
Adding problem-specific knowledge in Evolutionary Algorithms
to Solve W-T Scheduling Problems

de San Pedro M., Pandolfi D., Villagra A., Lasso M.,Vilanova G.

Proyecto UNPA-29/B0321
División Tecnología

Unidad Académica Caleta Olivia
Universidad Nacional de La Patagonia Austral

Ruta 3 Acceso Norte s/n
(9011) Caleta Olivia – Santa Cruz - Argentina

e-mail: { edesanpedro, dpandolfi, avillagra, mlasso}@uaco.unpa.edu.ar; gvilanov@satlink.com
 Phone/Fax : +54 0297 4854888

Gallard R.

Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC)2
Departamento de Informática

Universidad Nacional de San Luis
Ejército de los Andes 950 - Local 106

(5700) - San Luis -Argentina
e-mail: rgallard@unsl.edu.ar

Phone: +54 2652 420823
Fax : +54 2652 430224

1 The Research Group is supported by the Universidad Nacional de La Patagonia Austral.
2 The LIDIC is supported by the Universidad Nacional de San Luis and the ANPCYT (National Agency to Promote Science and Technology).

Abstract

In a production system it is usual to stress minimum tardiness to achieve higher client satisfaction.
According to the client relevance, job processing costs and requirements, and various other
considerations, a weight is assigned to each job. An important, non-trivial, problem is to minimize
weighted tardiness.

Evolutionary algorithms (EAs) have been proved as efficient tools to solve scheduling problems. Latest
improvements in EAs have been developed by means of multirecombination, a method which allows
multiple exchange of genetic material between individuals of the mating pool.

As EAs are blind search methods this paper proposes to insert problem-specific-knowledge by
recombining potential solutions (individuals of the evolving population) with seeds, which are solutions
provided by other heuristics specifically intended to solve the scheduling problem under study.

In this work we describe two main approaches where seeds are inserted either in the initial population or
as a part of every mating pool during evolution. Both methods were contrasted for a set of problem
instances extracted from the OR-Library. An outline of the weighted tardiness problem in a single
machine environment, details of implementation and results are discussed.

1. Introduction

Single-machine scheduling problems are of interest as the basis to more complex machine
environments. In particular the Total Weigthed Tardiness problem (1∑wj Tj) [3, 14], a NP-hard
problem, is a generalization of the Total Tardiness problem (1∑ T). It is important to have heuristics
providing reasonably good schedules with tolerable computational effort because Branch and Bound
and other partial enumeration based methods are prohibitively time consuming even with only 20 jobs.
Among other heuristics [11], evolutionary algorithms (EAs) have been successfully applied to solve
scheduling problems [16,17]. Current trends in evolutionary algorithms make use of multiparent [4, 5,
6] and multirecombinative approaches [7, 8, 9]. The latter we called, multiple-crossovers-on-multiple-
parents (MCMP). Instead of applying crossover once on a pair of parents this feature applies n1
crossover operations on a set of n2 parents. In order to improve the balance between exploration and
exploitation in the search process a variant called MCMP-SRI [12], recombines a breeding individual
(stud) by repeatedly mating individuals that randomly immigrates to a mating pool. Under this
approach the random immigrants incorporate exploration (making unnecessary the use of mutation
operations) and the multi-mating operation with the stud incorporates exploitation to the search
process. .
In this work MCMP-SRSI, a novel variant, which considers the inclusion of a stud-breeding individual
in a pool of random and seed-immigrant parents [18], is presented. Here, the seeds generated by
conventional heuristics, and continuously present, introduce the problem-specific knowledge.
Two approaches are considered. The first approach generates the initial population with neighbours of
three selected seeds and in subsequent generations applies MCMP-SRI. The second one applies
MCMP-SRSI. Next sections describe the weighted tardiness scheduling problem, the alternative ways
to insert problem-specific knowledge and discuss the results obtained.

