
Dialoguing DeLP-based agents

Diego C. Mart́ınez ∗ Alejandro Garćıa

Laboratorio de Investigación y Desarrollo en Inteligencia Artificial

Departamento de Ciencias e Ingenieŕıa de la Computación

Universidad Nacional del Sur

Av. Alem 1253 - (8000) Bah́ıa Blanca - Buenos Aires - República Argentina

Tel/Fax: (+54)(291)4595135/5136 - E-mail: {dcm,ajg}@cs.uns.edu.ar

Abstract

A multi-agent system is made up of multiple interacting autonomous
agents. It can be viewed as a society in which each agent performs its ac-
tivity cooperating to achieve common goals, or competing for them. They
establish dialogues via some kind of agent-communication language, under
some communication protocol. We think argumentation is suitable to model
several kind of dialogues in multi-agents systems. In this paper we define
dialogues and persuasion dialogues between two agents using Defeasible Logic
Programs as a knowledge base, together with an algorithm defining how this
dialogue may be engaged. We also show an indication of how an agent could
use opponent’s information for its own benefit.

1 Introduction

A multi-agent system is made up of multiple interacting autonomous agents. It
can be viewed as a society in which each agent performs its activity cooperating
to achieve common goals, or competing for them. These agents need to interact
with one another because of the inherent interdependencies which exist between
them [3]. They should have the ability to establish dialogues via some kind of
agent-communication language, under some communication protocol. As stated in
[1], we think argumentation is suitable to model several kind of dialogues in multi-
agents systems. It’s being used as a form of negotiation between agents, where they
communicate to one another to try to come to a mutually acceptable agreement on
some matter [7].

Argumentation can be considered as a process in which the parties (in this case,
agents) exchange arguments for or against some proposition, usually in order to per-
suade each other. An argument is a subjective explanation of some statement being

∗Becario de la Comisión de Investigaciones Cient́ıficas de la Provincia de Buenos Aires (CIC)

alleged in that process. In the next section we define Defeasible Logic Programs,
a well-known formalism of non-monotonic reasoning. These programs are used to
represent the knowledge base of an agent.

2 Defeasible Logic Programs

Defeasible Logic Programming is a logic programming paradigm based on a defeasi-
ble argumentation formalism that allows the representation of strict and defeasible
knowledge

In DeLP, a literal h is warranted if there exists a non-defeated argument A
supporting h. An argument 〈A, h〉 for a literal h is a minimal and consistent set
of defeasible rules that allows to infer h. In order to establish whether 〈A, h〉 is
a non-defeated argument, argument rebuttals or counter-arguments that could be
defeaters for 〈A, h〉 are considered, i.e., counter-arguments that by some criterion,
are preferred to 〈A, h〉. Since counter-arguments are arguments, there may exist
defeaters for them, and defeaters for these defeaters, and so on. Thus, a sequence
of arguments called argumentation line may appear, where each argument defeats
its predecessor in the line (see the following example). Usually, each argument has
more than one defeater and more than one argumentation line exists. Therefore, a
tree of arguments called dialectical tree is constructed, where the root is 〈A, h〉 and
each path from the root to a leaf is an argumentation line. A dialectical analysis of
this tree is used for deciding whether h is warranted.

The interested reader is referred to [8, 9, 10] for details about DeLP.
Defeasible logic programs are defined in terms of two types of rules:

• stric rules l ← q1, . . . , qn., used to represent not defeasible information and

• defeasible rules l —< q1, . . . , qn, used to represent defeasible knowledge,

where l is a literal (i. e., a predicate “p” or a negated predicate “∼p”), and each
qi (n ≥ 0) is a literal, or a literal preceded by the symbol not. A defeasible logic
program (de.l.p.) is a finite set of defeasible and strict rules. Given a de.l.p. P ,
a defeasible derivation for a literal q is a finite set of defeasible and strict rules
obtained by backward chaining from q as in a Prolog program, using both strict
and defeasible rules. The subset of all extended program clauses must be consistent,
i.e., there is no defeasible derivation of complementary literals, although the subset
of defeasible clauses may be inconsistent. It is only in this form that a de.l.p. may
contain potentially inconsistent information. In this framework, an argument is
considered a defeasible reason for supporting conclusions.

