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Abstract 
 
In a production system it is usual to stress minimum tardiness to achieve higher client satisfaction. 
According to the client relevance, job processing costs and requirements, and various other 
considerations, a weight is assigned to each job. An important, non-trivial, problem is to minimize 
weighted tardiness. 
 
Evolutionary algorithms (EAs) have been proved as efficient tools to solve scheduling problems. Latest 
improvements in EAs have been developed by means of multirecombination, a method which allows 
multiple exchange of genetic material between individuals of the mating pool. 
 
As EAs are blind search methods this paper proposes to insert problem-specific-knowledge by 
recombining potential solutions (individuals of the evolving population) with seeds, which are solutions 
provided by other heuristics specifically intended to solve the scheduling problem under study. 
 
In this work we describe two main approaches where seeds are inserted either in the initial population or 
as a part of every mating pool during evolution. Both methods were contrasted for a set of problem 
instances extracted from the OR-Library. An outline of the weighted tardiness problem in a single 
machine environment, details of implementation and results are discussed. 
 
 
 



1. Introduction 
 

Single-machine scheduling problems are of interest as the basis to more complex machine 
environments. In particular the Total Weigthed Tardiness problem (1∑wj Tj) [3, 14], a NP-hard 
problem, is a generalization of the Total Tardiness problem (1∑ T). It is important to have heuristics 
providing reasonably good schedules with tolerable computational effort because Branch and Bound 
and other partial enumeration based methods are prohibitively time consuming even with only 20 jobs. 
Among other heuristics [11], evolutionary algorithms (EAs) have been successfully applied to solve 
scheduling problems [16,17]. Current trends in evolutionary algorithms make use of  multiparent [4, 5, 
6] and multirecombinative approaches [7, 8, 9]. The latter we called, multiple-crossovers-on-multiple-
parents (MCMP). Instead of applying crossover once on a pair of parents this feature applies n1 
crossover operations on a set of n2 parents. In order to improve the balance between exploration and 
exploitation in the search process a variant called MCMP-SRI [12], recombines a breeding individual 
(stud) by repeatedly mating individuals that randomly immigrates to a mating pool. Under this 
approach the random immigrants incorporate exploration (making unnecessary the use of mutation 
operations) and the multi-mating operation with the stud incorporates exploitation to the search 
process. .  
In this work MCMP-SRSI, a novel variant, which considers the inclusion of a stud-breeding individual 
in a pool of random and seed-immigrant parents [18], is presented. Here, the seeds generated by 
conventional heuristics, and continuously present, introduce the problem-specific knowledge.  
Two approaches are considered. The first approach generates the initial population with neighbours of 
three selected seeds and in subsequent generations applies MCMP-SRI. The second one applies 
MCMP-SRSI. Next sections describe the weighted tardiness scheduling problem, the alternative ways 
to insert problem-specific knowledge and discuss the results obtained. 

 
2. The weighted tardiness scheduling problem 
 

The single-machine total weighted tardiness problem [14] can be stated as follows: n jobs are to be 
processed without interruption on a single machine that can handle no more than one job at a time. Job 
j (j = 1,...,n)  becomes available for processing at time zero, requires an uninterrupted positive  
processing time pj on the machine, has a positive weight wj, and a due date dj by which it should 
ideally be finished.  For a given processing order of the jobs, the earliest completion time Cj and the 
tardiness Tj = max{Cj-dj,0} of job j can readily be computed. The problem is to find a processing order 
of the jobs with minimum total weighted tardiness 
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Even with this simple formulation, this model leads to an optimization problem that is NP-Hard [14]. 
 