2. The weighted tardiness scheduling problem

The single-machine total weighted tardiness problem [14] can be stated as follows: n jobs are to be
processed without interruption on a single machine that can handle no more than one job at a time. Job
j (j = 1,...,n) becomes available for processing at time zero, requires an uninterrupted positive
processing time pj on the machine, has a positive weight wj, and a due date dj by which it should
ideally be finished. For a given processing order of the jobs, the earliest completion time Cj and the
tardiness Tj = max{Cj-dj,0} of job j can readily be computed. The problem is to find a processing order
of the jobs with minimum total weighted tardiness

∑
=

n

j
jjTw

1
Even with this simple formulation, this model leads to an optimization problem that is NP-Hard [14].

3. Multirecombination of random and seed immigrants with the stud

Multiple Crossovers per Couple (MCPC) [7], [8] and Multiple Crossovers on Multiple Parents
(MCMP) [9] are multirecombination methods, which improve EAs performance by reinforcing and
balancing exploration and exploitation in the search process. In particular, MCMP is an extension of
MCPC where the multiparent approach of Eiben [4], [5], [6] is introduced. Results obtained in diverse
single and multiobjective optimization problems indicated that the searching space is efficiently
exploited by the multiple application of crossovers and efficiently explored by the greater number of
samples provided by the multiple parents.

}]/)()[exp{/(avjjjj kpSpw +−=π

A further extension of MCMP is known as MCMP-SRI [12], [13]. This approach considered the
mating of an evolved individual (the stud) with random immigrants. In our new variant (MCMP-SRSI),
the process for creating offspring is performed as follows. From the old population the stud, is selected
by means of proportional selection and inserted in the mating pool together with three seed immigrants,
created by means of three different heuristics. The number of n2 parents in the mating pool is
completed with randomly created individuals (random immigrants). The stud mates every other parent,
the couples undergo partial mapped crossover (PMX) and 2* n2 offspring are created. The best of these
2* n2 offspring is stored in a temporary children pool. The crossover operation is repeated n1 times, for
different cut points each time, until the children pool is completed. Finally, the best offspring created
from n2 parents and n1 crossover is inserted in the new population.

4. Introducing problem-specific knowledge

Dispatching heuristics are methods that allow deciding which job should be inserted into the system.
To do this, a rule assigns an index to every job and the one with the highest priority is selected. There
are different heuristics [11] for the Total Weighted Tardiness problem. Some of them are earliest due
date first (EDD), weighted shortest processing time first (WSPT), Montagne, R&M and Covert, whose
principal property is not only the quality of the results, but also to give an ordering of the jobs
(schedule) close to the optimal sequence. Unlike EAs, they were specifically conceived to solve this
problem and consequently their inherent problem-specific knowledge provides to the evolutionary
algorithm with genetic information of the promising areas for exploitation. For the problem under study
we chose the following heuristics:

Rachamadagu and Morton Heuristic (R&M). This heuristic provides a schedule according to the
following expression.

with Sj = [dj – (pj + Ch)] is the slack of job j at time Ch, where Ch is the total processing time of the
jobs already scheduled, k is a parameter of the method (usually k =2.0) and pav is the average
processing time of jobs competing for top priority. In the R&M heuristic, also called the Apparent
Tardiness Cost heuristic, jobs are scheduled one at a time and every time a machine becomes free a
ranking index is computed for each remaining job. The job with the highest-ranking index is then
selected to be processed next.

The Covert rule. This heuristic provides a schedule according to the following expression.

Under this heuristic the WSPT rule is modified by a slack factor, and processing times different than
the job being considered are not taking into account. The Covert rule works, in the case of a single
resource similar to R&M.

Modified R&M heuristic. Here a logarithmic function of the slack of the job considered and the
average processing times of remaining jobs are used,

}]/)()[ln{/(avjjjj kpSpw +−=π

++−= }/)(1){/(jjjjj kpSpwπ

The idea of inserting seeds (good solutions) in evolutionary processes was originally implemented by
Reeves [16] as an alternative way to introduce problem-specific knowledge to the algorithm. In his
approach Reeves, inserted one seed provided by a non evolutionary heuristic, only once in the initial
population, expecting that its genetic material were occasionally exchanged by means of the selection
mechanism.
This paper proposes two different approaches for the insertion of knowledge in the evolutionary
process. In the first approach this knowledge is inserted in the initial population, while in the second
approach this knowledge is continuously inserted by mean of seeds introduced during the execution of
the recombination process (mating pool).

