).

sick(john).

poor performance(peter).

high salary(rose).

applicant(rose).

good referencies(rose).

hire(X) −≺ low salary(X), applicant(X).
∼hire(X) −≺ high salary(X), applicant(X).

hire(X) −≺ high salary(X), applicant(X), good referencies(X).

suspend(X) −≺ ∼responsible(X).
∼suspend(X) −≺ responsible(X).
∼responsible(X) −≺ poor performance(X).

responsible(X) −≺ good performance(X).

responsible(X) −≺ poor performance(X), sick(X).

Observations describe that John has a poor performance at his job, John is currently sick, Peter
also has a poor performance and Rose is an applicant that demands a high salary. Defeasible
rules express that the company prefers to hire employers that require a low salary. Besides, an
employee that demands a high salary is usually not hired, but in the exceptional case where
he/she has good references it is recommended to hire the applicant. The remaining rules deal
with the performance of the employees. If a given person is not responsible in his/her job
then he/she should usually be suspended, a responsible person should not be suspended, and
a person is hold as responsible (or not responsible) considering his/her performance in the
company. �



It is interesting to remark the differences between the language of ODeLP and its predecessor
DeLP[13]. In DeLP programs are composed by a set of strict rules and a set of defeasible rules.
In contrast, ODeLP does not include strict rules as part of the knowledge base. This new
approach is particularly useful for practical applications of the system, since it makes easier
to implement perception mechanisms in ODeLP. In addition, despite the elimination of strict
rules, the formalism of ODeLP does not lack expressive power and is suitable for a wide range
of applications.

4 An inference engine for ODeLP

Having defined the concept of defeasible logic programs, we focus on the consequence operator

for these programs. Inference in ODeLP is driven by defeasible queries. A defeasible query
(from now on a query) is defined in a logic programming style using defeasible rules as Horn-
like clauses. The first step to answer a given query is to construct a defeasible derivation for
it.

Definition 4.1. (Defeasible derivation)
Let P = (Ψ, ∆) be an ODeLP program and let q be a ground literal (also called query). A
finite sequence of ground literals, s = q1, q2, . . . , qn−1, q, is said to be a defeasible derivation for
q from P (abbreviated P |∼ q) if for every qi there exists a defeasible rule r ∈ ∆ and a ground
instance t of r, t = qi −≺ l1, . . . , lm, such that l1, . . . , lm are ground literals previously occurring
in s. �

Even though the set Ψ must be non-contradictory, P may allow the defeasible derivation of
complementary literals. Therefore new mechanisms are explored to find out which literals are
supported by the program. This leads to the concept of argument.

Definition 4.2. (Argument – Sub-argument)
Given an ODeLP program P, an argument A for a ground literal q, also denoted 〈A, q〉 or
simply A, is a subset of ground instances of the defeasible rules in P such that: (1) there exists
a defeasible derivation for q from Ψ ∪ A, (2) Ψ ∪ A is non-contradictory, and (3) 6 ∃ A′ ⊂ A
such that Ψ ∪ A′|∼ q. An argument 〈A1, q1〉 is a sub-argument of 〈A2, q2〉 if A1 ⊆ A2. �

If A is a set of defeasible rules, then heads(A) (respectively bodies(A)) denotes the literals
occurring in the head (respectively body) of a defeasible rule in A, literals(A) denotes the set
composed by heads(A) ∪ bodies(A), and the set G(A) = bodies(A) − heads(A) is called the
ground of A.
An argument A for a query q provides a tentative proof for q, which may be in conflict with
other arguments that contradict A (in the example above A2 contradicts A3). This leads to
the formal definition of counter-argument.

