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Abstract

In recent years, research on techniques for developing controllers for autonomous robots has been
conducted. Evolutionary Algorithms are among the most popular tools used in this type of problem,
mostly for its capacity to adapt to the environment. Nevertheless, they are usually applied to
produce a controller that will not continue its adjustment after concluding this process. This causes
trouble to a controller when it is used in a dynamic environment. In this paper, the combination of a
state-of-the-art modular neuro-evolution algorithm with a specific evolutionary algorithm is
proposed. The former method is used to generate the controller while the later is used to adjust it
during its operation. As a result, an adaptable controller based on a minimal topology neural
network is obtained. The method proposed was tested in a goal-reach problem with satisfying
results. Finally, conclusions are presented.
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Resumen

En los dltimos afios se han realizado diversas investigaciones en técnicas para el desarrollo de
controladores para robots auténomos. Los Algoritmos Evolutivos son una de las herramientas mas
utilizadas en este tipo de problemas por su capacidad de adaptacion al entorno. Sin embargo, en su
mayoria, la aplicacién se concentra en la fase de generacién del controlador no permitiendo realizar
adaptaciones posteriormente. Esto perjudica la aplicacién del controlador en ambientes dindmicos.
Este articulo propone extender la evolucién del controlador a lo largo de su vida dtil combinando un
método basado en evolucién de mdédulos neuronales con un algoritmo evolutivo especifico. El
primer método es utilizado para producir los controladores mientras que el segundo ajusta al
controlador durante su funcionamiento. Como resultado, se obtiene un controlador adaptable en la
fase de ejecucién basado en una red neuronal de arquitectura minima. La propuesta de este articulo
fue medida en la resolucién de problemas del tipo alcance de objetivos con resultados satisfactorios.
Finalmente, se exponen las conclusiones.

Palabras Claves: Evolucion de Médulos Neuronales, Redes Neuronales, Algoritmos Evolutivos.
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1. Introduction

Evolutionary Robotics (ER) is a methodology that uses Evolutionary Algorithms (EA) to develop
controllers for autonomous robots, usually in the form of Artificial Neural Networks (ANN).
Artificial Neural Networks are chosen partly because of their ability to learn and adapt to the
environment and partly because they are easily represented in an Evolutionary Algorithm. [11].

Although the development of controllers using this kind of strategies is very useful, it is rarely
applied to the adjustment of the controller after it enters in operation. When acting in a dynamic
environment, like the real world for example, an autonomous robot must adapt itself to the changing
conditions or it will not be able to correctly perform its tasks.

In this paper, the combination of a state-of-the-art modular neuro-evolution algorithm with a
specific evolutionary algorithm is proposed. The former method is used to generate controllers
while the later is used to adjust them during their operation. As a result, an adaptable controller
based on a minimal topology neural network is obtained.

This task is divided into two stages: First, a population of controllers is produced using information
from the environment. Then, a small subset of that population is selected and submitted to a second
Evolutionary Algorithm inside the robot, allowing it to adjust itself to changes in the environment.

Controllers produced by the first stage consist of a combination of different neural modules that are
simpler than the controller they form part of and were evolved previously and independently. This
seeks to minimize the time required to obtain an acceptable performance. [5].

If the environment in which the autonomous robot acts does not suffer any changes, the best
controller generated by the first stage will be good enough to solve the problem because they have
precisely evolved to do it. However, in the real world changes occur all the time: light conditions
vary, obstacles are not always in the same place or the target to reach is a different one. Owing to it,
the controller must do some adjustments when it is in operation. This is the reason for the second
stage: to adapt the autonomous robot interaction with its environment. To do so, a small population
formed by the best three controllers found in the first stage is evolved using another Evolutionary
Algorithm designed to run inside the robot.

This paper is organized as follows. Section 2 describes the evolutionary algorithm used to produce
the initial controllers. Section 3 introduces how the continuous adaptation of the robot to its
changing environment is achieved. Section 4 shows the results obtained. Finally, Section 5 presents
our conclusions.

2. First Stage Evolutionary Algorithm

In order to solve complex problems, different approaches that divide the original problem into
simpler ones have been proposed. Even though the existing methods vary in the way they acquire
knowledge, most of them adopt a strategy based on the evolution and combination of different
modules.

