Toward Generic Data Processing

tClaudia Necco, {J. Nuno Oliveira,

T Departamento de Informatica - Facultad de Cs. Fisico Matematicas y Naturales
Universidad Nacional de San Luis
Ejército de los Andes 950 - 5700 San Luis - Argentina

1 Departamento de Informatica, Universidade do Minho
4700 Braga - Portugal

Abstract

Many aspects of data processing are functional in nature and can take advantage of recent
developments in the area of functional programming and calculi.

The work described in this paper is an attempt to contribute to this line of thought, in particular
exploiting the Haskell functional language as support tool.

Haskell is used mainly to animate an abstract model of the relational database calculus as
defined by Maier, written in the style of model-oriented formal specification.

Parametricity and genericity (polytypism) make room for generic versions of relational standard
(type-constructor parametric) and multi-dimensional analysis operations are expressed in Generic
Haskell.

Besides animation, the functional model is further subjected to formal reasoning and calculation,
paving the way to the eventual polytypic (generic) formulation of the standard relational calculus.
Keywords: generic programming, polytypic programming, functional programming.

IT Workshop de Ingenieria de Software y Bases de Datos (WISBD)

1 Introduction

The relational data model and associated calculus [Mai83] (originating from e.g. [Cod71, Cod72]),
are today standard matters in computer science curriculse. The functional programming addressed
toward data structuring and calculation is less well-known. The widely accepted fact that data precede
algorithms in software construction — known since the days of structured programming in the 1970s
— has been the subject of recent research in the field of mathematics of program calculation. This has
provided further insight into the role — either real or virtual — of data structuring in programming.

One of the most significant advances of the last decade has been the so-called functorial approach
to data types which originated mainly from [MA86], was popularized by [Mal90] and reached the text-
book format in [BAM97]. A comfortable basis for explaining polymorphism [Wad89], the “data types
as functors” motto has proved beneficial at a higher level of abstraction, giving birth to polytypism
[JJ96], i.e. higher-order polymorphism.

Polymorphism and polytypism are steps of the same ladder, that of generic programming [Bo98].
The main target of this fast evolving discipline is to raise the level of abstraction of the programming
discourse in a way such that seemingly disparate programming techniques, algorithms etc. are unified
into idealized, kernel programming notions.

However heterogeneous a data source may happen to be, if it is “structured” this means that it
has the shape of an inductive finite data structure (e.g. a finite set or list, a finitely branching tree or a
combination of these two). Inductive data types are expressible in generic programming as fix-points
of appropriate (regular) functors [BAM97]. So the main task appears to be that of generalizing the
functorial constructs which describe relational database types to arbitrary regular functors and see
what happens. Of course we have to broaden our view of functional programming to that of generic
(polytypic) programming [Bo98].

The following benefits are targets in the “going functional” approach to data processing:

e Animation: development of new formal specification animation standards through the use of

advanced functional languages such as Haskell
e Calculation: to exploit the functional programming calculus, in particular with respect to para-

metric polymorphism, “theorems for free” [Wad89], etc

e Genericity: higher-order polymorphism which makes for truly generic software models and so-
lutions.

e Foundations: search for new foundations for the relational database calculus.

The structure of the paper as follows: Section 2 contains a very brief introduction to formal
modeling. Section 3 introduces elementary concepts and terminology which are used throughout the
paper. Section 4 sketches a formal model for database relational data. Section 5 presents the generic
countepart of relational operations.'. The last section present some conclusions and future work.

2 Formal Methods and Program Calculation

Formal methods aim at driving software production into good engineering standards by splitting
software production into a specification phase, in which a mathematical model is built of the contractor
requirements, followed by an implementation phase in which such a model is somehow converted into
a runnable software artifact. Formal methods research shows that implementations can be effectively
calculated from specifications [Mor90, Ol1i90, Oli92]. So, in a sense, software technology is becoming a
mature discipline in its adoption of the “universal problem solving” strategy which one is taught at
school:

e understand the problem
build a mathematical model of it
reason in such a model
upgrade it, wherever necessary
calculate a final solution and implement it.

!This has been carried out in the context of the first author’s Master’s thesis [Nec05].