Definition 4.3. (Counter-argument)
An argument 〈A1, q1〉 counter-argues an argument 〈A2, q2〉 (or 〈A1, q1〉 is a counter-argument

for 〈A2, q2〉) at a literal q if and only if there is a sub-argument 〈A, q〉 of 〈A2, q2〉 such that q1

and q are not contradictory literals. �

An argument 〈A1, q1〉 defeats an argument 〈A2, q2〉 if 〈A1, q1〉 is a counter-argument for
〈A2, q2〉, and (1) 〈A1, q1〉 is deemed better than 〈A2, q2〉 according to some preference criterion
or (2) 〈A1, q1〉 is unrelated to 〈A2, q2〉 using this criterion. The former case is called proper

defeat and the latter blocking defeat. In this paper we adopt specificity as the preference



criterion (as defined in [4]), although any criterion that induces a partial order on the set of
possible arguments could be used.

A query q will succeed if there exists a supporting argument A for q such that A is ultimately
undefeated. In that case A is said to be a warrant for q (or equivalently, q is warranted). To
establish whether an argument 〈A, q〉 is ultimately undefeated, all possible defeaters for 〈A, q〉
are analyzed.3 Since defeaters are arguments, there may be defeaters for the defeaters and
so on. For this reason, a complete dialectical analysis is required to determine whether the
original argument is accepted. This analysis can be formalized through the construction and
marking of a structure called dialectical tree. As an output of the marking process, undefeated
arguments are labelled as U-nodes and defeated ones as D-nodes.

Definition 4.4. (Dialectical tree)
Let A be an argument for q. A dialectical tree for 〈A, q〉, denoted T〈A,q〉, is recursively defined
as follows:

1. A single node labeled with an argument 〈A, q〉 with no defeaters (proper or blocking) is
by itself the dialectical tree for 〈A, q〉.

2. Let 〈〈A,〉 1, q1〉, 〈A2, q2〉, . . . , 〈An, qn〉 be all the defeaters (proper or blocking) for 〈A, q〉.
The dialectical tree for 〈A, q〉, T〈A,q〉, is obtained by labelling the root node with 〈A, q〉,
and making this node the parent of the roots nodes for the dialectical trees corresponding
to 〈A1, q1〉, 〈A2, q2〉, . . . , 〈An, qn〉. �

Every dialectical tree T〈A1,q1〉 is marked according to the following criterion:

• all the leaves in T〈A1 ,q1〉 must be marked as U-nodes, and

• Every 〈A2, q2〉 such that 〈A2, q2〉 is an inner node of T〈A1,q1〉, 〈A2, q2〉 must be marked as
U-node if and only if every child of 〈A2, q2〉 is marked as a D-node; otherwise 〈A2, q2〉
must be marked as a D-node.

It is worth noticing that dialectical trees may give rise to contradictory or circular argu-
mentation, which are particular cases of the so-called fallacious argumentation [18], a problem
suffered by most argumentation systems. These situations are considered and solved in ODeLP

as special mechanisms are designed to cope with such problems [3]. For space reasons, these
concepts are not considered in this paper.

Definition 4.5. (Warrant)
Let A be an argument for a literal q, and let T〈A,q〉 be its associated dialectical tree. A is a
warrant for q if and only if the root of T〈A,q〉 is marked as a U-node. �

Example 4.1. If the query suspend(john) is formulated with respect to the program in
example 3.1, the dialectical tree in figure 1 will be built, based on arguments:

• 〈A, suspend(john)〉, where
A = {suspend(john) −≺ ∼responsible(john);
∼responsible(john) −≺ poor performance(john)}.

• 〈B, ∼suspend(john)〉, where
B = {∼suspend(john) −≺ responsible(john);
responsible(john) −≺ poor performance(john),sick(john)}.

3The search space can be reduced by applying an α − β pruning strategy [18].



�
�
��

L
L

LL

B

U

�
�
��

L
L

LL

C

U

�
�

��

@
@

@@
�
�
��

L
L

LL

A

D

Figure 1: Dialectical tree from example 4.1.

• 〈C, responsible(john)〉, where
C = {responsible(john) −≺ poor performance(john),sick(john)}.

Using specificity as the preference criterion, B is a blocking defeater for A, and C is a proper
defeater for A. Therefore argument A is a D-node and suspend(john) is not warranted. �

This concludes the description of ODeLPś traditional inference mechanism. It is important
to mention that this system has several desirable properties. For example, it has been shown
that the inference relation of ODeLP is coherent in the sense that a literal and its complement
cannot be inferred from the same knowledge base. For a full discussion of ODeLP’s properties,
the interested reader can consult [1].