In this direction, methods that combine Incremental Evolution and NeuroEvolution have been
developed to offer adaptive mechanisms that minimize the necessary knowledge needed to obtain a
working controller, giving rise to Neural Networks composed by several other networks [1]. As the
controller is composed by several modules, it is important to define which module should be active
at each time-step [13]. There exist different alternatives: from the use of an ad-hoc designed
decision tree [4] to mechanisms that embed the selection into the controller [2].
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If each of these simpler tasks is successfully and independently solved, it should be possible to
combine these solutions to complete the complex task. On this assumption, an extension to the
NeuroEvolution of Augmenting Topologies (NEAT) method which incorporates the concept of
modules is used.

It is assumed that there exists a set of Neural Networks in which each of them, called a module, is
capable of solving one of the simple tasks. The objective of this stage is to produce a Unified
Neural Network constituted by the combination of all of these modules and capable of solving the
complex task.

A brief description of the original NEAT method alongside the proposed extension will be presented
in the following subsections. For more details, refer to [5].

2.1. Standard NEAT

The standard NEAT implementation has been shown to be a highly effective NE method in several
domains [8]. It addresses three problems commonly found in ANN systems: 1) how to crossover
topologically disparate chromosomes, 2) how to protect new topological innovation, and 3) how to
keep topologies as simple as possible throughout evolution [9]. This is accomplished through
historical markings, speciation, and incremental complexification.

First, each genome in NEAT includes a list of connection genes, each of which refers to two node
genes that are connected. In order to perform a crossover, the system must be able to tell which
genes match up between any two individuals in the population. For this reason, NEAT keeps track
of the historical origin of every gene. Two genes that have the same historical origin represent the
same structure (although possibly with different weights), since they were both derived from the
same ancestral gene from some point in the past. Tracking the historical origins requires very little
computation. Whenever a new gene appears (through structural mutation), an innovation number is
incremented and assigned to that gene. The innovation numbers thus represent a chronology of
every gene in the system, and allow the crossover of diverse networks without extensive topological
analysis. With historical markings the problem of having to match different topologies [7] is
avoided.

Second, NEAT networks are speciated so that individuals compete primarily within their own niche.
In this way, topological innovations are given time to optimize their structure before they have to
compete with the entire population. Also, networks share the fitness of their species [3], to prevent
one species from taking over the entire population.

Third, NEAT networks are built up from a minimal configuration and complexified incrementally to
ensure that solutions of minimal complexity are searched first. This procedure has two advantages:
First, it minimizes topology bloat, and second, it improves the efficiency of evolution by
complexifying the search space only as needed. For more details about NEAT, see Stanley and
Miikkulainen [9].

2.2. NEAT with Modules

The incorporation of neural modules to the NEAT method implies carrying out several
modifications. The first one is related to the neural networks that compose the initial population. In
the original proposal, it is assumed that there is not enough knowledge of the problem to specify the
topology of those networks. In addition, starting with minimal networks allows the method to
explore simpler solutions first. In this extension, networks solving different parts of the problem are
known and it is possible to fill the initial population with variations of a unified neural network.
This network is built up from merging each of the available modules within a same structure.
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Since the tasks solved by each module are part of a single complex tasks, it is expected that more
than one module will use the same inputs or produce the same output. The unified neural network
will have the union of the inputs of each module as input. The modules are connected to those
inputs without undergoing any modification. The unified network outputs depend on the task to
solve, and for this reason the network will have as many output neurons as the problem needs.

More than one module may generate the same output of the network. It is also possible that
different modules produce opposite stimuli for similar inputs, since the tasks solved by each of them
may be contradictory. To allow the evolution to adjust the contribution of each module to the
unified network outputs, rewarding expected responses and making opposite stimuli compatible,
each module output neurons become hidden neurons. To each of these converted neurons, a new
connection is added that links this neuron to the output neuron that produces the response which
was originally yielded by former neuron. The connection is established with a 1.0 weight, so the
original stimulus reaches the output neuron without being affected. This new connection is not
considered as part of any module, but belongs to a unified neural network. Figure 1 shows the
combination process of two modules to produce a unified neural network.