3. Multirecombination of random and seed immigrants with the stud 
 

Multiple Crossovers per Couple (MCPC) [7], [8] and Multiple Crossovers on Multiple Parents 
(MCMP) [9] are multirecombination methods, which improve EAs performance by reinforcing and 
balancing exploration and exploitation in the search process. In particular, MCMP is an extension of 
MCPC where the multiparent approach of Eiben [4], [5], [6] is introduced. Results obtained in diverse 
single and multiobjective optimization problems indicated that the searching space is efficiently 
exploited by the multiple application of crossovers and efficiently explored by the greater number of 
samples provided by the multiple parents. 
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A further extension of MCMP is known as MCMP-SRI [12], [13]. This approach considered the 
mating of an evolved individual (the stud) with random immigrants. In our new variant (MCMP-SRSI), 
the process for creating offspring is performed as follows. From the old population the stud, is selected 
by means of proportional selection and inserted in the mating pool together with three seed immigrants, 
created by means of three different heuristics. The number of n2 parents in the mating pool is 
completed with randomly created individuals (random immigrants). The stud mates every other parent, 
the couples undergo partial mapped crossover (PMX) and 2* n2 offspring are created. The best of these 
2* n2 offspring is stored in a temporary children pool. The crossover operation is repeated n1 times, for 
different cut points each time, until the children pool is completed. Finally, the best offspring created 
from n2 parents and n1 crossover is inserted in the new population.  
 

4. Introducing problem-specific knowledge  
 

Dispatching heuristics are methods that allow deciding which job should be inserted into the system. 
To do this, a rule assigns an index to every job and the one with the highest priority is selected. There 
are different heuristics [11] for the Total Weighted Tardiness problem. Some of them are earliest due 
date first (EDD), weighted shortest processing time first (WSPT), Montagne, R&M and Covert, whose 
principal property is not only the quality of  the results, but also to give an ordering of the jobs 
(schedule) close to the optimal sequence. Unlike EAs, they were specifically conceived to solve this 
problem and consequently their inherent problem-specific knowledge provides to the evolutionary 
algorithm with genetic information of the promising areas for exploitation. For the problem under study 
we chose the following heuristics:  
 
Rachamadagu and Morton Heuristic (R&M). This heuristic provides a schedule according to the 
following expression.  

 
with Sj = [dj – (pj + Ch)] is the slack of job j at time Ch, where Ch is the total processing time of the 
jobs already scheduled, k is a parameter of the method (usually k =2.0) and pav is the average 
processing time of jobs competing for top priority. In the R&M heuristic, also called the Apparent 
Tardiness Cost heuristic, jobs are scheduled one at a time and every time a machine becomes free a 
ranking index is computed for each remaining job. The job with the highest-ranking index is then 
selected to be processed next. 
 
The Covert rule. This heuristic provides a schedule according to the following expression.  

 
Under this heuristic the WSPT rule is modified by a slack factor, and processing times different than 
the job being considered are not taking into account. The Covert rule works, in the case of a single 
resource similar to R&M. 
 
Modified R&M heuristic. Here a logarithmic function of the slack of the job considered  and the 
average processing times of remaining jobs are used, 
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The idea of inserting seeds (good solutions) in evolutionary processes was originally implemented by 
Reeves [16] as an alternative way to introduce problem-specific knowledge to the algorithm. In his 
approach Reeves, inserted one seed provided by a non evolutionary heuristic, only once in the initial 
population, expecting that its genetic material were occasionally exchanged by means of the selection 
mechanism.  
This paper proposes two different approaches for the insertion of knowledge in the evolutionary 
process. In the first approach this knowledge is inserted in the initial population, while in the second 
approach this knowledge is continuously inserted by mean of seeds introduced during the execution of 
the recombination process (mating pool). 
 
First approach 
In the first approach the initial population is generated as the neighbourhood of seeds provided from a 
robust heuristic and subsequently MCMP-SRI is applied. As initial solutions had goods features, 
genotypic as well as phenotypic, this permits to start the search in a promissory subspace allowing 
evolutionary algorithms to converge towards the optimum quicker than if the population were 
randomly generated. 
In this kind of scheduling problems, solutions (individuals of a population) are usually permutations of 
job identifiers, which represent schedules. To generate the neighbourhood of the seeds the operator 
used must start by a solution represented by a permutation and generate a new solution that differ a 
little from de original. Special attention must be paid in this process because new solutions must remain 
valid. We selected adjacency and inversion as neighbourhood operators. 
The adjacency operator creates a new neighbour by changing the original schedule as follows. From a 
random selected position a job is interchanged with anyone of its adjacent jobs, either at left or right, 
with the same probability. The maximum number of different neighbours that could be generated by 
this operator is l (if l is the number of jobs for a schedule). Since there are three seeds the total number 
of neighbours that will be generated is 3*l. To generate the neighbourhood with the adjacency operator 
the following steps should be accomplished: 

Step 1: Insert the three selected seeds (R&M, Covert and Modified R&M) in the population. 
Step 2: Select randomly the seed to which the adjacency operator will be applied.  
Step 3: Determine a position (job) in the seed to be interchanged. The schedule (list of jobs) 
should be considered circular. 
Step 4: Generate a neighbour by interchanging the selected job with the one at its left or right 
position. 
Step 5: Insert the neighbour in the population and return to step 2 to generate new neighbours 
until the population is completed. 

