
ALGORITHMS TO SOLVE THE DYNAMIC WEIGHTED TARDINESS PROBLEM

Lasso M., Pandolfi D., de San Pedro M., Villagra A., Vilanova G.
Proyecto UNPA-29/B0321

División Tecnología
Unidad Académica Caleta Olivia

Universidad Nacional de La Patagonia Austral
Ruta 3 Acceso Norte s/n

(9011) Caleta Olivia – Santa Cruz - Argentina
e-mail: {mlasso,dpandolfi,edesanpedro,avillagra}@uaco.unpa.edu.ar; gvilanov@satlink.com

 Phone/Fax : +54 0297 4854888

Gallard R.
Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC)2

Departamento de Informática
Universidad Nacional de San Luis

Ejército de los Andes 950 - Local 106
(5700) - San Luis -Argentina
e-mail: rgallard@unsl.edu.ar

Phone: +54 2652 420823
Fax : +54 2652 430224

Abstract

In static scheduling problems it is assumed that jobs are ready at zero time or before processing
begins. In dynamic scheduling problems a job arrival can be given at any instant in the time
interval between zero and a limit established by its processing time, ensuring to accomplish it
before the due date deadline. In the cases where the arrivals are near to zero the problem comes
closer to the static problem, otherwise the problem becomes more restrictive.
This paper proposes two approaches for resolution of the dynamic problem of Total Weighted
Tardiness for a single machine environment. The first approach uses, as a list of dispatching
priorities a schedule, which an evolutionary algorithm found as the best for a similar static
problem: same job features, processing time, due dates and weights. The second approach uses
as a dispatching priority a schedule created by a robust non-evolutionary heuristic. The details
of implementation of the proposed algorithms and results for a group of selected instances are
discussed in this work.

1 The Research Group is supported by the Universidad Nacional de La Patagonia Austral.
2 The LIDIC is supported by the Universidad Nacional de San Luis and the ANPCYT (National Agency to Promote Science and Technology).

1. Introducción

Manufacturing organizations are frequently subject to several sorts of changes, such as new job
releases, machine breakdowns, job cancellation and due date or time processing changes. Due to
their dynamic nature, real scheduling problems are computationally complex and the time
required to compute an optimal solution increases exponentially with the size of the problem
[11]. Particularly in Single Machine Scheduling Problems (SMSP) a set of jobs should be
planned on a machine, each job is processed one at a time, conflicting objectives should be
completed and frequently, a number of restrictions should be satisfied. The study of these
problems is very important because good solutions provide a support to manage and model the
behaviour of more complex systems. In these systems it is important to understand the working
of their components, and quite often the single-machine problem appears as an elementary
component in a larger scheduling problem [3]. SMSP can be classified as static or dynamic. In
static problems, all jobs are known before scheduling starts, while in dynamic problems, job
release times are not fixed at a single point, jobs arrive at different times.
Evolutionary algorithms have been successfully applied to solve scheduling problems
[12,13,16,17]. Current trends in evolutionary algorithms make use of multiparent [4, 5, 6] and
multirecombined approaches [7, 8, 9]. The latter, known as MCMP (Multiple-Crossovers-on-
Multiple-Parents), allows a better balance between exploration and exploitation of the search
space. A new variant of this approach applied to Static Weighted Tardiness Problem [10,18] is
known as MCMP-SRI. Here, an individual selected from the old population and designated as the
stud (S), provides to the multirecombination process good features of the evolved population
while a set of random immigrants (RI) provides genetic diversity to avoid premature
convergence. Dispatching heuristic are techniques that provide a reasonably good solution in
relatively short time.
In this paper we propose the use of schedules previously found for the static case as a clue to
build good schedules for the dynamic problem where changes are related only to the unpredicted
job arrival times. Two approaches are implemented using the outcome of different algorithms for
the static case. The first uses as a dispatching rule the order dictated by the schedule provided by
an evolutionary algorithm while the second uses the outcome of the R&M and Covert heuristics.

