
Reflective Implementation of an Object Recovery Design Pattern

Acauan Pereira Fernandes
Universidade da Região da Campanha

Centro de Ciências da Economia e Informática
Av. General Osório 2289 – Bagé – RS – Brasil – 96400-101

+55 (53) 242-8244
acauan@urcamp.tche.br

Maria Lúcia Blanck Lisbôa
Universidade Federal do Rio Grande do Sul - Instituto de Informática

Av. Bento Gonçalves, 9500 - Campus do Vale - Bloco IV
Porto Alegre - RS - Brasil

CEP 91501-970 Caixa Postal: 15064
+55 (51) 3316-6159 Fax: +55 (51) 3316-7308

llisboa@inf.ufrgs.br

Abstract

Patterns are powerful tools to document software problems and their solutions, as well as when and
how to use them. They can help improve software reuse. The implementation of non functional
requirements, such as atomicity, can benefit from this approach. This paper discusses and shows
how computational reflection features can be employed within such context, increasing reuse of the
software produced this way. It also shows how a reflective implementation of a software pattern
created to introduce customizable recovery to objects can use all these concepts in a way to get the
best from each one of them. Benefits from such reflective implementation are discussed, also
considering other aspects such as flexibility, simplicity, dependability and development speed. It
gathers concepts from different paradigms as software patterns, computational reflection and the
object oriented model in order to achieve such characteristics.

Key words: software patterns, fault-tolerance, atomicity, computational reflection, data recovery.

1 Introduction

The capacity of defining reusable solutions for recurrent problems makes software development
faster and more dependable. Within such context, software patterns have been used in a way to supply
answers to that search [RIE 96].

Patterns help to reduce software complexity by clearly describing a software solution in terms of
structure, dynamic behavior and context. Similar to what happens for any intrinsically complex
systems, the definition of clean interfaces among components contributes for their independent
development and reuse. In the case of software fault-tolerance domain, patterns can be used to present a
collection of relatively independent solutions to common non-functional properties problems such as
atomic actions, recovery points, replication policies and exceptions [LIS 98].

mailto:acauan@urcamp.tche.br
mailto:llisboa@inf.ufrgs.br

Since both computational reflection and patterns have important features to offer when it comes
to software reuse, they might be used together. Patterns show a reusable solution, whereas reflection
can turn it into a reusable implementation. This separation of aspects means to discharge the developer
from having to deal with non functional requirements.

This paper shows how the implementation of a recovery pattern suggested by Silva [SIL 96] can
be done using computational reflection concepts in order to make it easier and more adaptable.

1 . 1 T h e m e t a - l e v e l a p p r o a c h f o r f a u l t - t o l e r a n c e

The key concept in the design of software using meta-level architecture style is the separation of
the system in two tiered layers: a meta-level and a base level. Those layers have different but related
responsibilities thus representing separate aspects of the same software system. The base level
encompasses all the components that implement the functionalities of an application as defined on its
functional requirements. The meta-level provides a self-representation of the software to give it
knowledge of its own structure and behavior [BUS 96]. Computational reflection [MAE 87] provides
this basis for meta-level architectures. By using computational reflection one can easily prospect
information about base-level classes during execution, such as their fields and current values, as well as
alter the latter. All these features can be widely used to implement very adaptable and reusable
applications.

Software fault-tolerance encompasses all techniques and programming languages mechanisms
intended to support the development of high reliability software. We can consider the fault-tolerance
area a specific domain of knowledge composed by well-defined techniques used to guarantee the
reliability of applications built over other domains. This view of fault-tolerance makes it ideal to
promote separation of aspects [KIC 97] by means of reflection-based implementation techniques.

The relationships among the base-level and the meta-level components are established by a MOP
- Metaobject Protocol. The MOP provides a high level interface to the programming language
implementation in order to reveal to the program information normally hidden by the compiler and/or
run-time environment [LIS 98]. As a consequence, a programmer can develop language extensions,
adapt component behavior and even make non-permanent changes into the system. A metaobject holds
static and dynamic information about the base-level objects. Figure 1 depicts some static (e.g. class and
type) and dynamic information (e.g. values) reified as data within the metaobject.