During the building process of the unified network, each connection and neuron integrated into the
network is marked with an identifier associated with the module that it belongs to. This is done to
simplify the tracking of the modules that compose each network once the evolution has started.

Another proposed modification to NEAT is the way in which genetic operators are applied to
produce new genomes. Originally, the mutation operator was in charge of generating innovations,
perturbing weights, establishing new connections among existing neurons, or inserting a new
neuron after dividing an existing connection.

In this paper, the mutation operator scope has been restricted. It is only possible to modify the
weight of a connection, if it did not originally belong to any of the modules making up the network
undergoing mutation. In the same way, it is not allowed to establish new connections among
neurons of the same original module, being only valid to do so among neurons of different modules.
Eventually, it is only possible to add a neuron if an existing connection is previously divided,
which, once again, should not be a connection contributed by any of the modules. These restrictions
force the evolutionary method to generate the necessary structure to allow the original modules to
interact so that they can reach the solution of the posed complex task together.

The rest of the evolving method is not different from standard NEAT; historical markings are kept
in the genomes of the population, the original crossover operator is used, and the population is
divided into species according to a compatibility criterion, dividing the fitness of each member
proportionally to the number of genomes belonging to the same niche.

The reason for which the topology and connection weights of each module cannot be changed is
due to the fact that, since these are fixed, the evolutionary algorithm will search in a more reduced
space than if it were to do it over an entirely mutable network. This should favor a faster
convergence towards better solutions.

It is worth noting that bigger structures could be generated compared with the ones that could be
obtained if started from a minimum topology. However, when the difficulty of the task increases,
the complexity of the neural network proportionally increases, and generating a structure that acts
as an interface between the modules is simpler than solving the whole problem.
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3. Second Stage Evolutionary Algorithm

The second stage of the evolution takes place on the autonomous robot and it should run for an
indefinite period as long as the controller is operational. On this stage, a small population consisting
of three controllers generated in the first stage is maintained. The selection of the controllers that
belong to the initial population may be accomplished in several ways: The three best controllers of
the entire population of the first stage can be chosen to integrate the new population. Alternately, the
fittest controller of each of the three most performing species may be selected. In this work, the first
strategy was adopted. The selected controllers provide the genetic pool that will allow the second
stage algorithm to adapt the robot behavior when changes in its environment occur.

The Evolutionary Algorithm running on this stage works by performing small modifications in the
controllers, causing variations in its behavior. To do so, each controller in the current population is
evaluated and a new controller is produced using the two best controllers found. This new controller
replaces the worst one in the current population. This guaranties that the most performing controller
will never be lost.

An Extended Linear Recombination operator applied to the best controllers found is used to

produce the new controller. This operator was selected based on the results obtained in [10]. Let P1

and P2 be the selected controllers to be used in the recombination and O the new controller obtained

by applying the Extended Linear Recombination operator to them. Equation 1 shows how O is

generated.
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Sub-index i€ [1,N ] represents each of the network’s weights and N, the number of weights. a
defines the step size to use, and its value is computed as 2™. k determines the precision of such
step, taking values between 4 and 20 as suggested in [6]. a€ [0,1] is a uniformly distributed random
number, 7, € [— 0.5,0.5] is a uniformly distributed random number and it represents the maximum
variation that can appear between parent and offspring in the i-th weight. s, is —1 or +1, random
uniform. s is the direction of the step.

Inside this possible area the offspring are not uniform at random distributed. The probability of
creating an offspring near the parents is high. Only with low probability offspring are created far
away from the parents. For more details on this operator, see [6].

4. Results and Discussion

This work proposal can be used to produce a controller based on Evolutionary Artificial Neural
Networks that is capable of guiding a Khepera II robot to reach a certain target while avoiding
obstacles. The controller must also be able to adapt to changes in its environment when it enters in
operation.

As only the robot proximity and light sensors were used, the target that the robot must reach is
actually a light source located at random places inside a maze. The goal of the robot is to navigate
freely without crashing until it approaches a bright zone where it will try to stay.