2. Dynamic Scheduling for Single Machine Problems

In the weighted tardiness single machine problem n jobs should be planned without interruption.
For each job j (j = 1,...,n) with processing time pj and due date dj, exists a penalty wj for each
tardy unit. The objective of this problem is to find a sequence that minimizes:

∑
=

n

j
jjTw

1
where the tardiness of a job, is given by Tj = max{Cj-1 + pj -dj, 0}. Even with this simple
formulation, this model leads to an optimization problem that is NP-Hard [14].
In the static weighted tardiness problem all jobs are simultaneously available for processing in
time zero, which represents in most cases a not very common situation. In scheduling problems
involved with real production, the environments are dynamic, at least in the sense that jobs
arrivals can occur at unpredicted times. We restrict our study to this kind of dynamism.
However, once the jobs arrive to the system for their processing producing a waiting queue, this
can be considered as a static case for the determination of the next task to be allocated to the
machine. Due to this characteristic, the study of the static case is important since the approach
that provide good solutions can be a suitable surrogate for the cases of dynamism. We can

consider the static weighted tardiness problem, as a relaxation of the dynamic problem, where all
arrival times are equal to zero, that is rj=0 for all j.

3. Dynamic Scheduling Algorithms based on Static Scheduling.

This work proposes two approaches to solve the dynamic single machine scheduling problem. In
both approaches, arrivals times rj are generated randomly for each task of the selected instances.
The rj values are created once for all, considering two types of arrivals: early and late arrivals.
The first approach called WT-Dyna-S is based on the knowledge provided by, an evolutionary
algorithm (MCMP-SRI) or by different dispatching heuristics used previously to solve static
cases. Here, we use as a dispatching rule the job order provided by a total schedule generated by
an evolutionary algorithm (WT-Dyna-S-EA), or by conventional heuristics (WT-Dyna-S-R&M)
and (WT-Dyna-S-Covert). To schedule a job, an arrival queue is created with those jobs whose rj
are smaller or equal than the time t when the machine is available for the processing (1). From
the waiting queue, the job that appears first in the schedule ordering is selected to be allocated
first (3), that is the one with higher priority, in the schedule of dispatching priority (2) (see Figure
1). Once a job is planned, it is removed from the queue. This process is repeated each time when
the resource is available and while there are jobs in the waiting queue.

In the second approach, called WT-Dyna-H, jobs in the waiting queue are planned according to
some dispatching rule which generates a partial schedule. Here, we use R&M and Covert
heuristics (WT-Dyna-H-R&M and WT-Dyna-H-Covert). Again, a waiting queue is generated with
those jobs whose rj are smaller or equal than the time t when the machine is available for the
processing (1). Now we run the heuristic to produce a partial schedule (reordering the available
jobs) (2). The algorithm uses this list of dispatching priorities to schedule the next job (3) by
choosing the job in the first position of this list (4). (see Figure 2) Once the job is planned, it is
removed from the queue. This process is repeated each time when the resource is available and
while there are jobs in the waiting queue.

The heuristics used are the following [15]:

Fig. 1: Algorithm WT-Dyna-S

(2)

Schedule of dispatching priority

1

20

4

2

13

7

10

9

8

17

14 17 7 13 8 1 18 19 11 9 10 16 15 4 2 3 5 12 20 6

 Tasks in the
waiting
queue

Algorithm
WT-Dyna-S 17

(1)
(3)

}]/)()[exp{/(avjjjj kpSpw +−=π

Rachamadagu and Morton Heuristic (R&M). This heuristic provides a schedule according to the
following expression.

here Sj = [dj – (pj + Ch)] is the slack of job j at time Ch, where Ch is the total processing time of
the jobs already scheduled, k is a parameter of the method (usually k =2.0) and pav is the average
processing times of jobs competing for top priority. In the R&M heuristic, also called the
Apparent Tardiness Cost heuristic, jobs are scheduled one at a time and every time a machine
becomes free a ranking index is computed for each remaining job. The job with the highest-
ranking index is then selected to be processed next.
The Covert rule. This heuristic provides a schedule according to the following expression.

Under this heuristic the WSPT (Weighted Shortest Processing Time first) rule is modified by a
slack factor, and processing times different than the job being considered are not taking into
account. In the case of a single machine environment, the Covert rule works similar to R&M.