First approach
In the first approach the initial population is generated as the neighbourhood of seeds provided from a
robust heuristic and subsequently MCMP-SRI is applied. As initial solutions had goods features,
genotypic as well as phenotypic, this permits to start the search in a promissory subspace allowing
evolutionary algorithms to converge towards the optimum quicker than if the population were
randomly generated.
In this kind of scheduling problems, solutions (individuals of a population) are usually permutations of
job identifiers, which represent schedules. To generate the neighbourhood of the seeds the operator
used must start by a solution represented by a permutation and generate a new solution that differ a
little from de original. Special attention must be paid in this process because new solutions must remain
valid. We selected adjacency and inversion as neighbourhood operators.
The adjacency operator creates a new neighbour by changing the original schedule as follows. From a
random selected position a job is interchanged with anyone of its adjacent jobs, either at left or right,
with the same probability. The maximum number of different neighbours that could be generated by
this operator is l (if l is the number of jobs for a schedule). Since there are three seeds the total number
of neighbours that will be generated is 3*l. To generate the neighbourhood with the adjacency operator
the following steps should be accomplished:

Step 1: Insert the three selected seeds (R&M, Covert and Modified R&M) in the population.
Step 2: Select randomly the seed to which the adjacency operator will be applied.
Step 3: Determine a position (job) in the seed to be interchanged. The schedule (list of jobs)
should be considered circular.
Step 4: Generate a neighbour by interchanging the selected job with the one at its left or right
position.
Step 5: Insert the neighbour in the population and return to step 2 to generate new neighbours
until the population is completed.

The inversion operator generates a new neighbour by changing the original schedule as follows. The
new neighbour is created by random selection of two positions and exchanging them. The maximum
number the neighbours that could be generated by this operator is l * (l-1)/ 2 (if l is the number of jobs
for a schedule). Since there are three seeds then the total number of neighbours that could be generated
is (l * (l-1)/2) * 3). To generate a neighbourhood with the inversion operator the following steps
should be accomplished:
:

Step 1: Insert the three selected seeds (R&M, Covert and Modified R&M) in the population.
Step 2: Select randomly the seed to which the inversion operator will be applied.
Step 3: Determinate two position in the seed and interchange the jobs.
Step 4: Insert the neighbour in the population and return to step 2 to generate new neighbours
until the population is completed.

Second approach
In the second approach MCMP-SRSI is used. Here the problem-specific knowledge is continuously
inserted in the mating pool by means of the three selected seeds, which are always present. So, in the
mating pool the seeds replace three of the random immigrants. In order to avoid premature
convergence, adjacency and inversion are used as mutation operators.

5. Experimental tests and results

The following algorithms where designed:

MCMP-SRI-AD: Initial population is built as the neighbourhood of three seeds by means of the
adjacency operator.
MCMP-SRI-IN: Initial population is built as the neighbourhood of three seeds by means of the
inversion operator.
MCMP-SRSI-AD: Randomized initial population. Seeds continuously remain in the mating pool.
Adjacency is used as a mutation operator.
MCMP-SRSI-IN: Randomized initial population. Seeds continuously remain in the mating pool.
Inversion is used as a mutation operator.

All evolutionary algorithms were tested for selected instances from OR-library benchmarks [1,2]. To
compare the algorithms, the following relevant performance variables were chosen:

Ebest = ((best value - opt_val)/opt_val)100
It is the percentile error of the best-found individual when compared with the known, or estimated,
optimum value opt_val. It gives us a measure on how far the best individual is from that opt_val.
Hit Ratio. Denotes the percentage of runs where the algorithm finds the best benchmark value
(optimum or lower bound) . Its value is 1 when the best benchmark value is reached in every run.
Gbest. It is the generation where the best individual was found.

The best parameter setting was determined under each algorithm after a series of initial trials, as
follows:

Approach max_gen Pop_size Pc Pm n1 n2
MCPC-SRSI-AD 200 100 0.65 0.05 14 16
MCPC-SRSI-IN 200 100 0.65 0.05 14 16
MCPC-SRI-AD 200 100 0.65 0.00 14 16
MCPC-SRI-IN 200 100 0.65 0.00 14 16

The following tables summarize minimum, mean and general average values for the performance
variables through all selected instances for the 40 and 50 job problem sizes.

In table 1 results show that MCMP-SRI-AD hits the best benchmark published for 40 and 50 jobs problems size
with an average hit ratio of 61 % and 41 %, respectively. Regarding Ebest, its average value is 0.34% and 0.24%
for 40 and 50 jobs, respectively. The number of generations, Gbest, required to find the best individual is 36.06
and 65.35 in average for 40 and 50 jobs problems size, respectively.

Instance
K

Best
Benchm.

Min
WT

Mean
Ebest

Hit
Ratio

Mean
Gbest

Instance
K

Best
Benchm.