���
���
���method 1��

��A
B

object X: class
data A: type, value
method 1: identifier, parameters
method 2: identifier, parameters

object X��
��
��

reification

method 3
method 2

metaobject

Figure 1- Meta-information

The implementation shown in this paper uses a meta-object protocol, which allows Java
programming language to support computational reflection using message interception. This protocol
was developed by [OLI 98] for Java and is called Guaraná. It has been used along with Java native
reflection API because it enhances the latter features.

1 . 2 O b j e c t R e c o v e r y a n d A t o m i c i t y

Fault tolerance is an important example of non-functional requirement that can benefit from this
approach. Among the concepts related to fault tolerance, there is one we have particular interest, which
is atomicity. This property must guarantee data consistency even in the presence of failures. Two basic
factors must be a concern of the sofware system: concurrency accesses control and state recovery [JAL
95]. The possibility of an object being accessed concurrently by any number of external calls brings the
need of managing them to avoid that such situation leads that object to inconsistent states. The state
recovery deals with policies to keep data consistency even after any kind of failure. Any data which
was incompletely changed by an application at the moment of a failure ocurrence should be returned to
its previous state, or else the operations that led it to such state should be finished until their end [BER
87].

Let’s consider an S object with a t1 interface. Messages sent to one of its methods may trigger the
execution of a number of operations that lead the object from its initial state (is) to a final state (fs). The
object state is the current set of its attributes’ values. If during the execution of such operations there is
a failure, the message sender (the object’s client) can be notified by an exception generated by S,
resulting in the end of the method execution in S. However, there is no guarantee that there have been
no changes in the object’s state during the method execution. Therefore, granting an object atomicity
consists of assuring that its previous state (is) is preserved as the current state if the transition is -> fs is
not successfully completed, or else the unsuccessful operations are redone in order to reach the object’s
final state (fs). Recovery deals with policies to achieve such goals.

Figure 2 – Object state transition

Dealing with state restoration can be as simple as making a copy of the original object or as
complex as recovery cache memory implemented in hardware [RUB 94]. Thus, the problem of state
restoration needs special solutions and this concern suggests the existence of another opportunity to
create design patterns for different contexts of state restoration [LIS 98].

1 . 3 S o f t w a r e P a t t e r n s a n d C o m p u t a t i o n a l R e f l e c t i o n

A software pattern is a three-part rule which expresses a relationship between a context, a certain
system of forces that occur recurrently in such context, and a software configuration that allows these
forces to resolve their conflicts. Patterns can be classified according to their level of abstraction [GAB
96]. There may be conceptual patterns, design patterns and implementation patterns. They help create

applications which face problems that have already been solved somewhere else. We can reuse the
concept, the abstract solution or the implementation.

Reflection can be seen as a pattern [BED 98]. This pattern splits the application in two parts
(meta-level, base level) linked in a transparent way by using interception mechanisms. Messages sent
to the base level objects linked to meta-objects are intercepted. According to this pattern, it should be
possible to design a system focusing only in its functional requirements, integrating the non functional
requirements later on, without needing to alter its original structure.

Anyway, the point is reuse; more specifically, we claim to reuse the implemenation in a
transparent manner.

2 Abstract and Meta-class Implementation

2 . 1 T h e b a s e p a t t e r n

The Customizable Object Recovery Pattern [SIL 96] is a design pattern that allows an application
object to supply its own recovery. It also allows the implementer to chose among different recovery
policies, according to the current context of the application. The authors suggest an implementation
based on abstract classes structured as depicted on Figure 3.