4. Experimental Tests and Results

The evolutionary algorithms were tested for 15 selected instances of 40-jobs problem size,
extracted from the OR-library benchmarks [1, 2]. Two types of random arrivals for each instance
were generated. In the first, arrivals are produced in the interval [0,(dj-pj)/2], that is with an early
arrival approach. In the second, they are created in the interval [dj-pj)/2,(dj-pj)] with a later
arrival approach.

As five algorithms were designed, to compare their performance we established a percentile
difference with the “best of five” performer defined as follows:
DTbest = ((Best – Best instance)/ Best instance)100
It is the percentile difference between the best individual provided by the considered algorithm and
the best individual provided by the best performer for a particular instance.

++−= }/)(1){/(jjjjj kpSpwπ

Fig. 2: Algorithm WT-Dyna-H

(2)

(3)
1

20

4

2

13

7

10

9

8

17

17 7 13 8 1 9 10 4 2 20

List of dispatching priorities

Tasks in the
waiting queue

Algorithm
WT-Dyna-H 17

The heuristic
generates a

partial schedule

(1)
(4)

Tables 1 and 2 show the results obtained under each approach (early and tardy arrivals) for the
selected instances. For each algorithm the minimum WT values (Best) and the corresponding
DTbest values are recorded. Boldfaced values indicate the best performer(s) for each instance.

WT-Dyna-S-EA WT-Dyna-S-R&M WT-Dyna-S-CovertWT-Dyna-H-R&M WT-Dyna-H-Covert
Instance

Best DTbest Best DTbest Best DTbest best DTbest Best DTbest
wt40-1 913 0.00 913 0.00 4297 370.65 1291 41.40 29714 3154.55
wt40-11 17465 0.00 17525 0.34 28132 61.08 53312 205.25 162198 828.70
wt40-19 80899 0.00 81048 0.18 81122 0.28 109087 34.84 179319 121.66
wt40-21 77774 0.00 77793 0.02 77802 0.04 85954 10.52 98690 26.89
wt40-26 108 0.00 108 0.00 198 83.33 252 133.33 25218 23250.00
wt40-31 6575 0.00 6575 0.00 16187 146.19 16792 155.39 98688 1400.96
wt40-41 57640 0.00 58430 1.37 58525 1.54 124883 116.66 189997 229.63
wt40-46 64451 0.00 64498 0.07 64505 0.08 82316 27.72 95256 47.80
wt40-56 2099 0.00 2565 22.20 3648 73.80 11779 461.17 40838 1845.59
wt40-66 65386 0.00 65525 0.21 65503 0.18 113733 73.94 156916 139.98
wt40-71 90486 0.00 90486 0.00 90486 0.00 120695 33.39 131729 45.58
wt40-91 47683 0.00 47771 0.18 48337 1.37 123201 158.38 174854 266.70
wt40-96 126048 0.00 126056 0.01 126048 0.00 173741 37.84 186045 47.60
wt40-116 46770 0.00 47151 0.81 48140 2.93 89009 90.31 125986 169.37
wt40-121 122266 0.00 122536 0.22 122995 0.60 177722 45.36 192915 57.78
Promedio 0.00 1.71 49.47 108.37 2108.85

WT-Dyna-S-EA WT-Dyna-S-R&M WT-Dyna-S-CovertWT-Dyna-H-R&M WT-Dyna-H-Covert
Instances