Min
WT

Mean
Ebest

Hit
Ratio

Mean
Gbest

wt40-1 913 913 0.00 1.0 1.0 wt50-1 2134 2134 0.00 1.00 11.60
wt40-6 6955 6955 0.00 1.0 4.4 wt50-6 26276 26415 0.99 0.00 123.30

wt40-11 17465 17465 0.03 0.9 1.1 Wt50-14 51785 51887 0.22 0.00 73.80
wt40-19 77122 77132 0.09 0.0 97.9 Wt50-19 89299 89474 0.20 0.00 57.70
wt40-21 77774 77774 0.01 0.1 36.7 Wt50-21 214546 214567 0.02 0.00 77.50
wt40-26 108 108 0.00 1.0 1.0 Wt50-26 2 2 0.00 1.00 1.00
wt40-31 6575 6575 0.00 1.0 1.0 Wt50-31 9934 10015 2.54 0.00 113.90
wt40-41 57640 57907 0.66 0.0 115.7 Wt50-44 123893 123893 0.01 0.70 39.20
wt40-46 64451 64455 0.04 0.0 1.0 Wt50-46 157505 157505 0.00 0.30 43.10
wt40-51 0 0 0.00 1.0 1.0 Wt50-51 0 0 0.00 1.00 1.00
wt40-56 2099 2099 5.66 0.2 68.4 Wt50-56 1258 1258 0.04 0.90 34.60
wt40-66 65386 65386 0.02 0.1 75.3 Wt50-66 76878 76887 0.05 0.00 126.40
wt40-71 90486 90486 0.00 1.0 1.0 Wt50-71 150580 150580 0.08 0.10 115.80
wt40-76 0 0 0.00 1.0 1.0 Wt50-76 0 0 0.00 1.00 1.00
wt40-91 47683 47683 0.01 0.7 110.8 Wt50-91 89298 89490 0.25 0.00 124.00
wt40-96 126048 126048 0.00 1.0 1.0 Wt50-96 177909 177912 0.04 0.00 133.90
wt40-101 0 0 0.00 1.0 1.0 Wt50-101 0 0 0.00 1.00 1.00
wt40-106 0 0 0.00 1.0 1.0 Wt50-106 0 0 0.00 1.00 1.00
wt40-116 46770 46839 0.26 0.0 90.1 Wt50-116 35727 35727 0.15 0.10 120.00
wt40-121 122266 122266 0.03 0.1 110.8 Wt50-121 78315 78448 0.22 0.00 107.10

Mean Avg 0.34 0.61 36.06 Mean Avg 0.24 0.41 65.35

Instance
K

Best
Benchm.

Min
WT

Mean
Ebest

Hit
Ratio

Mean
Gbest

Instance
K

Best
Benchm.

Min
WT

Mean
Ebest

Hit
Ratio

Mean
Gbest

wt40-1 913 913 0.00 1.0 1.0 Wt50-1 2134 2134 0.00 1.00 12.20
wt40-6 6955 6955 0.00 1.0 37.5 Wt50-6 26276 26415 1.13 0.00 138.00

wt40-11 17465 17465 0.00 1.0 2.4 Wt50-14 51785 51887 0.23 0.00 96.40
wt40-19 77122 77132 0.10 0.0 145.0 Wt50-19 89299 89474 0.21 0.00 75.90
wt40-21 77774 77774 0.01 0.4 41.1 Wt50-21 214546 214566 0.02 0.00 92.70
wt40-26 108 108 0.00 1.0 1.0 Wt50-26 2 2 0.00 1.00 1.00
wt40-31 6575 6575 0.00 1.0 1.0 Wt50-31 9934 10015 3.44 0.00 78.60
wt40-41 57640 57876 0.68 0.0 137.6 Wt50-44 123893 123893 0.03 0.20 50.70
wt40-46 64451 64451 0.04 0.1 23.4 Wt50-46 157505 157505 0.00 0.50 90.50
wt40-51 0 0 0.00 1.0 1.0 Wt50-51 0 0 0.00 1.00 1.00
wt40-56 2099 2099 5.23 0.4 100.3 Wt50-56 1258 1258 0.00 1.00 42.60
wt40-66 65386 65386 0.05 1.0 89.4 Wt50-66 76878 76906 0.08 0.00 86.50
wt40-71 90486 90486 0.00 1.0 1.0 Wt50-71 150580 150604 0.09 0.00 124.60
wt40-76 0 0 0.00 1.0 1.0 Wt50-76 0 0 0.00 1.00 1.00
wt40-91 47683 47683 0.03 0.6 146.6 Wt50-91 89298 89525 0.28 0.00 87.30
wt40-96 126048 126048 0.00 1.0 1.0 Wt50-96 177909 177909 0.05 0.20 108.50
wt40-101 0 0 0.00 1.0 1.0 Wt50-101 0 0 0.00 1.00 1.00
wt40-106 0 0 0.00 1.0 1.0 Wt50-106 0 0 0.00 1.00 1.00
wt40-116 46770 46802 0.21 0.0 117.4 Wt50-116 35727 35757 0.29 0.00 117.60
wt40-121 122266 122281 0.10 0.0 80.1 Wt50-121 78315 78448 0.22 0.00 83.60