Definition 2.1 (Argument Structure). [8] Let h be a literal, and P=(Π, ∆) a
de.l.p.. We say that 〈A, h〉 is an argument structure for h, if A is a set of defeasible
rules of ∆, such that:

1. there exists a defeasible derivation for h from Π ∪ A,

2. the set Π ∪ A is non-contradictory, and

3. A is minimal: there is no proper subset A′ of A such that A′ satisfies conditions
(1) and (2).

Since the subset of defeasible clauses may be inconsistent, the set of all arguments
which can be made from a de.l.p. will conflict. This fact lead us to the following
definitions of opposing arguments:

Definition 2.2 (Counter-argument). [8] We say that 〈A1, h1〉 counter-argues,
rebutts, or attacks 〈A2, h2〉 at literal h, if and only if there exists a sub-argument
〈A, h〉 of 〈A2, h2〉 such that h and h1 disagree.

Definition 2.3 (Defeating argument). [8]
An argument 〈A1, h1〉 defeats an argument 〈A2, h2〉 at literal h, if and only if there
exists a sub-argument 〈A, h〉 of 〈A2, h2〉 such that 〈A1, h1〉 counterargues 〈A2, h2〉 at
h, and either:
(1) 〈A1, h1〉 is strictly better 1 than 〈A, h〉
(2) 〈A1, h1〉 is incomparable to 〈A, h〉

As stated before, any conclusion h will be considered warranted only when the
argument that supports it becomes a justification. To check if an argument A
is a justification for a literal h we need to start an analysis between A and its
defeaters. Since defeaters are arguments, there may exist defeaters for defeaters,
and so on. This recursive justification process is called a dialectical analysis and
can be represented as trees in the following manner. The root of the tree will
correspond to the initial argument, and every inner node will represent a defeater
(proper or blocking) of its father. Leaves in this tree will correspond to non-defeated
arguments [9].

Definition 2.4 (Dialectical tree [8]).
Let A be an argument for h. A dialectical tree for 〈A, h〉, denoted T〈A, h〉, is recur-

sively defined as follows:
(1) A single node labeled with an argument 〈A, h〉 with no defeaters (proper or block-
ing) is by itself a dialectical tree for 〈A, h〉. This node is also the root of the tree.
(2) Suppose that 〈A, h〉 is an argument with defeaters (proper or blocking) 〈A1, h1〉,
〈A2, h2〉, . . . , 〈An, hn〉. We construct the dialectical tree for 〈A, h〉, T〈A, h〉, by label-

ing the root node of with 〈A, h〉 and by making this node the parent node of the roots
of the dialectic trees for 〈A1, h1〉, 〈A2, h2〉, . . . , 〈An, hn〉, i. e., T〈A1, h1〉, T〈A2, h2〉,
. . . , T〈An, hn〉.

Nodes in the dialectical tree can be recursively marked as defeated or undefeated
nodes (D-nodes and U-nodes respectively). Let A be an argument for a literal h,
and T〈A, h〉 be its associated dialectical tree.

Procedure 2.1 (Marking of a dialectical tree). [8] Let T〈A, h〉 be a dialectical

tree for 〈A, h〉. The corresponding marked dialectical tree, denoted T ∗
〈A, h〉, will be

obtained marking every node in T〈A, h〉 as follows:

1. All leaves in T〈A, h〉 are marked as “U”s in T ∗
〈A, h〉.

1To capture the fact that some arguments are stronged believed than others, some comparison
criteria is needed. In particular, de.l.p. uses specificity to establish a preference order among
arguments [9].

2. Let 〈B, q〉 be an inner node of T〈A, h〉. Then 〈B, q〉 will be marked as “U”

in T ∗
〈A, h〉 iff every child of 〈B, q〉 is marked as “D”. The node 〈B, q〉 will be

marked as “D” in T ∗
〈A, h〉 iff it has at least a child marked as “U”.

An argument A is a justification for its conclusion h only if the root in T〈A, h〉 is

marked as undefeated. In the next section we define the concept of agents that use
this formalism to represent strict and defeasible knowledge.