The inversion operator generates a new neighbour by changing the original schedule as follows. The 
new neighbour is created by random selection of two positions and exchanging them. The maximum 
number the neighbours that could be generated by this operator is l * (l-1)/ 2 (if l is the number of jobs 
for a schedule). Since there are three seeds then the total number of neighbours that could be generated 
is ( l * (l-1)/2) * 3). To generate a neighbourhood with the inversion operator the following steps 
should be accomplished: 
: 

Step 1: Insert the three selected seeds (R&M, Covert and Modified R&M) in the population. 
Step 2: Select randomly the seed to which the inversion operator will be applied.  
Step 3: Determinate two position in the seed and interchange the jobs. 
Step 4: Insert the neighbour in the population and return to step 2 to generate new neighbours 
until the population is completed. 

 
 



 
Second approach 
In the second approach MCMP-SRSI is used. Here the problem-specific knowledge is continuously 
inserted in the mating pool by means of the three selected seeds, which are always present. So, in the 
mating pool the seeds replace three of the random immigrants. In order to avoid premature 
convergence, adjacency and inversion are used as mutation operators. 
 

5. Experimental tests and results 
 

The following algorithms where designed: 
 
MCMP-SRI-AD: Initial population is built as the neighbourhood of three seeds by means of the 
adjacency operator. 
MCMP-SRI-IN: Initial population is built as the neighbourhood of three seeds by means of the 
inversion operator. 
MCMP-SRSI-AD: Randomized initial population. Seeds continuously remain in the mating pool. 
Adjacency is used as a mutation operator. 
MCMP-SRSI-IN: Randomized initial population. Seeds continuously remain in the mating pool. 
Inversion is used as a mutation operator. 
 
All evolutionary algorithms were tested for selected instances from OR-library benchmarks [1,2]. To 
compare the algorithms, the following relevant performance variables were chosen: 
 
Ebest = ( (best value - opt_val)/opt_val)100 
It is the percentile error of the best-found individual when compared with the known, or estimated, 
optimum value opt_val. It gives us a measure on how far the best individual is from that opt_val.  
Hit Ratio. Denotes the percentage of runs where the algorithm finds the best benchmark value 
(optimum or lower bound) . Its value is 1 when the best benchmark value is reached in every run. 
Gbest. It is the generation where the best individual was found. 
 
The best parameter setting was determined under each algorithm after a series of initial trials, as 
follows: 
 

Approach max_gen Pop_size Pc Pm n1 n2 
MCPC-SRSI-AD 200 100 0.65 0.05 14 16 
MCPC-SRSI-IN 200 100 0.65 0.05 14 16 
MCPC-SRI-AD 200 100 0.65 0.00 14 16 
MCPC-SRI-IN 200 100 0.65 0.00 14 16 

 
 

The following tables summarize minimum, mean and general average values for the performance 
variables through all selected instances for the 40 and 50 job problem sizes.  
 
In table 1 results show that MCMP-SRI-AD hits the best benchmark published for 40 and 50 jobs problems size 
with an average hit ratio of 61 % and 41 %, respectively. Regarding Ebest, its average value is 0.34% and 0.24% 
for 40 and 50 jobs, respectively. The number of generations, Gbest, required to find the best individual is 36.06 
and 65.35 in average for 40 and 50 jobs problems size, respectively. 
 
 
 



 
 

Instance 
K 

Best 
Benchm. 

Min 
WT 

Mean 
Ebest 

Hit 
Ratio 

Mean 
Gbest 

Instance 
K 

Best 
Benchm. 