The sophistication of this strategy is only dependent on the underlying mathematics. In the context
of software calculi, data manipulation is based on solving systems of (recursive) equations on domain
spaces, up to isomorphism. This entails the definition of data transformations which can be expressed
functionally and animated using a functional programming language such as Haskell [Tho96].

There are two basic styles for expressing functions: the pointwise style and the pointfree style.
In the former, functions are described by applying them to arguments (“points”). In the latter
one describes functions exclusively in terms of functional combinators. Thanks to the algebra of
such combinators [BAM97], the pointfree style leads to a very effective method for reasoning about
functions, which is based on elementary category theory and is adopted in this paper. A few concepts
in the field are summarized below.

3 Categorical Support

Categories. A category consists of a collection of objects and a collection of arrows. Each arrow
f ::a— b has a source object ¢ and a target object b. Two arrows f and g can be composed to form a
new arrow ¢ - f, if f has the same target object as the source object of g. This composition operation
is associative. Furthermore, for each object a there is a so-called identity arrow id, :: a — a, which is
the unit of composition.

Our base category is called Types and has types as objects and functions as arrows. Arrow
composition is function composition (.) and the identity arrows are represented by the polymorphic
function id.

Functors. Functors are structure-preserving mappings between categories. Polymorphic data types
are functors from T'ypes to T'ypes. In Haskell, functors can be defined by a type constructor f of kind
* — %, mapping objects to objects, together with a higher-order function fmap, mapping arrows to
arrows. This is provided as a constructor class in the Haskell Prelude (the standard file of primitive
functions) as follows:
class Functor f where
fmap:: (a—b)—= (f a— [b)

The arrow action of a functor must preserve identity arrows and distribute over arrow composition.
For functors from Types to T'ypes, this means that the following equations must hold:
fmap id =id
fmap (f - g) = (fmap f) - (fmap g)

Bifunctors. The product category Types x Types consists of pairs of types and pairs of functions.
We can define functors from T'ypes X T'ypes to the base category T'ypes in Haskell. These functors are
called bifunctors. A (curried) bifunctor in Haskell is a type constructor of kind * — x — *, together
with a function bmap. The following constructor class Bifunctor was made available:
class Bifunctor f where
bmap :: (a— ¢) = (b—=d) = (fab— f cd)

Products. Categorical products are provided in Haskell by the type constructor for pairs (a,b)
(usually written as Cartesian product ¢ X b in mathematics) and projections fst and snd (resp. m;
and 7o in standard mathematical notation). Type constructor (,) is extended to a bifunctor in the
obvious way:

instance BiFunctor (,) where

bmap f g=fXxg

where

(%) :: (a—=b) = (¢ = d) = (a,c) — (b,d)

(f x g) = split (f - fst) (g - snd)
and combinator split :: (a = b) = (¢ = ¢) = a — (b, ¢) behaves as follows: split f g © = (f ©,g9).

Sums. Categorical sums are defined in the Haskell Prelude by means of type constructor
data Either a b= Left a | Right b

together with a function either :: (a—b) — (c—b) — Fither a ¢c— b satisfying the following equations:

(either f g) - Left = f
(either f g) - Right = g

Type constructor Either is extended to a bifunctor by providing the following instance of bmap:
(+) :: (a = b) = (¢ = d) — Either a ¢ — FEither b d
(f +9) (Left a) = Left (f a)
(f +9g) (Right b) = Right (g b)

instance BiFunctor Either where
bmap f g=[f+g

The popular notations (f,g), [f,g] and F f (where F is a functor) will be adopted interchangeably
with split f g, either f g and fmap f, respectively.

Invertible arrows. An arrow f :: b— a is said to be right-invertible (vulg. surjective) if there exists
some g :: a — b such that f-g = id,. Dually, g is said to be left-invertible (vulg. injective) if there
exists some f such that the same fact holds. Then type b is said to “represent” type ¢ and we draw:

where ¢g and f are called resp. the representation and abstraction functions. An isomorphism f :: b—a
is an arrow which has both a right-inverse g and a left-inverse h — a bijection in set theory terminology.
It is easy to show that g = h = f~!. Type a is said to be isomorphic to b and one writes a =2 b.

Isomorphisms are very important functions because they convert data from one “format” to
another format losing information. These formats contain the same “amount” of information, although
the same datum adopts a different “shape” in each of them. Many isomorphisms useful in data
manipulation can be defined [Ol1i98], for instance function swap :: (a, b) = (b, a) which is defined by
swap = (w9, m) and establishes the commutative property of product, a X b = b X a.