DeLP-based agents

As mentioned before, we can use de.l.p. to represent the agent’s knowledge base,
and thus every agent will have the ability to handle inconsistent information. The
knowledge base of an agent Agi is formed by extended and defeasible program clauses
representing facts and beliefs, and some comparison criteria θi to establish a prefer-
ence order among arguments. Here is a simple definition of DeLP-based agents.

Definition 2.5 (DeLP-based Agent). A DeLP-based agent Ai is defined as the
pair (KBi, θi) such that:

• KBi = {Si,Di, } where Si is a set of strict rules , Di is a set of defeasible rules.

• θi : 2|Di|×2|Di| → 2|Di| denotes a preference relation over arguments constructed
on KBi

For simplicity, we will assume that all the agents in the dialogue use the same
comparison criteria, such as specificity. The selected criteria is not relevant to this
work. The de.l.p. formalism can be used to model the agent’s internal process
of reasoning (monologues). However, the idea of an analysis between arguments
and counterarguments can be extended to capture conversational activities between
agents. In the next section, we define the concept of dialogue in a multi-agent envi-
ronment together with a simple procedure to engage this kind of social interaction.

3 Dialogues on multi-agent systems

Simply put, a dialogue is sequence of locutionary acts between two or more players.
An argument is a tentative explanation for some proposition and when enunciated
by agents it may be considered as a locutionary act. Usually, argumentation appears
as a mechanism to deal with disagreement between agents, for example, when some
conflict of interest is present. In order to define this special kind of social interaction
we need a simple definition of what a multiagent system is.

Definition 3.1 (DeLP-based Multiagent system). A multiagent system (mas)
is a set MS = {A1, A2, A3, ..., An} where every Ai is a DeLP-based agent.

DeLP-based agents use arguments as an explanation of their beliefs. The process
in which the parties (in this case, agents) exchange arguments for or against some
proposition is, in fact, a conversational activity between agents and can be depicted
as a dialogue.

Definition 3.2 (Dialogue). An argument dialogue in a multi-agent system MS is
a non-empty sequence of pairs

[(Arg0, Ag0), (Arg1, Ag1), ..., (Argi, Agj)] (i ≥ 0)(1 ≤ j ≤ n)

where Argi is an argument structure of agent Agj ∈ MS. Any pair (Arg, Agk) is
called a dialogue act of the dialogue.

This is the basic definition of dialogue and it can be applied to several forms of
social dialogue such as negotiation, where there is a conflict of interests, persuasion
where there is a conflict of opinion or beliefs, indagation where there is a need for an
explanation or proof of some proposition, deliberation or coordination where there
is a need to coordinate goals and actions [6]. Other restrictions such as the order
in which the agents produce arguments in the dialogue or special conditions for
dialogue acts depend on the special kind of dialogue and are given by the dialogue
protocol. We will give a simple definition of persuasion dialogue, where two agents
are arguing about some particular issue. In this kind of dialogue, the agents take
turns to present arguments, and what is supplied by each participant at each turn
is a direct response to what was stated in the previous turn.

Definition 3.3 (Persuasion Dialogue). A persuasion dialogue is a dialogue such
that for all consecutive dialogue acts (Argi, Agm) and (Argi+1, Agn)(i ≥ 0) the
argument Argi+1 is a defeater argument of Argi.

We also say that Argi+1 is an answer or a response to Argi. In particular, the
process of warranting an argument in de.l.p. as defined in previous sections can be
viewed as a set of single-agent persuasion dialogues, defined sometimes as monologue.
It is easy to see that for an agent A every argumentation line of an argument Arg is
a persuasion dialogue in which A is the only agent who makes dialogue acts. This
means that for an argument Arg it is possible to make several persuasion dialogues.

Definition 3.4 (Subject of dialogue). Let D = {(Arg0, Ag0), ..., (Argi, Agj)} be
a persuasion dialogue. The first argument Arg0 is called the subject of the dialogue.

We can think of justification of arguments in terms of a dialogue game between
two players P and C. P makes the first argument we are interested in and its
defenders and player C makes defeaters. This is shown in [2] for de.l.p. and in [3]
under another argumentation framework.