Figure 3 - The Customizable Object Recovery Pattern [SIL 96]

If we chose abstract classes to implement the pattern we would leave the developer the task of
specializing those abstract classes in order to provide a concrete implementattion by means of concrete
classes tailored to the context of the application. We extend this pattern to deal with interception
mechanisms in order to achieve a more transparent link between the application and the state recovery
library. Reflective implementations of these policies are much more flexible since they demand no
previous structural knowledge.

2 . 2 A R e f l e c t i v e I m p l e m e n t a t i o n

In order to demonstrate how objects can benefit from atomicity addition in a simple and quick
way, just by passing few parameters, a meta-class - called MC class - was developed. Such meta-class
implements generic services to provide state recovery to any application object and it has a few
methods which serve as interface between them and the base level objects. It is an example of a generic
meta-class that can be used by a developer in many different ways and contexts. Its goal is to show the
flexibility provided by the use of computational reflection in patterns implementations.

The meta-object MC intercepts calls from clients to the Recoverable Object (its base object) as
shown at Figure 4. Then MC object makes introspection into the object and save the object current state
for an eventual posterior recovery. To increase flexibility and reduce the overhead caused by reflection,
just method invocations are intercepted. This means that all of the operations called from inside method
are not intercepted.

Client

MC
Object

Recoverable
Object

message

interception introspection

Figure 4 - Meta-class implementation

The reflective implementation corresponding to Customizable Object Recovery Pattern (see
Figure 3) uses the same suggested class but focus on transparency, as follows:
• Recoverable Interface: Intercepts messages to the Recoverable Object, encapsulating it. Its effects

are recoverable. This job is done by the MC meta-class. This meta-class may also be a link between
the base level object (Recoverable Object) and the different recovery policies, implemented in the
pattern as Recover subclasses, in multiple meta-configurations.

• Recoverable Object: the object that contains the data which will be dealt with and may need to be
restored. It corresponds to the base level object which implements recovery.

• Recover: object independent part of the recovery policy. It holds the Prepare, Redo and Undo
operations. Particular policies may be implementent by the use of subclasses. Corresponding
methods are implemented in the MC meta-class and are used in its Handle method. Particular
policies are easily implemented just by adding or excluding new meta-classes on multiple meta-
configurations. Reflective implementations substitute inheritance mechanisms by dynamically
adding and excluding new meta-classes. It turns the reflective implementation by far more flexible
and reusable, since new meta-classes are added to or excluded from the meta-configuration without
requiring it to be previously aware of their structure or even their existence. The new classes do not
need to be declared as Recover subclasses.

• Recovery Point: object-specific recovery policy. It may need to know the Recovery Object’s
internal data. The use of computational reflection does not require any knowledge of any data
structure, because they can all be gotten during run time. Thus, any class can be used as a
Recoverable Object, since there is no specific code attached to any specific class. It makes this
approach much more reusable.

The Redo and Undo operations implemented by the Recovery Point object may use different
policies. Such policies depend on the operations’ targets. If operations are done on copies of the
objects, then the Redo is accomplished by updating them, otherwise they are already updated. Undo
operations follow the same pattern: in the first case, the object did not suffer their effects and nothing is
necessary to be done. However, if operations were done directly on the objects, then they must be
restored.

Some of the MC meta-class attributes are used to help implement the different recovery policies
mentioned above. It supports all of them without requiring any change. For instance, if operations are
executed directly on the objects, then the Object “copy” attribute can be used. If the adopted policy
changes object copies instead of the objects themselves, then the vector “values” is used jointly with
the Field array “fields” to contain copies of the object current or previous values. New meta-classes
with different policies are added to the meta-configuration and use these attributes accordingly to their
needs. Yet, reuse is increased by the total absence of previous knowledge request.