4 Modeling Relational Data

Collective datatypes. Our model of relational data will be based on several families of abstractions,
including collective datatypes such as finite powersets (Pa) and finite partial mappings (a — b).
These are modeled as Haskell polymorphic algebraic types (that is, algebraic type definitions with type
variables) based on finite lists [a], see Set @ and P fun a b in Table 1, respectively. Both abstractions
contain an equality relation and an ordering relation. The latter instantiates to set inclusion (C) and
partial function definedness, respectively.

The finite sets model assumes invariant ¢ (Set /) o length | = card(elems [), where length
is Haskell standard and card(inal) and elem(ent)s have the usual set-theoretical meaning. Partial
mappings require an extra invariant ensuring a functional dependence on sets of pairs?:

fdp def (C{1}) - rng - (id — card) - collect (1)

Table 1 summarizes the Haskell modules defined for these datatypes.

2collect :: P(a x b) — (a — Pb) converts a relation into a set-valued partial function and rng :: (a — b) — Pb is the
usual range function.

| Finite Sets

Partial Functions

Datatypes: data Set a = Set [a] data Pfun a b = Mapl(a,b)]
Constructors: | emptyS, sings, puts, prods bottom, singpf, putpf
ltos collect
Deletions: gets getpf
Observers: ins,nins,incls, card compatible, incompatible
allS allPf
Filters: filterS
Operations: inters,unions, di f fs, plus, pfzip plus, pfinv, restn, restp
flatr, flatl, slstr, srstr, sextl, sextr | pfzip,pfzipWith
zipS, zipWithallS
Folds: foldS foldPf
Functor: fmapS
Bifunctor: bmapP f
Others: the, stol, elems, card dom,rng, aplpf
unzipS tnest, discollect, mkr,bpfTrue,bpf False
pfunzip

Table 1: Finite sets and partial functions: datatypes and functions implemented.

Relational Database Model. An n-ary relation in mathematics is a subset of a finite n-ary product
Ay X...X Ay, which is inhabited by n-ary vectors (a1, ...,ay). Each entry a; in vector t = {ay,...,a,)
is accessed by its position’s projection m; : A; X ... x A, — A;. This, however, is not expressive enough
to model relational data as this is understood in database theory [Mai83]. Two ingredients must be
added, whereby wvectors give place to tuples: attribute names and NULL values. Concerning the former,
one starts by rendering vectorial indices explicit, in the sense of writing e.g. ¢t ¢ instead of m; ¢. This
implies merging all datatypes A; to A, into a single coproduct type A = "1 ; A; and then represent

the n-ary product as :

r
— T

x A, < (
_/
!

def

3

under representation function ® r (a;);_; , = Aj.(i; a;) which entails invariant

¢t Lt j=1; x : x €A
Note that j = 1,...,n can be written j € T, where @ = {1,...,n} is the initial segment of the natural
numbers induced by n. Set 7 is regarded as the attribute name-space of the model *.

As a second step in the extension of vectors to tuples, we consider the fact that some attributes

may not be present in a particular tuple, that is, NULL values are allowed °:
> Ai+1)"
€N

which finally leads to tuples as inhabitants of

= (m—=) A

1en

Tuple

®Injections i;—1,, are associated to the n-ary coproduct. Left and Right in Haskell correspond to i; and ia, respec-
tively.

“The fact that this can be replaced by any isomorphic collection of attribute names of cardinality » has little impact
in the modelling, so we stick to nm..

®Think of 1 as the singleton type {NULL}.

thanks to isomorphism A — B = (B + 1)4 [01i90]. This models tuples of arbitrary arity (up to n
attributes), including the empty tuple. For notation economy, for every X C 7, we will write T'uple x
as a shorthand for X — 7.+ A;.

Tuple is the basis for the Haskell model of database relations presented in Table 2. Relations
(Relation) are sets of tuples sharing a common attribute schema (SchemaR). A rather complex
invariant ensuring that tuples are well and consistently typed is required, which is omitted here for
economy of presentation. This and other details of this model can be found in [Nec05].