Min 
WT 

Mean 
Ebest 

Hit 
Ratio 

Mean 
Gbest 

wt40-1 913 913 0.00 1.0 1.0 wt50-1 2134 2134 0.00 1.00 11.60 
wt40-6 6955 6955 0.00 1.0 4.4 wt50-6 26276 26415 0.99 0.00 123.30 

wt40-11 17465 17465 0.03 0.9 1.1 Wt50-14 51785 51887 0.22 0.00 73.80 
wt40-19 77122 77132 0.09 0.0 97.9 Wt50-19 89299 89474 0.20 0.00 57.70 
wt40-21 77774 77774 0.01 0.1 36.7 Wt50-21 214546 214567 0.02 0.00 77.50 
wt40-26 108 108 0.00 1.0 1.0 Wt50-26 2 2 0.00 1.00 1.00 
wt40-31 6575 6575 0.00 1.0 1.0 Wt50-31 9934 10015 2.54 0.00 113.90 
wt40-41 57640 57907 0.66 0.0 115.7 Wt50-44 123893 123893 0.01 0.70 39.20 
wt40-46 64451 64455 0.04 0.0 1.0 Wt50-46 157505 157505 0.00 0.30 43.10 
wt40-51 0 0 0.00 1.0 1.0 Wt50-51 0 0 0.00 1.00 1.00 
wt40-56 2099 2099 5.66 0.2 68.4 Wt50-56 1258 1258 0.04 0.90 34.60 
wt40-66 65386 65386 0.02 0.1 75.3 Wt50-66 76878 76887 0.05 0.00 126.40 
wt40-71 90486 90486 0.00 1.0 1.0 Wt50-71 150580 150580 0.08 0.10 115.80 
wt40-76 0 0 0.00 1.0 1.0 Wt50-76 0 0 0.00 1.00 1.00 
wt40-91 47683 47683 0.01 0.7 110.8 Wt50-91 89298 89490 0.25 0.00 124.00 
wt40-96 126048 126048 0.00 1.0 1.0 Wt50-96 177909 177912 0.04 0.00 133.90 
wt40-101 0 0 0.00 1.0 1.0 Wt50-101 0 0 0.00 1.00 1.00 
wt40-106 0 0 0.00 1.0 1.0 Wt50-106 0 0 0.00 1.00 1.00 
wt40-116 46770 46839 0.26 0.0 90.1 Wt50-116 35727 35727 0.15 0.10 120.00 
wt40-121 122266 122266 0.03 0.1 110.8 Wt50-121 78315 78448 0.22 0.00 107.10 

Mean Avg   0.34 0.61 36.06 Mean Avg   0.24 0.41 65.35 
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Benchm. 
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WT 

Mean 
Ebest 

Hit 
Ratio 

Mean 
Gbest 

Instance 
K 

Best 
Benchm. 

Min 
WT 

Mean 
Ebest 

Hit 
Ratio 

Mean 
Gbest 

wt40-1 913 913 0.00 1.0 1.0 Wt50-1 2134 2134 0.00 1.00 12.20 
wt40-6 6955 6955 0.00 1.0 37.5 Wt50-6 26276 26415 1.13 0.00 138.00 

wt40-11 17465 17465 0.00 1.0 2.4 Wt50-14 51785 51887 0.23 0.00 96.40 
wt40-19 77122 77132 0.10 0.0 145.0 Wt50-19 89299 89474 0.21 0.00 75.90 
wt40-21 77774 77774 0.01 0.4 41.1 Wt50-21 214546 214566 0.02 0.00 92.70 
wt40-26 108 108 0.00 1.0 1.0 Wt50-26 2 2 0.00 1.00 1.00 
wt40-31 6575 6575 0.00 1.0 1.0 Wt50-31 9934 10015 3.44 0.00 78.60 
wt40-41 57640 57876 0.68 0.0 137.6 Wt50-44 123893 123893 0.03 0.20 50.70 
wt40-46 64451 64451 0.04 0.1 23.4 Wt50-46 157505 157505 0.00 0.50 90.50 
wt40-51 0 0 0.00 1.0 1.0 Wt50-51 0 0 0.00 1.00 1.00 
wt40-56 2099 2099 5.23 0.4 100.3 Wt50-56 1258 1258 0.00 1.00 42.60 
wt40-66 65386 65386 0.05 1.0 89.4 Wt50-66 76878 76906 0.08 0.00 86.50 
wt40-71 90486 90486 0.00 1.0 1.0 Wt50-71 150580 150604 0.09 0.00 124.60 
wt40-76 0 0 0.00 1.0 1.0 Wt50-76 0 0 0.00 1.00 1.00 
wt40-91 47683 47683 0.03 0.6 146.6 Wt50-91 89298 89525 0.28 0.00 87.30 
wt40-96 126048 126048 0.00 1.0 1.0 Wt50-96 177909 177909 0.05 0.20 108.50 
wt40-101 0 0 0.00 1.0 1.0 Wt50-101 0 0 0.00 1.00 1.00 
wt40-106 0 0 0.00 1.0 1.0 Wt50-106 0 0 0.00 1.00 1.00 
wt40-116 46770 46802 0.21 0.0 117.4 Wt50-116 35727 35757 0.29 0.00 117.60 
wt40-121 122266 122281 0.10 0.0 80.1 Wt50-121 78315 78448 0.22 0.00 83.60 