Mean Avg 0.32 0.68 46.49 Mean Avg 0.30 0.40 64.54

In table 2 we can see that MCMP-SRI-IN hits the best benchmark published for 40 and 50 jobs
problems size with an average hit ratio of 68 % and 40 %, respectively. Concerning Ebest, its average
value is 0.32% and 0.30% for 40 and 50 jobs, respectively. The number of generations, Gbest, required
to find the best individual is 46.49 and 64.54 in average for 40 and 50 jobs problems size, respectively.

Table 1. Performance variables values under MCMP-SRI-AD, for the 40 and 50 jobs instances.

Table 2. Performance variables values under MCMP-SRI-IN, for the 40 and 50 jobs instances.

Instance
K

Best
Benchm.

Min
WT

Mean
Ebest

Hit
Ratio

Mean
Gbest

Instance
K

Best
Benchm.

Min
WT

Mean
Ebest

Hit
Ratio

Mean
Gbest

wt40-1 913 913 0.00 1.0 1.0 wt50-1 2134 2134 0.00 1.00 7.80
wt40-6 6955 6955 0.00 1.0 2.7 wt50-6 26276 26276 0.36 0.30 83.50

wt40-11 17465 17465 0.00 1.0 3.5 Wt50-14 51785 51785 0.00 1.00 19.10
wt40-19 77122 77122 0.00 1.0 52.4 Wt50-19 89299 89299 0.00 1.00 24.30
wt40-21 77774 77774 0.00 1.0 8.7 Wt50-21 214546 214546 0.00 0.20 47.30
wt40-26 108 108 0.00 1.0 1.0 Wt50-26 2 2 0.00 1.00 1.00
wt40-31 6575 6575 0.00 1.0 1.0 Wt50-31 9934 9934 0.37 0.80 108.50
wt40-41 57640 57876 0.41 0.0 20.4 Wt50-44 123893 123893 0.00 1.00 3.80
wt40-46 64451 64451 0.00 1.0 7.9 Wt50-46 157505 157505 0.00 1.00 2.80
wt40-51 0 0 0.00 1.0 1.0 Wt50-51 0 0 0.00 1.00 1.00
wt40-56 2099 2099 4.36 0.5 47.5 Wt50-56 1258 1258 0.00 1.00 16.40
wt40-66 65386 65386 0.00 0.9 17.6 Wt50-66 76878 76878 0.00 1.00 95.10
wt40-71 90486 90486 0.00 1.0 1.4 Wt50-71 150580 150580 0.00 1.00 33.50
wt40-76 0 0 0.00 1.0 1.0 Wt50-76 0 0 0.00 1.00 1.00
wt40-91 47683 47683 0.00 1.0 20.3 Wt50-91 89298 89448 0.17 0.00 73.90
wt40-96 126048 126048 0.00 1.0 1.3 Wt50-96 177909 177909 0.00 1.00 74.70
wt40-101 0 0 0.00 1.0 1.0 Wt50-101 0 0 0.00 1.00 1.00
wt40-106 0 0 0.00 1.0 1.0 Wt50-106 0 0 0.00 1.00 1.00
wt40-116 46770 46770 0.00 0.7 145.5 Wt50-116 35727 35727 0.00 1.00 9.00
wt40-121 122266 122266 0.00 1.0 52.3 Wt50-121 78315 78315 0.04 0.40 53.50

Mean Avg 0.24 0.91 19.43 Mean Avg 0.05 0.84 32.91

Instance
K

Best
Benchm.

Min
WT

Mean
Ebest

Hit
Ratio

Mean
Gbest

Instance
K

Best
Benchm.