Relations

Datatypes: type Tuple = Pfun IdAttr Value

type SchemaR = Pfun IdAttr AttrInfo

type IdAttr = String

type Tuples = Set Tuple

data Relation = Rel { schema::SchemaR, tuples:: Tuples}
data AttrInfo = InfA { ifKey::Bool, defaultV::Value }

data Value = Int Int | String String | Date String | Time String
Constructors: | emptyR

Operations: unionR,interR,dif f R

projectR, selectR,natjoinR, equijoin R, renameR, divideR

Table 2: Relations: datatypes and functions implemented.

5 Generic Relational Operations

In this section we will extend our model by defining generic versions of relational operators. For
instance, the way tuples are structured in our current data model specification, calls for generalization
of the collective type which contains tuples in each relation, from:

Tuples = P(IdAttr — Value) to Tuples = T(IdAttr — Value)

where T is an arbitrary parametric data type.
The intended generalization step, however, cannot be expressed in standard Haskell and calls for
Generic Haskell. We start by over-viewing this language.

5.1 Overview of Generic HYSKELL

Generic HYSKELL is based on recent work by Hinze [Hin00] and extends the functional pro-
gramming language Haskell with, among other features, a construct for defining type-indexed values
with kind-indexed types. These values can be specialized to all Haskell data types facilitating wider
application of generic programming than provided by earlier systems as eg.PoLyp [JJ97].

The Generic HYSKELL compiler compiles modules written in an enriched Haskell syntax. A
Generic HYSKELL module may contain, in addition to regular Haskell code, definitions of generic
functions, kind-indexed types, and type-indexed types, as well as applications of these to types or
kinds. The compiler translates a Generic HYSKELL module into ordinary Haskell by performing a
number of tasks:

e translating generic definitions into Haskell code;

e translating calls to generic functions into an appropriate Haskell expressions, and

e specializing generic entities to the types at which they are applied. (Consequently, no type
information is passed around at run-time).

In addition, the compiler generates structure types for all data types, together with functions
that allow conversion between a data type and its structure type.

A Generic HYSKELL program may consist of multiple modules. Generic functions defined in one
module can be imported into and be reused in other modules. Generic HYSKELL comes equipped
with a library that provides a collection of common generic functions.

In the previous paragraphs we enumerate the basic features of Generic HYSKELL which are
published by Hinze [HJ03]. We will use generic abstractions 5, to define generic versions of our rela-
tional database operations. Generic abstraction allows generic functions to be defined by abstracting
a type variable out of an expression which may involve generic functions. In particular, two generic
functions included in the standard distribution of Generic HYSKELL will be present in deriving all
relational operators: gmap and rreduce.

5.2 Generic Relational Operators

In a full generic function definition, one is forced to be more general than one intends to be. For
instance, it is impossible to write a generic function that does not have a function type when applied
to a type of kind * — . This is because the specialization mechanism interprets abstraction and
application at the type level as abstractions and application at the value level.

To illustrate the later assertion, we reproduce the code of gmap’s generic definition.

type Map {[* 1} t1 t2 = t1 -> t2
type Map {[k -> 1 1} t1 t2 = forall ul u2.
Map {[k 1} ul u2 -> Map {[1 1} (t1 ul) (t2 u2)

gmap {| t :: k |} :: Map {[k]} t t

gmap {| Unit |} = id

gmap {| :+: |} gmapA gmapB (Inl a) Inl (gmapA a)

gmap {| :+: |} gmapA gmapB (Inr b) = Inr (gmapB b)

gmap {| :*: |} gmapA gmapB (a :*: b)= (gmapA a) :*: (gmapB b)

gmap {| (->) |} gmapA gmapB _ = error "gmap not defined for function types"
gmap {| Con c |} gmapA (Con a) = Con (gmapA a)

gmap {| Label 1 |} gmapA (Label a)= Label (gmapA a)

gmap {| Int [} = id

gmap {| Char |} = id

gmap {| Bool |} = id

gmap {| I0 |} gmapA = fmap gmapA
gmap {| [] |} gmapA = map gmapA

In the Map library, gmap is the generic version of fmap in the Functor class. The type of gmap is
captured by a kind-indexed type which is defined by induction on the structure of kinds. (The part
enclosed in {|.[} is the kind index.)

The rest are equations, one for each type constant, where a type constant is either a primitive
type like Char, Int etc or one of the three types Unit, “: * :” and “: + :” (null-ary products, binary
sums and binary products respectively).