Mean Avg   0.32 0.68 46.49 Mean Avg   0.30 0.40 64.54 
 
In table 2 we can see that MCMP-SRI-IN hits the best benchmark published for 40 and 50 jobs 
problems size with an average hit ratio of 68 % and 40 %, respectively. Concerning Ebest, its average 
value is 0.32% and 0.30% for 40 and 50 jobs, respectively. The number of generations, Gbest, required 
to find the best individual is 46.49 and 64.54 in average for 40 and 50 jobs problems size, respectively. 

Table 1. Performance variables values under MCMP-SRI-AD, for the 40 and 50 jobs instances. 

Table 2. Performance variables values under MCMP-SRI-IN, for the 40 and 50 jobs instances. 
 



 
 

Instance 
K 

Best 
Benchm. 

Min 
WT 

Mean 
Ebest 

Hit 
Ratio 

Mean 
Gbest 

Instance 
K 

Best 
Benchm. 

Min 
WT 

Mean 
Ebest 

Hit 
Ratio 

Mean 
Gbest 

wt40-1 913 913 0.00 1.0 1.0 wt50-1 2134 2134 0.00 1.00 7.80 
wt40-6 6955 6955 0.00 1.0 2.7 wt50-6 26276 26276 0.36 0.30 83.50 

wt40-11 17465 17465 0.00 1.0 3.5 Wt50-14 51785 51785 0.00 1.00 19.10 
wt40-19 77122 77122 0.00 1.0 52.4 Wt50-19 89299 89299 0.00 1.00 24.30 
wt40-21 77774 77774 0.00 1.0 8.7 Wt50-21 214546 214546 0.00 0.20 47.30 
wt40-26 108 108 0.00 1.0 1.0 Wt50-26 2 2 0.00 1.00 1.00 
wt40-31 6575 6575 0.00 1.0 1.0 Wt50-31 9934 9934 0.37 0.80 108.50 
wt40-41 57640 57876 0.41 0.0 20.4 Wt50-44 123893 123893 0.00 1.00 3.80 
wt40-46 64451 64451 0.00 1.0 7.9 Wt50-46 157505 157505 0.00 1.00 2.80 
wt40-51 0 0 0.00 1.0 1.0 Wt50-51 0 0 0.00 1.00 1.00 
wt40-56 2099 2099 4.36 0.5 47.5 Wt50-56 1258 1258 0.00 1.00 16.40 
wt40-66 65386 65386 0.00 0.9 17.6 Wt50-66 76878 76878 0.00 1.00 95.10 
wt40-71 90486 90486 0.00 1.0 1.4 Wt50-71 150580 150580 0.00 1.00 33.50 
wt40-76 0 0 0.00 1.0 1.0 Wt50-76 0 0 0.00 1.00 1.00 
wt40-91 47683 47683 0.00 1.0 20.3 Wt50-91 89298 89448 0.17 0.00 73.90 
wt40-96 126048 126048 0.00 1.0 1.3 Wt50-96 177909 177909 0.00 1.00 74.70 
wt40-101 0 0 0.00 1.0 1.0 Wt50-101 0 0 0.00 1.00 1.00 
wt40-106 0 0 0.00 1.0 1.0 Wt50-106 0 0 0.00 1.00 1.00 
wt40-116 46770 46770 0.00 0.7 145.5 Wt50-116 35727 35727 0.00 1.00 9.00 
wt40-121 122266 122266 0.00 1.0 52.3 Wt50-121 78315 78315 0.04 0.40 53.50 

Mean Avg   0.24 0.91 19.43 Mean Avg   0.05 0.84 32.91 
 
 
 

Instance 
K 

Best 
Benchm. 