Best DTbest Best DTbest Best DTbest Best DTbest Best DTbest
wt40-1 18449 2.87 18079 0.80 37660 109.98 17935 0.00 68839 283.82
wt40-11 48428 2.62 47192 0.00 76093 61.24 89245 89.11 220827 367.93
wt40-19 100780 2.00 98802 0.00 99585 0.79 120279 21.74 201767 104.21
wt40-21 77774 0.00 77786 0.02 77802 0.04 85947 10.51 98690 26.89
wt40-26 45955 2.53 45557 1.64 84087 87.60 44823 0.00 108634 142.36
wt40-31 62003 0.00 62003 0.00 98813 59.37 79957 28.96 181559 192.82
wt40-41 65368 5.57 61922 0.00 62900 1.58 130211 110.28 191288 208.92
wt40-46 64484 0.00 64491 0.01 64505 0.03 82316 27.65 95256 47.72
wt40-56 38365 13.63 33764 0.00 48850 44.68 63598 88.36 108843 222.36
wt40-66 192990 0.21 192590 0.00 193374 0.41 239265 24.24 274588 42.58
wt40-71 90486 0.00 90486 0.00 90486 0.00 120695 33.39 131729 45.58
wt40-91 47893 0.00 47972 0.16 48802 1.90 123954 158.81 175379 266.19
wt40-96 126048 0.00 126056 0.01 126048 0.00 173051 37.29 185755 47.37
wt40-116 46770 0.00 47151 0.81 48140 2.93 87780 87.68 125986 169.37
wt40-121 122383 0.00 122723 0.28 123182 0.65 177722 45.22 192089 56.96

Promedio 1.96 0.25 24.75 50.88 148.34

Table 1 indicates that WT-Dyna-S-EA is the best performer for any of the considered instances.
The values it obtained are the same as those reached by MCMP-SRI for the static case and match

Table 1. Best and DTbest values for each algorithm with early arrival of jobs

Table 2. Best and DTbest values for each algorithm with tardy arrival of jobs

those provided by the OR-library. In this case the result used as a surrogate gives an indication
that the generated early arrival times do not influence on the schedules performance. According
to the table summary, WT-Dyna-S-R&M is the second best performer and WT-Dyna-H-Covert is
the worst. Furthermore, those methods based on a total schedule (WT-Dyna-S) perform better
than those, which are building partial schedules at the time the machine is free (WT-Dyna-S).

Table 2 indicates that, in average, WT-Dyna-S-R&M is the best performer in the case of tardy
job arrivals. WT-Dyna-S-EA is the second best performer and WT-Dyna-H-Covert is the worst
one. Again, those methods based on a total schedule (WT-Dyna-S) perform better than those,
which are building partial schedules at the time the machine is free (WT-Dyna-S).

It is important to remark that the WT-Dyna-S algorithm requires a lesser computational effort than
the WT-Dyna-H algorithm, because the latter must repeatedly evaluate in each point of decision
(machine free) the job to schedule from those that are in the waiting queue.

5. Conclusions

The static scheduling problem minimizing weighted tardiness for single machine environments, is a
difficult problem by itself and some conventional and evolutionary heuristics were developed to provide
optimal or quasi optimal solutions. The solutions provided could be contrasted against well-known OR-
library benchmarks. This is not the case, even in the simplest for of dynamism where job arrivals are
unpredicted. But usually this is the normal situation in a production line.

The present work showed two different approaches to face the problem. The first one uses the outcome
of evolutionary and conventional heuristics, which provide quasi-optimal solutions to a similar static
case for the whole set of jobs to be scheduled. This outcome, used as a surrogate, is the element to help
decision establishing a priority of dispatch once for all. The second approach schedules at each decision
point, selecting the most suitable job according to an ordering emanated from a rapid conventional
heuristic. The comparisons we have done indicate that the first approach provide better results in both
considered situations, early and late arrivals. Also, these results are obtained with lesser computational
effort because in the first approach a total schedule provided once for all is used, while in the second
approach a re-scheduling is necessary at each decision point.

Future work will be devoted to larger problems and different job arrival distributions.

6. Acknowledgements

We acknowledge the co-operation of the project group for providing new ideas and constructive
criticisms. Also to the Universidad Nacional de San Luis, the Universidad Nacional de La Patagonia
Austral, and the ANPCYT from which we receive continuous support.

7. References

[1] J.E.Beasley “Common Due Date Scheduling”, OR Library, http://mscmga.ms.ic.ac.uk/

[2] H.A.J.Crauwels, C.N.Potts and L.N.Van Wassenhove “Local search heuristics for the single
machine total weighted tardiness scheduling problem”, Informs Journal on Computing 10,
341-350. 1998.

[3] Baker K. R., “Introduction to sequencing and scheduling” Willey New York 1974.