Generic abstraction lifts all restrictions that are normally imposed on the type of a generic
function. It enables one to define a function which abstracts a type parameter from an expression,
and later apply it generically. The abstracted type parameter is, however, restricted to types of a
fixed kind. Generic abstractions can be used to write variations, simplifications and special cases of
other generic functions.

The syntax of generic abstractions is similar to ordinary generic definitions, with two important
differences:

e the type signature is restricted to a fixed kind, and thus no kind variable is introduced; and
e they consist of just one case which has a type variable as its type argument, rather than a named

type.

Generic Project Suppose that we have several kinds of relations, in which the difference is the

shape of the structure that contains the tuples, for instance:
6

one of the extension described by Clarke and Léh in [CL02], which are implemented in the current version of the
Generic HYSKELL compiler

data Relation = Rel <{schema:: Pfun IdAttr AttrInfo, tuples:: Set (Pfun IdAttr Value) }
data RelationL = RelL {schemal:: Pfun IdAttr AttrInfo, tuplesL:: [(Pfun IdAttr Value)] }
data RelationLT= RelLT{schemalT:: Pfun IdAttr AttrInfo, tuplesLT::LTree (Pfun IdAttr Value)}

where LTree is the “leaf tree” datatype, defined in Haskell as follows:

data LTree a = Leaf a | Split (LTree a, LTree a)

We want to define a generic function 7gypes which, taking a set of attributes names and a
generic shape of tuples, returns a generic tuple structure where each tuple is restricted to the same
set of attributes:

Tgtuples : PA— T(Tuple) — T(Tuple)
Tgtuples S ts = T(M.t]|s) ts

To encode this operator in Generic HYSKELL , we define a generic abstraction which uses the gmap
function (provided in Generic HYSKELL library) to access each tuple of any tuple structure:

gprojectTup {| t :: * => * |} ::(Eq a)=> Set a -> t (Pfun a b) -> t (Pfun a b)
gprojectTup {| t |} s ts = gmap {| t |} (restp s) ts

Generic functions are called by instancing the type-index to a specific type. As an illustration of
this, we can specialize gprojectTup to different types, for instance:

projectR:: Set [Char] -> Relation -> Relation

projectR p (Rel s t)= Rel (restp p s) (gprojectTup {| Set |} p t)
projectRL:: Set [Char] -> RelationL -> RelationL

projectRL p (RellL s t)= Rell (restp p s) (gprojectTup {| [1 [} p t)
projectRLT:: Set [Char] -> RelationLT -> RelationLT

projectRLT p (RelLT s t)= RelLT (restp p s) (gprojectTup {| LTree |} p t)

Specialized Function projectR can be used to specify the project operation at RDB level as follows:

sproject :: Set IdAttr -> IdRel -> RDB -> Error Relation
sproject s id db =
do {rl <- aplpf’ (relations db) id ;
result <- inv’ (projectR s rl) ;
if (s \< dom(schema r1)) then Ok (result)
else Err "Error in project operation:attrs. are not in relation domain'}

Generic Select We proceed to defining osypies, the generic function that, taking a selection criteria
(partial function) and a generic shape of tuples, returns a generic tuple structure where each tuple
satisfies the selection criteria presented by the first argument (that is, a tuple structure where each
tuple is “coherent” or “compatible” with the first argument):

Ogtuples * (A - B) — T(TUple) — T(Tuple)
Ogtuples [ts = gfilter (coherent f) ts

To specify this operator in Generic HYSKELL , we define a generic abstraction which uses the rreduce
function to implement gfilter. The rreduce function, provided in Generic HYSKELL library, is a
generic version of foldr, typed as follows:

rreduce{|t :: x|} = t—B— B

rreduce{|t : * - x|} = (A—-B—>B)—tA—B—B
Note the reversed order of the last two arguments.