The basic inference mechanism described so far may be reformulated by means of precom-
piled knowledge, using a module with additional information about the program that may be
used in the inference process. This would improve the performance of ODeLP as a tool for
solving real world problems as general problem solving are benefited by truth maintenance
systems.

There are different ways to construct the module of precompiled knowledge. A simple
approach could rely on keeping track of every argument that can be built from the program
and the defeat relation among them. This proposal has several drawbacks. In the first place, a
relatively small program may produce a large number of arguments, resulting a large repository
of information. Besides, some arguments may be obtained using different ground instances of
the same defeasible rule. This leads to believe that we could simply record the defeasible rules
that were used to obtain the argument. Following this line of reasoning we defined the notion
of potential arguments, cornerstone of the precompiled knowledge in ODeLP.

Definition 4.6. (Instance for a set of defeasible rules)
Let A be a set of defeasible rules. A set B formed by ground instances of the defeasible rules
in A is an instance of A if and only if every instance of a defeasible rule in B is an instance of
a defeasible rule in A. �

Definition 4.7. (Potential argument)
Let ∆ be a set of defeasible rules. A subset A of ∆ is a potential argument for a literal q, noted
as [[A, q]] if there exists a non-contradictory set of literals φ and an instance B of the rules in A

such that B is an argument with respect to (Φ, ∆). �

In the definition above the set of observations φ represents a state of the world in which
it is possible to build the instance B. It is important to remark that a contradictory set of
literals includes at least a pair of complementary literals. The set φ must be non-contradictory
to model a coherent scenario.



Note that potential arguments are independent from the current set of observations Ψ.
This stems from the fact that observations may change as the world evolves. ODeLP has
been designed to accommodate perceptions mechanisms in a simple way and defining potential
argument independent from the observations respects this philosophy. Otherwise, potential
arguments would change as the agent perceives new observations, decreasing the efficiency of
the system.

The first step for building the precompiled knowledge associated with an ODeLP program
P = (Ψ, ∆) is to produce and record every potential argument of P. We have developed a set
of algorithms for this task, not detailed in this paper for space reasons.

Potential arguments can be used in the inference process in the following way. Instead of
generating the arguments for a given query q, the system finds the potential argument such
that at least one of its instances may be an argument for q. If we record the information about
the defeat relation in the module of precompiled knowledge, it can also be used for find the
defeaters of a given argument and thus construct the dialectical tree. Therefore we extend
the concepts of counterargument and defeat for potential arguments. A potential argument
[[A1, q1]] counter-argues another potential argument [[A2, q2]] at a literal q if and only if there is
a potential sub-argument [[A, q]] of [[A2, q2]] such that q1 and q are contradictory literals. Note
that this kind of counter-arguments represents only a possible conflict between the potential
arguments in contest. It might be the case that these arguments cannot co-exist in any scenario
(e.g. consider two potential arguments based on contradictory observations).

To check whether a potential argument defeats one of its counter-arguments, the criterion
used to compare pairs of arguments must be adapted to pairs of potential arguments. In
particular, we have redefined specificity to compare arguments independently from the set of
observations.4 The definition of defeat between hypothetical arguments can be stated analo-
gously to the standard definition of defeat, parameterized with respect to the defeat criterion.

Having defined the preliminary notions, we can introduce the concept of dialectical bases,
the structure that represents the module of precompiled knowledge for a given ODeLP program.

Definition 4.8. (Dialectical Base)
Let P = (Ψ, ∆) be an ODeLP program. The tuple (A, Dp, Db) is said to be the dialectical

base of P with respect to ∆, denoted as DB∆, if and only if: (1) A is the set formed by every
potential argument that can be built from ∆; and (2) Dp and Db are relations over the elements
of A such that for every pair ([[A1, q1]], [[A2, q2]]) in Dp (respectively Db) it holds that [[A2, q2]] is
a proper (respectively blocking) defeater of [[A1, q1]]. �

To build the dialectical base of an ODeLP program the inference engine first generates
the set A of potential arguments and then calculates the associated defeat relation. 5 The
modified inference process selects the potential arguments that could be used to support the
main query. Next, selected every potential argument is instanciated accordingly and the links
to the defeaters are used to continue the dialectical analysis that leads to the dialectical tree
for the given query.