Sometimes, when dialoguing, agents find more than one answer to the last dia-
logue act in the sequence. However, as always, an agent must think about what to
say: only one argument will be selected to participate in the debate. The decision
made takes the actual dialogue in one specific direction, perhaps not the best for
that agent, as we’ll see in examples in the next sections. However, the fact of finding
more than one possible response in the debate means that, at some specific time,
the agent may retract older arguments to take the dialogue in a different course.

3.1 Retracting positions

When involved in a persuasion dialogue D as defined in 3.3, a DeLP-based agent
always introduces defeater arguments for the last argument shown by the opponent

in D. As stated before, the concept of persuasion dialogue is similar to the concept
of argumentation lines: the agents exchange arguments for and against some propo-
sition (the one supported by the subject in the dialogue). For the last argument
introduced in the dialogue, an agent A may find more than one defeater. However,
only one of them must be selected to be a part of the debate.

Definition 3.5 (Choice Point). Let PD = {(Arg0, A), ..., (Argk, B)} be a per-
suasion dialogue between two agents A and B. If A finds more than one defeater
argument for Argk, then (Argk, B) is called a choice point for A.

Choice points are very important because they denote the possibility for an agent
to present new defeaters for previous arguments in the dialogue. At every choice
point, the discussion can flow in different directions, depending on the selections
made by the corresponding agent.

Example 3.1. Let A and B be two agents and let D be a current dialogue between
A and B such that

D = {(Arg1, A), (Arg2, B)}

Agent A needs to defeat Arg2, and he finds two defeaters: Arg31 and Arg32. There-
fore, (Arg2, B) is a choice point for A. Due to an internal decision process, A
decides to present Arg31 as a defeater argument for Arg2.

D = {(Arg1, A), (Arg2, B), (Arg31, A)}

Agent B finds only one defeater argument for Arg31, say Arg4 and it shows that
argument in the dialogue.

D = {(Arg1, A), (Arg2, B), (Arg31, A), (Arg4, B)}

Now suppose agent A is not able to find any defeater for Arg4, so A is the loser in
the current state of the dialogue. However, A may start a new line of discussion
about Arg2, since A found more than one defeater for that argument. In this case, A
retracts Arg31 and proposes Arg32 as a new defeater for Arg2. The resulting dialogue
is

D = {(Arg1, A), (Arg2, B), (Arg32, A)}

At this point, if B is not able to find defeaters for Arg32, then A is the winner of
the dispute.

Every choice point is the subject of several possible dialogues. It is easy to see
that these steps in the inter-agent conversation resembles the process of constructing
a dialectical tree in the internal process of argumentation. The dialogue ends when
an agent is not able to introduce new arguments nor retract older ones.

The next simple algorithms shows how an agent manages the process of debate
with other agents. In order to do this, several data structures are constructed: a
shared stack D representing the dialogue, and private stacks Cp for every agent to
record choice points. We define an initialization procedure called Init-Dialogue an
a co-routine Dialogue for every agent.

Procedure Init-Dialogue

input: a literal L
Let AS = { 〈Ai, L〉: such that Ai is an argument for L}
Select one argument structure 〈Ak, L〉 from AS

Push 〈Ak, L〉 on D
Push [〈Ak, L〉, AS - 〈Ak, L〉] on Cp

Give the turn to the other agent.
end Init-Dialogue.

Co-routine Dialogue

modifies: D and Cp

Let B = top(D)
If B is not accepted (due to fallacies or other problem)

then refuse B (may be poping B from D)
else
Let AS = { 〈Ai, L〉 such that 〈Ai, L〉 is a defeater for B }
if AS is a singleton

then push the element of AS on D
elsif |AS| > 1

then
Select one 〈A,L〉 from AS

Push 〈A,L〉 on D
Push [〈Ak, L〉, AS - 〈Ak, L〉] on Cp

elsif A = ∅
if empty(Cp) then resign the dialogue
else /* backtrack to a choice point */

Pop [〈A,L〉, S] from Cp

Select one defeater C from S
Pop all arguments on 〈A,L〉 from D and replace 〈A,L〉 with C
If S − {C} is not empty
then Push [〈A,L〉, S - {C}] on Cp

Give the turn to the other agent.
end Co-Routine.