2.2.1 The MC meta-class architecture
The MC meta-class uses many reflective features to get important information about its base

level object and to decide about data reification. Among its atributes there are a reference to the base
level object, an array containing this object fields, a vector with their values and a variable that is used
as a flag to activate reification. It also has a hashtable and an OperationFactory instance. This class is
responsable for generating meta-level operations in the Guaraná meta-object protocol. :. A MC object
shall be instantiated using a parameterized constructor as follows:

public MC (Object ob_) {

copy = ob_;

Class c = copy.getClass();

fields = c.getDeclaredFields();

for (int i = 0; i<fields.length; i++)

try{

values.addElement(fields[i].get(copy));

 }catch (IllegalAccessException e) {}

Guarana.reconfigure(copy,null,this);

}

The base level object should be sent as a parameter to the meta-class constructor:

Class c = new Class();
MC mc = new MC(c);

The MC constructor saves a reference to the base level object, gets information about its class,
amount and types of fields and saves its initial state in the meta-level. Then, it associates this object to
itself, starting message interception. A first advantage of this mechanism is that it is totally transparent
to the base level object, and it can be reused with instances of any other class. It neither depends on the
class structure nor needs to know it in advance.

2.2.2 The MC interface
The definition of the meta-class in charge of intercepting messages to a base level object in the

application, saving and restoring its state has some atributes needed to achieve such goal.

public class MC extends MetaObject {

private Object copy; // a reference to the base level object

private Vector values = new Vector(); // stores reified values of the base level object

private Field[] fields; // stores the base level object fields

private Hashtable pending = new Hashtable(); // used to avoid infinite recursion

private OperationFactory opf; // creates operations in the meta-level

private int on_off = 0; // flag .

}

2.2.3 State saving
Reification is the key to object state inspection and saving. The methods developed for this

purpose are:
1. Reify: it reifies the base level object, creating read operations in the meta-level. Such operations are

created by an instance of an OperationFactory class.

Operation op = opf.read(fields[i]);
pending.put(op,op);
Object value = op.perform().getObjectValue();
pending.remove(op);

These operations created in the meta-level are stored in a hashtable to avoid infinite recursion,
one of the problems that are faced when dealing with message interception.
2. Save: it restores the values stored in the meta-level back into the base level object. It also uses an

instance of OperationFactory to create writing operations.

Operation op =opf.write(fields[i],values.elementAt(i));
pending.put(op,op);
Object value = op.perform();
pending.remove(op);

Just like in the previous method, operations created in the meta-level are stored in a hashtable to
avoid infinite recursion. This is achieved by including the operation in the hashtable immediately

before executing it, and removing it right after it is done. The test shown in the Handle method below
does the rest.

The object state is saved just once before the method execution. The isMethodInvocation function
from the Guaraná MOP used in the handle method in the meta-level alllows one to realize such
situation. The meta-class also supplies an interface to its base level object which is formed by four
methods
1. Permanent: unables interceptions for recording, keeping the last saved version of the base level

object in the meta level.
2. Temporary: enables interceptions for recording, so that the object current state can be saved in the

meta-object at every call to any of its methods.
3. Restore: restores the latest object state saved in the meta-level back into the base level object.
4. Checkpoint: reifies the base level object atributes and then unables posterior interceptions for

recording.
The meta-object initially explores the base level object in order to discover all of its field names

and types, as well as their current values, and records all this information in the meta-level. It also has a
reference to the base level object itself, for posterior accesses. From this moment on, its behaviour can
be controlled accordingly to the developer’s needs, employing the methods supplied by the meta-object
interface.

The following code shows how to use this interface. The “Permanent” method unables
interceptions for recordings, making all changes in the object permanent. When the “Checkpoint”
method is called, the current state of the object is saved in the meta-level and posterior recordings are
unabled. Operations executed on the base level object from this point on can be undone by the
“Restore” method ou committed by the “Checkpoint” method. The “Temporary” method enables
interception again e restarts saving the base level object current states.

mc.permanent();
... calls for base level object methods...
mc.checkpoint();
... calls for base level object methods...
mc.restore(); or mc.checkpoint();

3. Permanent, temporary, restore e checkpoint: use the previous methods and the flag variable.
The capacity of creating operations in the meta-level gives computational reflection a brand new

range of possibilities. Not only can operations be intercepted, but they can also be created according to
the context. The MC meta-class creates reading and writing operations and execute them in the meta-
level, without the base level object’s knowledge.