Example 4.2. Consider the program in example 3.1. The dialectical base of P is composed
by the following potential arguments:

• [[A1, hire(X)]],
where A1 = {hire(X) −≺ low salary(X), applicant(X)}.

4See [4] for the definition and analysis of this criterion.
5We have developed algorithms for the creation and use of dialectical bases that for space reasons are not

presented in this paper.



• [[A2, ∼hire(X)]],
where A2 = {∼hire(X) −≺ high salary(X), applicant(X)}.

• [[A3, hire(X)]],
where A3 = {hire(X) −≺ high salary(X), applicant(X),

good refencies(X)}.

• [[B1, suspend(X)]],
where B1 = {suspend(X) −≺ ∼responsible(X)}.

• [[B2, suspend(X)]],
where B2 = {suspend(X) −≺ ∼responsible(X);
∼responsible(X) −≺ poor performance(X)}.

• [[B3, ∼suspend(X)]],
where B3 = {∼suspend(X) −≺ responsible(X)}.

• [[B4, ∼suspend(X)]],
where B4 = {∼suspend(X) −≺ responsible(X);
responsible(X) −≺ good performance(X)}.

• [[B5, ∼suspend(X)]],
where B5 = {∼suspend(X) −≺ responsible(X);
responsible(X) −≺ poor performance(X), sick(X)}.

• [[C1, responsible(X)]],
where C1 = {responsible(X) −≺ poor performance(X)}.

• [[C2, ∼responsible(X)]],
where C2 = {∼responsible(X) −≺ poor performance(X)}.

• [[C3, responsible(X)]],
where C3 = {responsible(X) −≺ poor performance(X), sick(X)}.

and the defeat relations:

• Dp = {(A3, A2), (C3, C2), (C3, B2)}

• Db = {(A1, A2), (A2, A1), (C1, C2), (C2, C1), (C1, B2), (C2, B4), (B1, B3), (B1, B4),
(B3, B1), (B4, B1), (B1, B5), (B5, B1), (B2, B5), (B5, B2), (B2, B3), (B3, B2)}.

The relations are also depicted in figure 2, where A1 properly defeats A2 is indicated with an
arrow from A1 to A2 and blocking defeat is distinguished with a dotted arrow.
Is is interesting to note that a dialectical base is a graph and as such stands for several dialectical
trees. If the query hire(rose) is posed to the system, this can be solved using the potential
argument A3 (resulting into a dialectical tree formed only by one argument, or using the
potential argument A1 and resulting into a dialectical tree with three chained arguments. The
dialectical base contains both alternatives trees. �



B3 B4 B5

B1 B2

C1 C2 C3

A1 A2 A3
� - �

� - �

�
�

�
��	q

?

I

R

i

q

�

	

�

	

�

	

I

R

Figure 2: Dialectical base in example 4.2.

5 Conclusions

We have designed a system in the style of logic programming that also enjoys the expressive
power of argumentation frameworks. Usually, this expressive power usually results in a lack
of efficiency. To address this problem we have developed an inference mechanism based on
the notion of precompiled knowledge, that reformulates the traditional approach for drawing
conclusions in ODeLP.

The results obtained through this work lead to believe that using these techniques on argu-
mentative systems establishes a new line of research. We think that different frameworks for
defeasible argumentation could benefit from the ODeLP approach by incorporating the tech-
niques and algorithms discussed in this paper. Research in this direction is currently being
pursued.

References

[1] Capobianco, M. Argumentacion rebatible en entornos dinámicos. Master’s thesis, Universidad
Nacional del Sur, Bah́ıa Blanca, Argentina, 2002. To appear.