When an agent introduces an argument, then it pushes that argument onto the
stack D, the internal representation of the dialogue. Whenever he finds more than
one defeater, he records the corresponding choice point in Cp. This algorithm is used
every time the agent receives an argument from the other party in the dialogue. Note
that one agent could pop arguments from D that are in the Cp stack of the other
agent. So the selection of one choice point from Cp should consider this possibility.

Definition 3.6 (Winner of the dispute). An agent A wins the persuasion dia-
logue D against an agent B, if B can not produce a response to any dialogue act of
A in D.

That is, agent B is not able to continue the current dialogue, nor use choice
points. Simply put, agent B must resign.

It is important to note that the agent is free to use any choice point or not.
Each agent can engage any dialog exhausting all its choice points and also resign
the dialogue at any time. Of course, in this case the agent loses the dialogue.
The guidelines of how and when to take this kind of decisions depends on the
communication protocol that is decided to use. Several protocols can be used to
engage persuasion dialogues. A good example is explained in [5].

In the next section, we show a new form of constructing a defeater argument to
be presented in the dialogue. It is not the intention of this paper to deepen in the
subject but, at the moment, to indicate some guidelines of how this task may be
achieved.

4 Using the opponent’s knowledge

As stated before in this paper, we are interested in dialogues between two agents.
Persuasion dialogues for DeLP-based agents are basically handled as follows: an
agent A proposes an argument Arg1 to the agent B. Agent B now must present a
defeater argument for Arg1. In order to do this, B looks for all the possible coun-
terarguments of Arg1 in its knowledge base KBA, and starts a dialectical analysis
for all of them, trying to find a warranted defeater, say Arg2. The agent B then
proposes Arg2 as a defeater of Arg1, and it is now A’s turn to produce a defeater
for Arg2, and so on. This process is shown in [5] applied to a different framework.

What we propose in this section is a new technique to build defeater arguments
in a persuasion dialogue between two DeLP-based agents. It uses not only the
knowledge base of the agent, but also any information shown in the actual dialogue.
The next example depicts a situation in which a dialogue can be engaged using part
of opponent’s beliefs.

4.1 Example

In order to refute the last argument in the dialogue, it is necessary to find defeater
arguments. Usually, when an agent needs to construct an argument, this task is
based in two important items: its knowledge base and the actual state of the di-
alogue. The former is used to construct arguments, the latter is used to avoid
circular argumentation or contradiction as in [9]. When two agents are involved in
a dialogue, they exchange arguments reflecting part of each agent’s beliefs.

Example 4.1. Let A and B be two DeLP-based agents with the following knowledge
bases.

S1 = {r; w; v}
D1 = {(p —< q, w)(q —< r)(p —< v)}2

S2 = {t; r}
D2 = {(∼p —< s)(s —< t)(∼p —< q)}

In this case, agent A may construct the argument 〈Arg1, p〉 where

2Parentheses are used to distinguish one rule from another

Arg1 = {(p —< q, w)(q —< r)}

The agent B is able to respond with the defeater 〈Arg2,∼p〉 where

Arg2 = {(∼p —< s)(s —< t)}

The agent A now must construct a defeater for Arg2. A can not present Arg1 as
a defeater in order to avoid circular argumentation. However, A is able to produce
the argument 〈Arg3, p〉, a new defeater for Arg2 where

Arg3 = {p —< v}

Now, agent B can not construct new arguments according to its own knowledge base.
However, the defeasible rule q —< r presented by agent B will be useful to produce the
defeater argument Arg4 for Arg3 where

Arg4 = {(∼p —< q)(q —< r)}

If this is possible, then B is the winner of the dispute, because A is not able to
produce new defeaters for Arg4.

In this example, agent B has used one defeasible rule of A’s knowledge base to
make a refutation of A’s proposal. The new rules do not affect the internal knowl-
edge of the agent. They are used solely with a temporary objective. By observing
the opponent’s arguments, sometimes it is possible to produce an argument par-
tially based on external beliefs. This procedure allows the agent to continue with
the dialogue, avoiding imminent resignations. Even more, using opponent’s rules
minimizes the possibility of future refutations on that argument.