Back to the definition of ogypies, the idea is to access each tuple of a tuple structure and check
its with the first argument of the selection function. If the tuple is compatible (coherent), it is “put
into” the result structure. We parameterize the operation that permits to add a tuple to the structure
and the empty structure (they will be known when the function will be instanced).

gselectTup {| t:: * -> * |} :: (Eq a, Eq b)=> Pfun a b
-> ((Pfun a b) -> t (Pfun a b) -> t(Pfun a b))
-> t(Pfun a b) -> t(Pfun a b) -> t(Pfun a b)
gselectTup {| t |} p £ te xs
= rreduce {| t |} (\x y -> if (coherent p x) then (f x y) else y) xs te

The specialization of gselectTup to our original model is:

selectR :: Pfun [Char] Value -> Relation -> Relation
selectR p (Rel s t) = Rel s (gselectTup {| Set |} p puts (Set[]) t)

And the select operation at RD B-level becomes:

sselect:: Pfun IdAttr Value -> IdRel -> RDB -> Error Relation
sselect £ id db =
do {rl <- aplpf’ (relations db) id ;
result <- inv’ (selectR f ri);
if ((dom f) \< dom(schema ri1))then 0k (result)
else Err "Error in select operation: attrs. are not in relation domain"}

Generic Boolean Operations To specify generic Boolean operations of two structures of tuples,
we define generic abstractions using rreduce and gany functions. In the case of generic union, rreduce
is used to add the tuples of the second structure to the first structure. Only the tuples that are not in
the structure are added. Function gany is provided in the Generic HYSKELL library. It is a generic
version of any (existential quantifying over finite lists defined in Haskell Prelude):

gany{|t :: x = x|} = (A — Bool) - TA— Bool

Function gany will be used to check if each tuple is in the result structure. We parameterize the
operation that adds a tuple to the structure (first parameter of gunionTup) because it won’t be
known until the function is specialized.

gunionTup {| t :: * -> * |} :: (Eq a, Eq b, Eq (Pfun a b))
=> ((Pfun a b) -> t(Pfun a b) -> t(Pfun a b))
-> t(Pfun a b) -> t(Pfun a b) -> t(Pfun a b)
gunionTup {| t |} £ t1 t2 = rreduce {| t |}
(\x y-> if (gany{l t |}(\z -> z==x) t2) then y else (f x y)) tl t2

Once again, what we had before at RD B-level stems from a specialization of generic gunionTup:

unionR (Rel sx tx) (Rel sy ty) = Rel sx (gunionTup {| Set |} puts tx ty)

sunion :: IdRel -> IdRel -> RDB -> Error Relation
sunion idl id2 db =
do {rl <- aplpf’ (relatiomns db) idl ;
r2 <- aplpf’ (relations db) id2 ;
result <- inv’ (unionR rl r2) ;
if (restrEqdom rl r2) then Ok result
else Err "Error in Union Operation: incompatible schemes"}

In a similar way, the specification of gemeric intersection of two structures of tuples involves
function rreduce to construct a structure with the common tuples. We parameterize the operation
that adds a tuple to the structure and the empty structure.
ginterTup {| t :: * -> * |} :: (Eq a, Eq b, Eq (Pfun a b))

=> ((Pfun a b) -> t(Pfun a b) -> t(Pfun a b))
-> t(Pfun a b) -> t(Pfun a b) -> t(Pfun a b) -> t(Pfun a b)
ginterTup {| t |} f te t1 t2 =
rreduce {| t |} (\x y—>if (gany{l| t |}(\z ->z==x) t2) then (f x y) else y) tl te

The specialization of ginterTup and the intersection operation at RD B-level is as follows:
interR (Rel sx tx) (Rel sy ty)= Rel sx (ginterTup {| Set |} puts (Set[]) tx ty)

sinter :: IdRel -> IdRel -> RDB -> Error Relation
sinter idl id2 db =
do {rl <- aplpf’ (relatiomns db) idl ;
r2 <- aplpf’ (relations db) id2 ;
result <- inv’ (interR rl r2) ;
if (restrEqdom rl r2) then Ok (result)
else Err "Error in Intersection Operation: incompatible schemes"}

The abstraction defined for generic difference between two tuple structures is similar to the
generic intersection function, but with the if’s branches inverted:
gdiffTup {l t :: * -> % |} :: (Eq a, Eq b, Eq (Pfun a b))
=> ((Pfun a b) -> t(Pfun a b) -> t(Pfun a b))
-> t(Pfun a b) -> t(Pfun a b) -> t(Pfun a b) -> t(Pfun a b)
gdiffTup {| t |} £ te t1 t2 =
rreduce {| t |} (\x y—> if (gany{l t 1} (\z -> z==x) t2)
then y else (f x y)) tl te