4. Handle: this method is called by the meta-object protocol kernel whenever a call is sent to the base
level object. Infinite recursion between both levels is caused by an operation in the meta-level that
accesses a base level object associated to a meta-object. This causes a new interception and so
forth. In order to avoid such problem, this meta-class employes a inclusion/exclusion mechanism
and a hashtable, which is used to test whether the operation is a new one or just an old operation
generating recursion, as shown in the following test sample code.

if (pending.containsKey(op))
return null;

If the operation is already stored in the hashtable, recursion is avoided by the “return null”
instruction, which sends the execution flow back to the base level.

As mentioned before, in order to decrease overhead, just invocations to methods are treated. That
avoids that each instruction in the method generates a new data recording in the meta-level. This
recording is done just once, in the beginning of this process.

if (op.isMethodInvocation() && on_off == 0)
return null; //dos not reify

if (op.isMethodInvocation() && on_ff == 1)
reify(); //reifies

 if (op.isMethodInvocation() && on_off == 2)
save(); //saves

 if (op.isMethodInvocation() && on_off == 3)
 {

reify(); //reifies once and turns it off
on_off = 0;

 }

2 . 3 M e t a - c l a s s e s c o m p o s i t i o n

The meta-class MC shows how to implement atomicity in a low level of abstraction using
computational reflection. It achieves reuse and transparency decreasing the overhead that may be
introduced by reflection. This abstraction level also brings more flexibility, because it can be employed
in many different situations. From this kind of implementation, one can get to building frameworks
with decision mechanisms to cover a wider range of sceneries to support atomicity.

We can get meta-classes together in a single configuration by using Composer and
SequentialComposer meta-classes provided by Guaraná meta-object protocol (figure 5). They both
allow method delegation and can connect a single base level object to more than one meta-object or
vice-versa, providing the former with features from the latter ones. Such delegation allows dynamic
reconfiguration, which is not achieved only by the use of inheritance mechanisms[SIL 96].

Figure 5 - Multiple meta-configurations

Each one of these meta-objects may be responsable for implementing a non functional
requirement or an alternative policy, so that all a developer needs to do is connect his application base
level objects to the meta-objects with the features he wants them to have. Some meta-object may be
responsable for selecting the most appropriate policy for recovering or concurrency control, for
instance, making the application more flexible and able to customize itself dynamically according to
the context during its execution. All this can be done without the need of any extra coding and can be
used with any class, even if it is not previously known, because the meta-objects use reflective features
to determine each new class structure..

Non functional requirements, such as fault tolerance, distributed processing, data persistence and
concurrency control, can be added to the application in a transparent and easy way, using the
techniques listed in this paper, achieving a high degree of not only transparency, but also reuse and
productivity, in a safer and simpler way.

3 Conclusions

Software patterns have been used as powerful tools to document experiences obtained when
dealing with software problems. They not only spread a solution already tested and approved in a
certain context, but also show when and how to use it.

Implementations based on established patterns and computational reflection allow not only faster
application development without risking their dependability, but also increase the reuse of these
solutions. Non functional requirements, such as atomicity, are present in practically any kind of
application, so they are natural candidates to be implemented in a reusable way. Computational
reflection has been used in the development of this kind of application requirements for its great
number of features that work with this purpose. Implementing software patterns using reflection is,
therefore, an easy noticing association when it comes to reusing software.

Reflective techniques can increase the usefulness of the solutions proposed by patterns, especially
those which deal with non functional requirements or other areas where reflection has achieved
success. The reflective implementation of this recovery pattern shows how, also making use of
characteristics intrinsic to the object oriented model, computational reflection and software patterns can
work together in the definition and solution of these kinds of problems.