4.2 Selecting opponent’s rules

To borrow some rules from the opponent in order to produce new arguments in
the dialogue is not an easy task. The agent must be careful in not falling into
contradiction with itself. This is so because the new rules can interfere with the
beliefs of the agent. The next definition is the starting point to analyze the rules
that can be borrowed by an agent.

Definition 4.1. Let D be a persuasion dialogue between two DeLP-based agents.
The set

InfoD = {r : r ∈ Arg for all Arg ∈ D}

is the set of all the information concerning to the dialogue.

The set InfoD is a set of defeasible rules. A DeLP-based agent trying to refute
some argument Argi is able to use InfoD as an additional information source in
order to produce counterarguments for Argi. The agent may select one or more
rules of InfoD and then present a new argument in the dialogue. Note that in this
set there are rules of both dialoguing agents. We will focus in the scenario where an
agent A tries to use rules of InfoD −KBA in search of new future responses in the
debate.

Definition 4.2. A defeasible rule r is called a concordant rule for the set of rules
R if for any argument Arg that is a justified argument in R then Arg is also a
justified argument in R∪ {r}. A set S of defeasible rules is a concordant set for R
if for all argument Arg that is a justified argument in R then A is also a justified
argument in R∪ S.

In any concordant set S for R, then every rule r ∈ S is a concordant rule for
S ∪ R For a DeLP-based agent A in a dialogue D, it is interesting to construct
arguments from its knowledge base KBA and some concordant set D for KBA such
that D ⊆ InfoD −KBA.

Definition 4.3. A defeasible rule r is called a controversial rule for the set of rules
R if there exists an argument Arg that is a justified argument in R but not in
R ∪ {r}. A set S of defeasible rules is a controversial set for R if there exists an
argument Arg that is a justified argument in R but not in R∪ S.

An agent A cannot use a controversial rule to construct arguments for the dia-
logue, because that rule is in opposition to what A believes.

Example 4.2. Let A and B be two DeLP-based agents with the following knowledge
bases.

S1 = {r, s} , D1 = {(q —< r)(p —< q)(∼p —< w)}

S2 = {r} , D2 = {(∼p —< w)(w —< r)}

Agent A cannot use the rule w —< r from B’s knowledge base because it allows to build
the argument 〈{(∼p —< w)(w —< r)},∼p〉 which is a defeater of 〈{q —< r)(p —< q)}, p〉

Note that if we add a controversial rule to any concordant set then we not
necessarily get a controversial set.

Definition 4.4. A defeasible rule r1 is called a reinstating rule for the set of rules
R if for all argument Arg and a controversial rule r2 , Arg is a justified argument
in R∪ {r1, r2}.

That is, if we add r2 to the set R ∪ {r1} then the set of justified arguments in
the union is equal to the set of justified arguments in R.

Example 4.3. In example 4.2, if B has the rule p —< s as part of its knowledge
base, then A may use it together with the controversial rule w —< r, because it pro-
duces the argument 〈{p —< s}, p〉 which defeats 〈{(∼p —< w)(w —< r)},∼p〉 reinstating
〈{q —< r)(p —< q)}, p〉.

An agent A that is dialoguing with another agent B is able to select any rule
that takes part in some argument shown by B, only if that rule is not a controversial
rule for KBA. This is the case of the example in the previous section.

Of course, it’s desirable sometimes to borrow more than one rule from the oppo-
nent. This is a much more complex situation because the union of concordant sets
is not necessarily a concordant set. What is needed here in a dialogue D is to find

a concordant set for KBA in InfoD. However, there may exist several concordant
subsets {CS1, CS2, ..., CSk} in KBA−InfoD2 for KBA. The agent should not select
rules from one set CSi and later use rules of another concordant set CSj because of
the inherent risk of falling into contradiction: the union of these sets may not be a
concordant set for KBA.

Definition 4.5. A set S of defeasible rules is a maximal concordant set for R if
there not exists S ′ ⊇ S such that S ′ is a concordant set for R.