Generic Renaming Let 044ps denote the generic function that, taking a rename function from
attribute names to attribute names and a generic shape of tuples, returns a generic tuple structure
where attribute names are changed via the rename function. In Haskell, this is function

grenameTup {| t :: * -> % |}::(Eq a, Eq b)=>Pfun a a ->t (Pfun a b) ->t (Pfun a b)
grenameTup {| t |} r xs =gmap {| t |} (renpf r) xs

Generic Natural Join Let X5 denote the binary operator for combining two tuple structures
on all their common attributes. Should they have no common attributes, Mg pes will return the
Cartesian product of them.

First, we define an auxiliary function

gfilter : (A— Bool) »(A—B)— ((BxTB)—>TB)—-TB—-TA—TB
gfilter p [op es = {les, A ay.(p 2) > op (f @) gy}

which filters a structure, retaining only those elements that satisfy p, and applies f to each such
element. The third and fourth parameters correspond to the operation that adds a tuple to the

structure and the empty structure, respectively .
gfilter {| t:: * => * |[}::(a -> Bool) > (a ->Db) > (b >t b ->tb) >tb->ta->thb

gfilter {| t |} p op f te xs=rreduce {| t |[}(\x y->if (p x) then f (op x) y else y) xs te

Then we can define:
gnatjoinTup {| t |} ft1 ft2 tel te2 rl r2 =

let a=gmap {| t |} (\x->(gfilter {| t |} (coherent x) (aux x) ftl tel r2)) ril
in rreduce {| t |} ft2 a te2

where
aux:: Eq a => Pfun a b -> Pfun a b -> Pfun a b

aux x y =(dom(x) /\ dom(y)) <-: (plus x y)

Finally, the specialization of gnatjoinTup and the natural join operation to our set-based RDB-
level are, as expected:

gnatjoinR (Rel sx tx) (Rel sy ty)=
Rel((dom(s1)/\dom(s2))<-:(s1*/s2)) (gnatjoinTup{|Set |} puts (\/) (Set[]) (Set[]) tx ty)

snatjoin idl id2 db = do {rl <- aplpf’ (relations db) idl ;
r2 <- aplpf’ (relatiomns db) id2 ;
inv’ (natjoinR r1 r2) }

"For instance, instanced to Set, g filter corresponds to ZF-set abstraction: {f a|a € s Ap(a)}

6 Concluding Remarks

We developed generic relational operators using a language with explicit syntactic constructs for
defining polytypic functions. We first experimented with the POLYP [JJ97] system but soon realized
that there was a serious shortcoming: only unary (regular) data types can be polytypically defined. We
have overcome this problem by switching to Generic HYSKELL , which implements a new approach to
generic programming due to Hinze [Hin00]. In particular, we experimented with generic abstractions
which are introduced in [CL02]. We use function gmap in all cases to apply specific functions that
“preserve” Set’s invariant.

Our main conclusions are that generic definitions using generic abstractions are simple to write
in Generic HYSKELL and can be applied to Haskell 98 types of all kinds.

We cannot compile a generic function without knowing to which data types it will be called. It
is not possible to compile generic functions separately from the code that calls them.

Why such an emphasis on parametricity and genericity?

Surely there is some intellectual reward and conceptual economy in designing solutions to specific
problems as the customization of generic ones. However, there is more. In a famous paper entitled
Theorems for free! [Wad89] Philip Wadler writes:

From the type of a polymorphic function we can derive a theorem that is satisfy. (...) How
useful are the theorems so generated? Only time and experience will tell (...)

This result is a rewording of Reynolds abstraction theorem on parametric polymorphism which can be
found in a remarkably elegant point-free formulation in [BB03]. This paper and others (eg. [OR04])
present examples of the use of this theorem to calculate useful fusion-laws involving polymorphic
types. So, it is to be expected that every of our generic, polymorphic models of relational and OLAP
operators will enjoy one such fusion-law, the corollaries of which — if already known — will be thus
proved “for free”, and — if still unknown — will add to the theory behind such important areas of
computing.

References

[BB03] K. Backhouse and R.C. Backhouse. Safety of abstract interpretations for free,via logical
relations and Galois connections. Science of Computer Programming, 2003. Accepted for
publication.