Min
WT

Mean
Ebest

Hit
Ratio

Mean
Gbest

wt40-1 913 913 0.00 1.0 1.0 wt50-1 2134 2134 0.00 1.00 9.80
wt40-6 6955 6955 0.00 1.0 2.3 wt50-6 26276 26276 0.51 0.10 114.40

wt40-11 17465 17465 0.00 1.0 3.5 wt50-11 51785 51785 0.00 1.00 15.70
wt40-19 77122 77122 0.00 1.0 66.7 wt50-19 89299 89299 0.00 1.00 25.20
wt40-21 77774 77774 0.00 1.0 15.6 wt50-21 214546 214555 0.01 0.00 30.70
wt40-26 108 108 0.00 1.0 1.0 wt50-26 2 2 0.00 1.00 1.00
wt40-31 6575 6575 0.00 1.0 1.0 wt50-31 9934 9934 0.95 0.40 140.00
wt40-41 57640 57876 0.41 0.0 19.0 wt50-41 123893 123893 0.00 1.00 4.30
wt40-46 64451 64451 0.00 1.0 12.6 wt50-46 157505 157505 0.00 1.00 2.60
wt40-51 0 0 0.00 1.0 1.0 wt50-51 0 0 0.00 1.00 1.00
wt40-56 2099 2099 6.97 0.2 35.5 wt50-56 1258 1258 0.00 1.00 23.30
wt40-66 65386 65386 0.00 0.9 19.8 wt50-66 76878 76878 0.00 0.80 91.10
wt40-71 90486 90486 0.00 1.0 1.7 wt50-71 150580 150580 0.00 1.00 56.60
wt40-76 0 0 0.00 1.0 1.0 wt50-76 0 0 0.00 1.00 1.00
wt40-91 47683 47683 0.00 1.0 22.7 wt50-91 89298 89448 0.17 0.00 85.50
wt40-96 126048 126048 0.00 1.0 1.3 wt50-96 177909 177909 0.00 0.90 59.80
wt40-101 0 0 0.00 1.0 1.0 wt50-101 0 0 0.00 1.00 1.00
wt40-106 0 0 0.00 1.0 1.0 wt50-106 0 0 0.00 1.00 1.00
Wt40-116 46770 46770 0.00 1.0 121.3 wt50-116 35727 35727 0.00 1.00 10.90
Wt40-121 122266 122266 0.00 1.0 41.9 wt50-121 78315 78315 0.02 0.70 67.90
Mean Avg 0.37 0.91 18.55 Mean Avg 0.08 0.80 37.14

In table 3 results show that MCMP-SRSI-AD hits the best benchmark published for 40 and 50 jobs
problems size with an average hit ratio of 91 % and 84 %, respectively. About Ebest, its average value
is 0.24% and 0.05% for 40 and 50 jobs, respectively. The number of generations, Gbest, required to
find the best individual is 19.43 and 32.91 in average for 40 and 50 jobs problems size, respectively.

Table 4. Performance variables values under MCMP-SRSI-IN, for the 40 and 50 jobs instances.

Table 3. Performance variables values under MCMP-SRSI-AD, for the 40 and 50 jobs instances.

Table 4 shows that MCMP-SRSI-IN hits the best benchmark published for 40 and 50 jobs problems
size with an average hit ratio of 91 % and 80 %, respectively. Regarding Ebest, its average value is
0.37% and 0.08% for 40 and 50 jobs, respectively. The number of generations, Gbest, required to find
the best individual is 18.55 and 37.14 in average for 40 and 50 jobs problems size, respectively.

Av. Ebest Av. Gbest Av. Hit Ratio Approach
40 jobs 50

jobs
40

jobs
50

jobs
40

jobs
50

jobs
MCPC-SRI-AD 0.34 0.24 36.0 65.4 61 41
MCPC-SRI-IN 0.32 0.30 46.5 64.5 68 40

MCPC-SRSI-AD 0.24 0.05 19.4 32.9 91 84
MCPC-SRSI-IN 0.37 0.08 18.6 37.4 91 80

From table 5 we conclude that MCMP-SRSI-AD is the best performer for both problem sizes with
showing low Gbest average values.

Figures 1 and 2 , show the behaviour of each algorithm on each problem size.

If we concentrate on the 40 jobs problem size we can observe that mean Ebest for any approach show a
maximum for the wt40-56 instance, ranging from 4% to 7%, while for the remaining instances the

Table 5. Average performance variables values under each approach, for the 40 and 50 job problem sizes.