Min 
WT 

Mean 
Ebest 

Hit 
Ratio 

Mean 
Gbest 

Instance 
K 

Best 
Benchm. 

Min 
WT 

Mean 
Ebest 

Hit 
Ratio 

Mean 
Gbest 

wt40-1 913 913 0.00 1.0 1.0 wt50-1 2134 2134 0.00 1.00 9.80 
wt40-6 6955 6955 0.00 1.0 2.3 wt50-6 26276 26276 0.51 0.10 114.40 

wt40-11 17465 17465 0.00 1.0 3.5 wt50-11 51785 51785 0.00 1.00 15.70 
wt40-19 77122 77122 0.00 1.0 66.7 wt50-19 89299 89299 0.00 1.00 25.20 
wt40-21 77774 77774 0.00 1.0 15.6 wt50-21 214546 214555 0.01 0.00 30.70 
wt40-26 108 108 0.00 1.0 1.0 wt50-26 2 2 0.00 1.00 1.00 
wt40-31 6575 6575 0.00 1.0 1.0 wt50-31 9934 9934 0.95 0.40 140.00 
wt40-41 57640 57876 0.41 0.0 19.0 wt50-41 123893 123893 0.00 1.00 4.30 
wt40-46 64451 64451 0.00 1.0 12.6 wt50-46 157505 157505 0.00 1.00 2.60 
wt40-51 0 0 0.00 1.0 1.0 wt50-51 0 0 0.00 1.00 1.00 
wt40-56 2099 2099 6.97 0.2 35.5 wt50-56 1258 1258 0.00 1.00 23.30 
wt40-66 65386 65386 0.00 0.9 19.8 wt50-66 76878 76878 0.00 0.80 91.10 
wt40-71 90486 90486 0.00 1.0 1.7 wt50-71 150580 150580 0.00 1.00 56.60 
wt40-76 0 0 0.00 1.0 1.0 wt50-76 0 0 0.00 1.00 1.00 
wt40-91 47683 47683 0.00 1.0 22.7 wt50-91 89298 89448 0.17 0.00 85.50 
wt40-96 126048 126048 0.00 1.0 1.3 wt50-96 177909 177909 0.00 0.90 59.80 
wt40-101 0 0 0.00 1.0 1.0 wt50-101 0 0 0.00 1.00 1.00 
wt40-106 0 0 0.00 1.0 1.0 wt50-106 0 0 0.00 1.00 1.00 
Wt40-116 46770 46770 0.00 1.0 121.3 wt50-116 35727 35727 0.00 1.00 10.90 
Wt40-121 122266 122266 0.00 1.0 41.9 wt50-121 78315 78315 0.02 0.70 67.90 
Mean Avg   0.37 0.91 18.55 Mean Avg   0.08 0.80 37.14 

 
In table 3 results show that MCMP-SRSI-AD hits the best benchmark published for 40 and 50 jobs 
problems size with an average hit ratio of 91 % and 84 %, respectively. About Ebest, its average value 
is 0.24% and 0.05% for 40 and 50 jobs, respectively. The number of generations, Gbest, required to 
find the best individual is 19.43 and 32.91 in average for 40 and 50 jobs problems size, respectively. 

Table 4. Performance variables values under MCMP-SRSI-IN, for the 40 and 50 jobs instances. 

Table 3. Performance variables values under MCMP-SRSI-AD, for the 40 and 50 jobs instances. 



Table 4 shows that MCMP-SRSI-IN hits the best benchmark published for 40 and 50 jobs problems 
size with an average hit ratio of 91 % and 80 %, respectively. Regarding Ebest, its average value is 
0.37% and 0.08% for 40 and 50 jobs, respectively. The number of generations, Gbest, required to find 
the best individual is 18.55 and 37.14 in average for 40 and 50 jobs problems size, respectively. 
 