The initial population of controllers was generated according to the methodology explained in
section 2: Two independently produced modules were combined: one of them gives the robot the
capacity to avoid obstacles while the other seeks for the nearest light source. Each of these modules
contains a Recurrent Artificial Neural Network generated using conventional NEAT as described in
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section 2.1. Figure 1 shows the network obtained from merging the two modules. Both modules use
the same input data from the proximity sensors. The outputs of each module were combined using
two newly added neurons that commands the motors. This Unified Neural Network has 16 input
neurons, 8 from each one of the proximity sensors and 8 from each one of the light sensors, and has
2 output neurons, each one connected to each of the motors.
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Figure 1

Slightly mutated copies of the original Unified Neural Network genome were used to form the
initial population for the first stage. This population was evolved using NEAT with modules in the
manner explained in section 2.2. In this stage, the fitness of a controller was computed according to
its capacity to combine the original modules, as expressed by equation 2.

fitness = coef,,, X Fit ,, + coef,,, X Fit,, (2)

obs
In equation 2, Fitop, and Fit;;, are the fitness of each controller measured according to the fitness
functions of the obstacle evasion problem and the light reaching problem, respectively. coef,,s; and
coefj;, are constants used to regulate the importance of each behavior in the resultant fitness value.
In this work, 1 and 1.3 were respectively used to put more emphasis on the light reaching part.

Figure 2 depicts the fittest Unified Neural Network obtained as a result of the evolutionary process.

The best three performing controllers produced by the first stage were selected to constitute the
initial population of the second stage algorithm. These controllers were continuously evolved as
long as the robot was operative. A reduced population size was chosen to minimize the
computational time required to evaluate the fitness of the population. Each of the three controllers
was independently evaluated from the others when controlling the real robot.

After the evaluation of the population was completed, the controllers were sorted according to their
fitness. The best two controllers were selected to produce a new one using the Extended Linear
Recombination operator. This operator takes two parents and produces an offspring similar to the
best parent, but changed in direction of the other parent. The newly produced controller replaced the
worst controller of the population.
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The frequency in which this process has to be done depends on how much the environment
changes. If there are no changes, it may even not be necessary to do it at all. Nevertheless, it is
advisable to run the algorithm in the first generations to allow the robot to adapt to the differences
in the simulator compared to the real world.

NPUTS
{Proxizity smmwrs

Figure 2

Tests to analyze the ability of the robot to adapt to changes in the environmental conditions were
conducted. Figure 3 shows the mean fitness of two different robots generation by generation: one
using the second stage algorithm (solid line) and the other not using it (dashed line). In the 60™
generation, a sudden change in the environmental conditions was introduced and maintained until
the 225" generation.
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Figure 3: Mean fitness of the adaptable (solid line) and non-adaptable (dashed line) robots.

In the first 60 generations, an improvement in the fitness of the adaptable controller can be noticed
compared to the non-adaptable controller. Fitness variations on both lines are due to different
conditions in which the controllers were evaluated. This explains why the non-adaptable controller
varies its fitness even if the controller does not change.
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After the environment changed in generation 60, a drop in the fitness value of both controllers can
be seen. This is because none of the controllers were appropriated for the new environmental
conditions. However, as the second stage evolutionary algorithm of the adaptable robot continued to
adjust its controllers, an improvement in its fitness value can be noticed. After generation 200, its
fitness is almost as good as it was in the previous environment. On the other hand, the non-
adaptable robot did not improve at all.

a) b) c) d) e) f)

Figure 4: Performance of two adaptable robots in different periods: a) and d) in the original environment, b) and e)
immediately after the changes, and c) and f) when the adjustment occurred.

5. Conclusions

Evolutionary Algorithms, though capable of providing excellent results in several areas, have one
unfavorable characteristic: the adaptation process may be slow and costly in time for some
problems. Because of that, it is rarely employed after an acceptable solution is found.

This paper applies a strategy that reduces the required time to find a suitable controller, taking
advantage of the combination of simple neural modules, based on recurrent neural networks
generated independently of the problem to solve. Furthermore, a second strategy allows the
autonomous robot to continue its adaptation to changes in the environment after entering in
operation.

The continuous evolution of a controller on a Khepera II robot capable of reaching a certain target
while avoiding obstacles has proved to be successfully in adapting to changes in its environment.
Adaptation is a crucial task for an autonomous robot and it may be the difference between a
successful controller and a failed one.
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