Figure 1. Values of the performance variables obtained under both evolutionary approaches for the 40
jobs instances, (a) Mean Ebest, (b) Mean Gbest, (c) Hit Ratio.

Mean Ebest for 40 jobs Instances

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00

1 11 21 31 46 56 71 91 10
1

11
6

Instance

E
b

es
t

SRI-AD

SRI-IN

SRSI-AD

SRSI-IN

Hit Ratio for 40 jobs instances

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

1 11 21 31 46 56 71 91 10
1

11
6

Instance

H
it

 R
at

io

SRI-AD

SRI-IN

SRSI-AD

SRSI-IN

Mean Gbest for 40 jobs Instances

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0
110.0
120.0
130.0
140.0
150.0

1 11 21 31 46 56 71 91 10
1

11
6

Instance

G
b

es
t

SRI-AD

SRI-IN

SRSI-AD

SRSI-IN

mean percentile error is smaller than 1%. In general MCMP-SRSI show smaller or equal mean
percentile error than MCMP-SRI in all instances.

Concerning Hit Ratio, MCMP-SRSI approaches do not reach the benchmark only in one instance
(wt40-41), while they reaches the benchmark, in every run, for at least 16 of the 20 instances.
On the other hand MCMP-SRI approaches do not reach the benchmark in four instances (wt40-41),
while they reaches the benchmark, in every run, for at most 11 of the 20 instances.

Regarding Gbest we can observe that MCMP-SRSI approaches require smaller computational effort
than those based in MCMP-SRI.

When looking at the 50 jobs problem size we can observe that for the algorithms based in MCMP-SRSI
mean Ebest values show a maximum smaller than 1%. In general MCMP-SRSI show smaller or equal
mean percentile error than MCMP-SRI in all instances.

Concerning Hit Ratio, MCMP-SRSI approaches do not reach the benchmark only in two s (wt40-41),
while they reaches the benchmark, in every run, for at least 15 of the 20 instances.
On the other hand MCMP-SRI approaches do not reach the benchmark in 10 instances (wt50-21 and
wt50-91), while they reaches the benchmark, in every run, for at most 7 of the 20 instances.

Regarding Gbest we can see that MCMP-SRSI approaches require smaller computational effort than
those based in MCMP-SRI.

Figure 2. Values of the performance variables obtained under both evolutionary approaches for the 50
jobs instances, (a) Mean Ebest, (b) Mean Gbest, (c) Hit Ratio.

Mean Ebest for 50 jobs Instances

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50

1 19 31 51 71 96 11
6

Instances

E
b

es
t

SRI-AD

SRI-IN

SRSI-AD

SRSI-IN

Hit Ratio for 50 jobs instances

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

1 14 21 31 46 56 71 91 10
1

11
6

Instances

H
it

 R
at

io SRI-AD

SRI-IN

SRSI-AD

SRSI-IN

Mean Gbest for 50 jobs Instances

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

1 14 21 31 46 56 71 91 10
1

11
6

Instances

G
b

es
t

SRI-AD

SRI-IN

SRSI-AD

SRSI-IN

6. Conclusions

Evolutionary algorithms are robust search algorithms in the sense that they provide good solutions to a
broad class of problems which otherwise are computationally intractable. But their robustness has as a
drawback the kind of search process they perform: a blind search that slightly addressed by the relative
fitness of the solutions, completely ignores the nature of the problem. In order to improve their
performance we faced two ways for inserting problem-specific-knowledge by recombining seeds in the
evolutionary process. Seeds are good solutions provided by heuristics specifically designed for the
problem under our concern; the weighted tardiness single-machine scheduling problem. Variants of
MCMP-SRI include seeds and their neighbourhood in the initial population and then the recombination of
the stud (breeding individual) and the random immigrants follows in successive generations. Variants of
MCMP-SRSI, starting from a randomized initial population, continuously include the seeds in the mating
pool to be recombined with the stud and the random immigrants. As indicated by the results this latter
approach outperforms the former. In particular MCMP-SRSI-AD is the best performer for both problem
sizes. It worth saying here, that both methods produced solutions of higher quality than those of previous
works where the insertion of problemm-specific-knowledge was not considered. Further work will be
dedicated to find alternative ways to guide the evolutionary search for different scheduling problems.