 

Av. Ebest Av. Gbest Av. Hit Ratio Approach 
40 jobs 50 

jobs 
40 

jobs 
50 

jobs 
40 

jobs 
50 

jobs 
MCPC-SRI-AD 0.34 0.24 36.0 65.4 61 41 
MCPC-SRI-IN 0.32 0.30 46.5 64.5 68 40 

MCPC-SRSI-AD 0.24 0.05 19.4 32.9 91 84 
MCPC-SRSI-IN 0.37 0.08 18.6 37.4 91 80 

 
From table 5 we conclude that  MCMP-SRSI-AD is the best performer for both problem sizes with 
showing low Gbest average values. 
 
Figures 1 and 2 , show the behaviour of each algorithm on each problem size. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
If we concentrate on the 40 jobs problem size we can observe that mean Ebest for any approach show a 
maximum for the wt40-56 instance, ranging from 4% to 7%, while for the remaining instances the 

Table 5. Average performance variables values under each approach, for the 40 and 50 job problem sizes. 

Figure 1. Values of the performance variables obtained under both evolutionary approaches for the 40 
jobs instances, (a) Mean Ebest, (b) Mean Gbest, (c) Hit Ratio. 
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mean percentile error is smaller than 1%. In general MCMP-SRSI show smaller or equal mean 
percentile error than MCMP-SRI in all instances. 
 
Concerning Hit Ratio, MCMP-SRSI approaches do not reach the benchmark only in one instance 
(wt40-41), while they reaches the benchmark, in every run, for at least 16 of the 20 instances.  
On the other hand MCMP-SRI approaches do not reach the benchmark in four instances (wt40-41), 
while they reaches the benchmark, in every run, for at most 11 of the 20 instances.  
 
Regarding Gbest we can observe that MCMP-SRSI approaches require smaller computational effort 
than those based in MCMP-SRI. 

 
When looking at the 50 jobs problem size we can observe that for the algorithms based in MCMP-SRSI 
mean Ebest values show a maximum smaller than 1%. In general MCMP-SRSI show smaller or equal 
mean percentile error than MCMP-SRI in all instances. 
 
Concerning Hit Ratio, MCMP-SRSI approaches do not reach the benchmark only in two s (wt40-41), 
while they reaches the benchmark, in every run, for at least 15 of the 20 instances.  
On the other hand MCMP-SRI approaches do not reach the benchmark in 10 instances (wt50-21 and 
wt50-91), while they reaches the benchmark, in every run, for at most 7 of the 20 instances.  
 
Regarding Gbest we can see that MCMP-SRSI approaches require smaller computational effort than 
those based in MCMP-SRI. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Values of the performance variables obtained under both evolutionary approaches for the 50 
jobs instances, (a) Mean Ebest, (b) Mean Gbest, (c) Hit Ratio. 
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6. Conclusions 
 
Evolutionary algorithms are robust search algorithms in the sense that they provide good solutions to a 
broad class of problems which otherwise are computationally intractable. But their robustness has as a 
drawback the kind of search process they perform: a blind search that slightly addressed by the relative 
fitness of the solutions, completely ignores the nature of the problem. In order to improve their 
performance we faced two ways for inserting problem-specific-knowledge by recombining seeds in the 
evolutionary process. Seeds are good solutions provided by heuristics specifically designed for the 
problem under our concern; the weighted tardiness single-machine scheduling problem. Variants of 
MCMP-SRI include seeds and their neighbourhood in the initial population and then the recombination of 
the stud (breeding individual) and the random immigrants follows in successive generations. Variants of 
MCMP-SRSI, starting from a randomized initial population, continuously include the seeds in the mating 
pool to be recombined with the stud and the random immigrants. As indicated by the results this latter 
approach outperforms the former. In particular MCMP-SRSI-AD is the best performer for both problem 
sizes. It worth saying here, that both methods produced solutions of higher quality than those of previous 
works where the insertion of problemm-specific-knowledge was not considered. Further work will be 
dedicated to find alternative ways to guide the evolutionary search for different scheduling problems. 
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