[4] A.E.Eiben, P.E.Raué, and Z.Ruttkay, “Genetic algorithms with multi-parent recombination”,
Proceedings of the 3rd Conference on Parallel Problem Solving from Nature, Springer-
Verlag, 1994, number 866 in LNCS, pp. 78-87.

[5] A.E. Eiben, C.H.M. Van Kemenade, and J.N. Kok, “Orgy in the computer: Multi-parent
reproduction in genetic algorithms”. Proceedings of the 3rd European Conference on
Artificial Life, Springer-Verlag, 1995, number 929 in LNAI, pages 934-945.

[6] A.E. Eiben and. Th. Bäck, “An empirical investigation of multi-parent recombination
operators in evolution strategies”. Evolutionary Computation, 5(3):347-365, 1997.

[7] S. Esquivel, A. Leiva, R. Gallard, “Multiple Crossover per Couple in Genetic Algorithms”,
Proceedings of the Fourth IEEE Conference on Evolutionary Computation (ICEC'97),
Indianapolis, USA, April 1997, pp 103-106.

[8] S. Esquivel, A. Leiva, R. Gallard, “Couple Fitness Based Selection with Multiple Crossover
per Couple in Genetic Algorithms“. Proceedings of the International Symposium on
Engineering of Intelligent Systems (EIS´98), La Laguna, Tenerife, Spain, February 1998, pp
235-241.

[9] S. Esquivel, H. Leiva,.R. Gallard, “Multiple crossovers between multiple parents to improve
search in evolutionary algorithms”, Proceedings of the Congress on Evolutionary
Computation (IEEE). Washington DC, 1999, pp 1589-1594.

[10] D. Pandolfi, M. De San Pedro, A. Villagra,G. Vilanova, R Gallard “Stud and Immigrants in
multirecombined evolutionary algorithm to face Weighted Tardiness Scheduling problems”
Proceedings 7mo Congreso Argentino de la Computación, El Calafate, Argentina, Otubre
2001 vol II pp 1251.

[11] T. Morton, D. Pentico, “Heuristic scheduling systems”, Wiley series in Engineering and
technology management. John Wiley and Sons, INC, 1993.

[12] D. Pandolfi, G. Vilanova, M. De San Pedro, A. Villagra, R Gallard “Multirecombining studs
and immigrants in evolutionary algorithm to face earliness-tardiness scheduling problems”.
Proceedings of the International Conference in Soft Computing. University of Paisley,
Scotland, U.K., June2001, pp.138

[13] D. Pandolfi; G. Vilanova; M. De San Pedro; A. Villagra, R. Gallard: “Solving the Single-
Machine Common Due Date Problem Via Stud and Inmigrants in Evolutionary
Computation”, World Multiconference on Systemics, Cybernetics and Informatics, Orlando
July 2001 pp 409-413

[14] M. Pinedo, “Scheduling: Theory, Algorithms and System.” First edition Prentice Hall, 1995.

[15] R.V. Rachamadugu, T.E. Morton, “Myopic heuristics for the single machine weighted
tardiness problem”. GSIA, Carnigie Mellon University, Pittsburgh, PA. 1982., Working
paper 30-82-83.

[16] Pandolfi D., Vilanova G., De San Pedro M., Villagra A., Gallard R., “Adaptability of
Multirecombined Evolutionary Algorithms in the single-machine common due date
problem.” Proceedings of the Multiconference on Systemics, Cybernetics and informatics.
Orlando, Florida July 2001.

[17] Pandolfi D., Vilanova G., De San Pedro M., Villagra A., Gallard R., “Evolutionary
Algorithms to minimize earliness-tardiness penalties from a common due date”. Proceedings
of the Multiconference on Systemics, Cybernetics and informatics. Orlando, Florida July
2001.

[18] D. Pandolfi, M. De San Pedro, A. Villagra,G. Vilanova, R Gallard “Multirembining Random
and Seeds with Studs in evolutionary algorithm to solve W-T Scheduling problems”
Proceedings ACIS International Conference on Computer Science, Software Engineering,
Information Technology, e-Business, and Applications (CSITeA-02), Foz Iguazú, Brasil
2002.