[2] Capobianco, M., Chesñevar, C. I., and Simari, G. R. A Formalization of Dialectical
Bases for Defeasible Logic Programming. In Proceedings of the 6th Internacional Congress of
Informatics Engineering (Capital Federal, Apr. 2000), Universidad Buenos Aires.

[3] Capobianco, M., Chesñevar, C. I., and Simari, G. R. An argumentative formalism for im-
plementing rational agents. In Proceedings of the 2st Workshop en Agentes y Sistemas Inteligentes
(WASI), 7th Congreso Argentino de Ciencias de la Computación (CACIC) (El Calafate, Santa
Cruz, Oct. 2001), Universidad Nacional de la Patagonia Austral, pp. 1051–1062.

[4] Capobianco, M., and Simari, G. R. Defeasible Reasoning in Dynamic Domains. In Proceed-
ings of the 1st Workshop en Agentes y Sistemas Inteligentes (WASI), 6th Congreso Argentino de
Ciencias de la Computación (CACIC) (Ushuaia, Oct. 2000), Universidad Nacional de la Patag-
onia San Juan Bosco, pp. 1481–1492.



[5] Chesñevar, C. I. El Problema de la Inferencia en Sistemas Argumentativos: Alternativas para
su solución. Master’s thesis, Universidad Nacional del Sur, Bah́ıa Blanca, Argentina, Nov. 1996.

[6] de Kleer, J. An assumption based TMS. Artificial Intelligence 28, 2 (1986), 127–162.

[7] de Kleer, J. A comparison of ATMS and CSP techniques. In Proceedings of the 11th In-
ternational Joint Conference on Artificial Intelligence, Workshop on Practical Reasoning and
Rationality (Detroit, USA, Aug. 1989), N. S. Sridharan, Ed., Morgan Kaufmann, pp. 290–296.

[8] Doyle, J. A Truth Maintenance System. Artificial Intelligence 12, 3 (1979), 231–272.

[9] Dung, P. M. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic
Reasoning and Logic Programming and n-Person Games. Artificial Intelligence 77, 2 (1995),
321–357.

[10] Elkan, C. A Rational Reconstruction of Nonmonotonic Truth Maintenance Systems. Artificial
Intelligence 43 (1990), 219–234.

[11] Forbus, K., and de Kleer, J. Building Problem Solvers. MIT Press, Cambridge, Mas-
sachusetts, 1993.

[12] Garćıa, A., and Simari, G. R. Logic programming: an argumentative approach, 2002. To
appear.

[13] Garćıa, A. J. La Programación en Lógica Rebatible: Lenguaje, Semántica Operacional, y
Paralelismo. PhD thesis, Universidad Nacional del Sur, Bah́ıa Blanca, Argentina, Dec. 2000.

[14] Gelfond, M., and Lifschitz, V. Logic Programs with Classical Negation. In Proceedings
of the 7th International Conference on Logic Programming (June 1990), D. H. D. Warren and
P. Szeredi, Eds., pp. 579–597.

[15] McAllester, D. Truth Maintenance. In Proceedings of the 8th National Conference on Arti-
ficial Intelligence (Aug. 1990), R. Smith and T. Mitchell, Eds., vol. 2, American Association for
Artificial Intelligence, AAAI Press, pp. 1109–1116.

[16] Pollock, J. L. Cognitive Carpentry: a blueprint for how to build a person. Bradford/MIT
Press, 1995.

[17] Prakken, H. Logical Tools for Modelling Legal Argument. Kluwer Academic Publishers, 1997.

[18] Simari, G. R., Chesñevar, C. I., and Garćıa, A. J. The Role of Dialectics in Defeasible
Argumentation. In Proceedings of the 14th Conferencia Internacional de la Sociedad Chilena para
Ciencias de la Computación (Nov. 1994), pp. 111–121. http://cs.uns.edu.ar/giia.html.

[19] Simari, G. R., and Loui, R. P. A Mathematical Treatment of Defeasible Reasoning and its
Implementation. Artificial Intelligence 53, 1–2 (1992), 125–157.

[20] Vreeswijk, G. Abstract Argumentation Systems. Artificial Intelligence 90, 1–2 (1997), 225–279.