7. Acknowledgements

We acknowledge the co-operation of the project group for providing new ideas and constructive
criticisms. Also to the Universidad Nacional de San Luis, the Universidad Nacional de La Patagonia
Austral, and the ANPCYT from which we receive continuous support.

8. References

[1] J.E.Beasley “Common Due Date Scheduling”, OR Library, http://mscmga.ms.ic.ac.uk/

[2] H.A.J.Crauwels, C.N.Potts and L.N.Van Wassenhove “Local search heuristics for the single
machine total weighted tardiness scheduling problem”, Informs Journal on Computing 10, 341-
350. 1998.

[3] T.Chen and M.Gupta, “Survey of scheduling research involving due date determination
decision”, European Journal of Operational Research, vol 38, pp. 156-166, 1989.

[4] A.E.Eiben, P.E.Raué, and Z.Ruttkay, “Genetic algorithms with multi-parent recombination”,
Proceedings of the 3rd Conference on Parallel Problem Solving from Nature, Springer-Verlag,
1994, number 866 in LNCS, pp. 78-87.

[5] A.E. Eiben, C.H.M. Van Kemenade, and J.N. Kok, “Orgy in the computer: Multi-parent
reproduction in genetic algorithms”. Proceedings of the 3rd European Conference on Artificial
Life, Springer-Verlag, 1995, number 929 in LNAI, pages 934-945.

[6] A.E. Eiben and. Th. Bäck, “An empirical investigation of multi-parent recombination operators
in evolution strategies”. Evolutionary Computation, 5(3):347-365, 1997.

[7] S. Esquivel, A. Leiva, R. Gallard, “Multiple Crossover per Couple in Genetic Algorithms”,
Proceedings of the Fourth IEEE Conference on Evolutionary Computation (ICEC'97),
Indianapolis, USA, April 1997, pp 103-106.

[8] S. Esquivel, A. Leiva, R. Gallard, “Couple Fitness Based Selection with Multiple Crossover per
Couple in Genetic Algorithms“. Proceedings of the International Symposium on Engineering of
Intelligent Systems (EIS´98), La Laguna, Tenerife, Spain, February 1998, pp 235-241.

[9] S. Esquivel, H. Leiva,.R. Gallard, “Multiple crossovers between multiple parents to improve
search in evolutionary algorithms”, Proceedings of the Congress on Evolutionary Computation
(IEEE). Washington DC, 1999, pp 1589-1594.

[10] M. Michalewicz, “Genetic Algorithms + Data Structures = Evolution Programs”. Third revised
edition, Springer, 1996.

[11] T. Morton, D. Pentico, “Heuristic scheduling systems”, Wiley series in Engineering and
technology management. John Wiley and Sons, INC, 1993.

[12] D. Pandolfi, G. Vilanova, M. De San Pedro, A. Villagra, “Multirecombining studs and
immigrants in evolutionary algorithm to face earliness-tardiness scheduling problems”.
Proceedings of the International Conference in Soft Computing. University of Paisley, Scotland,
U.K., June2001, pp.138

[13] D. Pandolfi; G. Vilanova; M. De San Pedro; A. Villagra, R. Gallard: “Solving the Single-
Machine Common Due Date Problem Via Stud and Inmigrants in Evolutionary Computation”,
World Multiconference on Systemics, Cybernetics and Informatics, Orlando July 2001 pp 409-
413

[14] M. Pinedo, “Scheduling: Theory, Algorithms and System.” First edition Prentice Hall, 1995.

[15] R.V. Rachamadugu, T.E. Morton, “Myopic heuristics for the single machine weighted
tardiness problem”. GSIA, Carnigie Mellon University, Pittsburgh, PA. 1982., Working paper 30-
82-83.

[16] C. Reeves, “A genetic algorithm for flow shop sequencing”, Computers and Operations
Research, vol 22, pp5-13, 1995.

[17] Y. Tsujimura, M. Gen, E. Kubota: “Flow shop scheduling with fuzzy processing time using
genetic algorithms”. The 11th Fuzzy Systems Symposium, Okinawa,. 1995,.pp 248-252.

[18] Pandolfi D., de San Pedro M., Villagra A., Vilanova G., Gallard R. – “Multirecombining random
and seed immigrants in evolutionary algorithms to solve W-T scheduling problems”- Proceedings
ACIS International Conference on Computer Science, Software Engineering, Information
Technology, e-Business and Application (CSITeA-02), Foz Iguazu, Brazil 2002.