[BAM97] R. Bird and O. de Moor. Algebra of Programming. Series in Computer Science. Prentice-Hall
International, 1997. C. A. R. Hoare, series editor.

[Bo98] R.C. Backhouse and T. Sheard (org.). WGP’98 — Workshop on Generic Programming,
1998. Marstrand, Sweden, 18th June, 1998
(http://www.cse.ogi.edu/PacSoft/conf/wgp/).

[CL02] Dave Clarke and Andres Loh. Generic haskell, specifically. In In Jeremy Gibbons and Johan
Jeuring, editors. Generic Programming. Proceedings of the IFIP TC2 Working Conference
on Generic Programming, Schloss Dagstuhl, July 2002. ISBN 1-4020-737}-7. Kluwer Aca-
demic Publishers, pages 21-48, 2002.

[Cod71] E.F. Codd. Normalized database structure: A brief tutorial. In ACM SIGFIDET Workshop
on Data Description, Access and Control, pages 1-17, Nov. 1971.

[Cod72] E.F. Codd. Further normalization of the database relational model. In Data Base Systems,
pages 33-64. Prentice-Hall, 1972. Courant Inst. Computer Science Symp. 6, Englewood
Cliffs, NJ.

[Hin00]

[HJ03]

[J396]

[7397]

[MAS6]

[Mai83]

[Mal90]

[Mor90]

[Nec05]

[01i90]

[01i92]

(01i98]

[ORO04]

[Tho96]

[Wad89]

Ralf Hinze. Polytypic values possess polykinded types. In Mathematics of Program Con-
struction, pages 2-27, 2000.

R. Hinze and J.Jeuring. Generic haskell: Practice and theory, 2003. Lecture notes of the
Summer School on Generic Programming, LNCS Springer-Verlang.

J. Jeuring and P. Jansson. Polytypic programming. In Advanced Functional Programming,
number 1129 in Lecture Notes in Computer Science. Springer, 1996.

Patrik Jansson and Johan Jeuring. PolyP—A polytypic programming language extension.
In Conf. Record 24th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Lan-
guages, POPL’97, Paris, France, 15-17 Jan 1997, pages 470-482. ACM Press, New York,
1997.

E. G. Manes and M. A. Arbib. Algebraic Approaches to Program Semantics. Texts and
Monographs in Computer Science. Springer-Verlag, 1986. D. Gries, series editor.

D. Maier. The Theory of Relational Databases. Computer Science Press, 1983. ISBN 0-
914894-42-0.

G. Malcolm. Data structures and program transformation. Science of Computer Program-
ming, 14:255-279, 1990.

C. Morgan. Programming from Specification. Series in Computer Science. Prentice-Hall
International, 1990. C. A. R. Hoare, series editor.

C. Necco. Polytypic data processing, may 2005. Master’s thesis (Facultad de Cs. Fisico
Mateméticas y Naturales, University of San Luis, Argentina).

J. N. Oliveira. A reification calculus for model-oriented software specification. Formal Aspect
of Computing, 2(1):1-23, April 1990.

J. N. Oliveira. Software Reification using the SETS Calculus . In Proc. of the BCS FACS
5th Refinement Workshop, Theory and Practice of Formal Software Development, London,
UK, pages 140-171. Springer-Verlag, 8-10 January 1992. (Invited paper).

J. N. Oliveira. A data structuring calculus and its application to program development, May
1998. Lecture Notes of M.Sc. Course Maestria em Ingeneria del Software, Departamento de
Informatica, Facultad de Ciencias Fisico-Matematicas y Naturales, Universidad de San Luis,
Argentina.

J.N. Oliveira and C.J. Rodrigues. Transposing relations: from Maybe functions to hash ta-
bles. In MPC’07 : Seventh International Conference on Mathematics of Program Construc-
tion, 12-14 July, 2004, Stirling, Scotland, UK (Organized in conjunction with AMAST’0}),
Lecture Notes in Computer Science. Springer, 2004. Accepted for publication.

Simon Thompson. Haskell — The Craft of Functional Programming. Addison-Wesley, 1st
edition, 1996. ISBN 0-201-40357-9.

Philip L. Wadler. Theorems for free! In jth International Symposium on Functional Pro-
gramming Languages and Computer Architecture, London, Sep. 1989. ACM.