Maximal concordant sets group the rules that can be considered in the attempt
to construct new arguments. Again, it is possible to find more than one maximal
concordant set.

It is important to note that in this scenario there is not any process of belief
revision. The rules are borrowed only in order to produce an alternative refutation
to the last argument in the dialogue. It is only an alternative to engage the dialogue.
The agent is not forced to choose rules, but he must observe these properties and
only use concordant rules for its knowledge base.

5 General architecture

An agent A involved in a dialogue with another agent B needs to produce arguments
to refute the last argument of the opponent. In order to do this, A must use its
knowledge base KBA and it’s able to use some rules shown in the dialogue by agent
B. The general outline of any dialoguing DeLP-based agent is shown in Figure 1
where the arrows represent information flow.

Figure 1: Dialoguing agents

An agent may have an internal representation of the dialogue that is being carried
out, although in the figure they are drawn separated. The inputs of the argument
constructor are the local knowledge base and InfoD, that is, the set of rules shown
in the dialogue. This unit may produce an argument Arg, but in order to present
Arg in the debate, this argument must be analyzed with the information in the
knowledge base, through a complete dialectic process. Thus, only locally justified
arguments are introduced in the dialogue.

6 Conclusions and future work

A multi-agent system is made up of multiple interacting autonomous agents coop-
erating to achieve common goals, or competing for them. They establish dialogues
via some kind of agent-communication language, under some communication pro-
tocol. We think argumentation is suitable to model several kind of dialogues in
multi-agents systems. Two main contributions are presented in this paper. First,
we defined the concept of DeLP-based agents. These agents use Defeasible Logic
Programs [9, 8] as a knowledge representation language. We defined dialogues and
persuasion dialogues between this kind of agents and we presented an algorithm to
establish how this dialogue may be engaged. Second, a brief description of how an
agent could use opponent’s information for its own benefit is given. This is useful
to avoid imminent resignations and minimizes the possibility of refutations on the
arguments. In the future, we expect to define some procedure to select the best set
of concordant rules for the knowledge base of an agent, and analyze the role of the
argument comparison criteria of every agent in the dialogue.

Bibliograf́ıa

[1] Diego Mart́ınez y Alejandro Garćıa. Social interaction and argumentation in MAS.
Proceedings of IV WICC, 2001.

[2] Laura Cecchi, Guillermo Simari. Una semántica declarativa basada en juegos para la
programación en lógica rebatible básica. Proceedings of ICIE, 2000.

[3] Leila Amgoud, Simon Parsons and Nicolas Maudet. Arguments, dialogue and negoti-
ation Proceedings of the 14th European Conference on Artificial Intelligence, Berlin,
2000.

[4] Phan Minh Dung, On the Acceptability of Arguments and its Fundamental Role
in Nonmotonic reasoning and Logic Programming and N-persons games, IJCAI 93
852-857, 1993.

[5] Aleandro Stankevicius y Guillermo Simari A Framework for Multiagent Deliberation
Based on Dialectical Argumentation Proceedings of CACIC 2001.

[6] Douglas Walton. The New Dialectic: A Method for Evaluating an Argument used
Purpose in a Given Case. Proto Sociology: An International Journal of Interdisci-
plinary Research, Vol. 13, 1999. pp 70-91.

[7] G. Weiss. Multiagents Systems: A Modern Approach to Distributed Artificial Intelli-
gence. G. Weiss, editor. MIT Press. Cambridge, Massachussets. 1999.

[8] Alejandro J. Garćıa and Guillermo R. Simari. Defeasible Logic Programming: An
Argumentative Approach. Theory and Practice of Logic Programming, 2002. Accepted
for publication.

[9] Alejandro J. Garćıa. Defeasible Logic Programming: Definition, Operational Seman-
tics and Parallelism. PhD Thesis. Computer Science Department, Universidad Na-
cional del Sur, Bah́ıa Blanca, Argentina.

[10] Alejandro J. Garćıa and Guillermo R. Simari Parallel Defeasible Argumentation.
Journal of Computer Science and Technology Special Issue: Artificial Intelligence and
Evolutive Computation. Vol 1, No. 2, 45–57, 1999. http://journal.info.unlp.edu.ar/