The MC meta-class here described allows an object to manage its own state recovery, releasing
the developer from worrying about this requirement in his application. Objects of any class can benefit
from such feature, because computational reflectional mechanisms are used to implement a generic
meta-class. Recovery can be activated an deactivated at any moment, according to the application
demands. Besides that, functional and non functional requirements are set apart, which contributes to
increase reuse and development speed. The developer’s task is simplified and he can spend his time
dealing only with problems concerning the application targets themselves.

The MC meta-class is to be included in a framework to help develop fault-tolerant applications
trying to get the best features from many different paradigms, in order to provide reuse, transparency,
dependability and flexibility to fault-tolerant software development, as well as speeding this processs
up, without increasing its complexity or adaptability. Composer meta-classes with decision
mechanisms can be responsable for connecting different aspects of fault-tolerance, such as concurrency
control, data recovery, data persistence, etc, encapsulated in meta-classes, to any objects created by the
application developer, providing them all these characteristics as simply as possible, delving into the
use of metaobjects to supply fault-tolerance [LIS 95].

References

[APP 00] APPLETON, B. – Patterns and Software: Essential Concepts and Terminology.
Available at http://www.enteract.com/ ~bradapp/.

[BED 98] BEDER, D.M. ; RUBIRA, C.F. – Uma Abordagem Reflexiva baseada em Padrões
de Projeto para o desenvolvimento de Aplicações Disribuídas Confiáveis. Instituto
de Computação, Unicamp, SP, 1998

[BER 87] BERNSTEIN, P.A.; HADZILACOS, V.; GOODMAN, N. Concurrency control and
recovery in database systems. Addison Wesley, 1987.

[BUS 96] BUSCHMANN, F. et al. A system of patterns: pattern-oriented software
architecture. John Wiley & Sons, England, 1996.

[GAB 96] GABRIEL, R.P. – Patterns of Software: Tales from the Software Community.
Oxford, 1996.

[GAM 95] GAMMA, E.; HELM, R.; JOHNSON, R.; VLISSIDES. J. – Design Patterns: Elements
of Reusable Design. Reading, Massachssets: Addison-Wesley.

[JAL 95] JALOTE, P. – Fault tolerance in distributed systems. PTR Prentice Hall. New Jersey,
1995. Cap. 6. P. 217-253.

[KIC 97] KICZALES, G. et al. Aspect-Oriented Programming. Em Proceedings of ECOOP’97.
LNCS 1241. Springer-Verlag, pp. 220-242, 1997.

[LIS 95] LISBOA, Maria Lúcia Blanck. MOTF Meta-objetos para tolerância a falhas. Porto
Alegre: CPGCC UFRGS, 1995. 171p. PhD Thesis.

[LIS 97] LISBOA, Maria Lúcia Blanck. A New Trend on the Development of Fault-Tolerant
Application: Software Meta-Level Architectures. Journal of the Brazilian Computer
Society, 4(2): 31-38, Nov. 1997.

[MAE 87] MAES, P. Concepts and experiments in computational reflection. SIGPLAN notices,
NY. OOPSLA 1987

[OLI 98] OLIVA, A. – Guaraná – uma arquitetura reflexiva. Available at
http://www.sunsite.unicamp.br/~oliva/guarana/index.html.

[PAP 86] PAPADIMITRIU, C.H., The theory of database concurrency control, Computer
Science Press, 1986.

[RIE 96] RIEHLE, D.; ZÜLLOGHOVEN, H. – Understanding and Using Patterns in Software
Development. Available at http://www. citeseer.nj.nec.com/ riehle96undertanding.html

[RUB 94] RUBIRA, C. M. F, STROUD, R. Forward and backward error recovery in C++.
Object Oriented Systems, 1(1): 1-85, 1994

[SIL 96] SILVA, A.R.; PEREIRA, J.; MARQUES, J.A. - Customizable Object Recovery
Pattern. Available at http://www-rodin.inria.fr/~pereira/pub.html.

