

An Object-Oriented Framework for Predictive Models in Intensive Care Units

Moyano M., Camaña R., Cechich A.

 Department of Informatics and Statistics - University of Comahue
Buenos Aires 1400, 8300 Neuquén, Argentina

E-mail: acechich@uncoma.edu.ar

Abstract

When used in conjunction with patterns, class libraries, and components, object-
oriented application frameworks can significantly increase software quality and reduce
development effort. Frameworks are a kind of domain-specific model whose structure can
reuse existing patterns. In the field of medical applications, one of the important trends is the
move towards frameworks describing different situations. Frameworks in medicine entails
capturing, storing, retrieving, transmitting and manipulating patient-specific health care
related data, including clinical, administrative, and biographical data. Using predictive
methods in Intensive Care Units is a standard procedure to determine a measure of disease
severity, based on current physiologic measurements, age and previous health condition.
These situations can be described by reusing existing models and patterns, and building new
structures based on flexible issues.

In this paper, we present a Java object-oriented framework developed for modelling
predictive methods in Intensive Care Units. We also briefly discuss future work, which will
include a formal specification as part of the framework’s documentation.

Key words: Object-Oriented Design Patterns – Analysis Patterns – Object-Oriented Frameworks –
Health Care Information Systems

1. Introduction

Software component technology has emerged as a key element for developing complex systems,
where maintainability, integrability, and other quality characteristics are increasingly important.
Software reuse has been one of the main goals for decades. However, reusing software is not an
easy task and most successful efforts are reduced to reuse small software components. Object-
oriented paradigm has provided with a way of reusing more complex and larger components. In this
context, frameworks [1] attract researchers and developers since among its advantages reuse
improving and less time to market are found.

A framework can be defined as “a set of cooperating classes making a reusable design for a
specific kind of software”. Frameworks supply an architectural guide by partitioning the system into
abstract classes, and its responsibilities and collaborations. A developer customises a framework by
using subclassing and composition.

A framework has a physical representation in terms of classes, methods, and objects, which is
adapted by customising and extending the provided structure. The parts of a framework that are
suitable to be extended and customised are called “hot spots” [2]. These spots represent domain
features that cannot be completely anticipated. The task of discovering hot spots involves domain
analysis and an active collaboration between developers and domain experts.

Patterns are deeply related with frameworks. However, patterns are more abstract in essence and
it document ideas that can be applied on different contexts. In this sense, patterns are smaller and
less complex than frameworks [3][4].

As a first work towards building a framework for predictive models in Intensive Care Units
(ICU’s), we have analysed different models – APACHE II, SAPS II [5][6] – and we have produced
a model based on patterns. We have also identified hot spots building a structure based on abstract
classes [7][8]. However, a complete framework is more than a model: it also includes guidance and
implementation.

In this paper we present an extension of our previous model of predictive methods in ICU’s to
implement it as a Java framework. We have focused on preserving flexibility by using abstract
classes, subclassing and composition. Analysis and design patterns are used, as well as other useful
structures in ICU’s domain. In Section 2 of the paper we introduce some predictive methods used
in ICU’s and we describe one particular method in some detail. Section 3 overviews our model
focusing on reused patterns and created structures. Section 4 presents the Java framework. Future
work will extend the documentation of the framework to include a formal specification of some
structures based on a formal model of patterns [9][10][11]. This is discussed briefly in the final
section of this paper.

2. Predictive Methods in Intensive Care Units

The information recorded by doctors is the main element used to assure a continue
attendance to the patients in an ICU. An efficient record must include multiple types of data capable
of grouping a variety of information, which is used by physicians to perform their evaluations.
Supplying the necessary elements to facilitate the measurement of every relevant variable is the
most important issue. But sometimes, the meaning of a “relevant variable” depends on the
interpretation of the doctor who is performing the analysis. As a result, different evaluations of the
same patient can be done. In order to standardise the procedure for evaluating the level of risk
associated to a patient, who is arriving to an ICU, several predictive models have been developed.
For example, APACHE II – a predictive model – has been used to evaluate the quality of the
attention in an ICU, or to estimate the mortality of a group of patients.

Our analysis of the Intensive Care Unit domain started with the analysis of different
mechanisms used to establish some state variables (predictors) which indicate the state of critical
incoming patients. The variables, also called “score”, are measured when a patient arrives to an ICU
in order to quantify his risk level, and to make medical attentions more efficient. Of course, there
are also periodically calculated variables that are used for analysing the evolution of a patient, but
these variables aren’t taken into account in our present work. A process based on the
parameterisation of different state variables – temperature, blood pressure, etc. – is used to calculate

the predictor. An algorithm takes these variables as input and calculates the value of the predictor.
This value must be compared with patterns whose meaning should be known.

The methods APACHE II and SAPS II have been chosen in our analysis because of the
possibility of applying them to many situations. Other methods, such as TISS (Therapeutic
Intervention Scoring System), MPM (Mortality Probability Models), or The SUPPORT Prognostic
Model, could be used in a similar analysis and modelled in the same way.

To clarify the notion of predictive models used in an ICU, a summary of the method
APACHE II is included. APACHE II was defined based on 13 variables and the valuation of the
previous state of the patient. The APACHE II score is a general measure of disease severity, based
on current physiologic measurements, age and previous health condition. Scores range from 0-71,
with an increasing score associated with an increasing risk of death. The score can help in the
assessment of patients to determine the level and degree of diagnostic and therapeutic intervention.
The algorithm used to calculate the score is based on the following expression:

APACHE II score = (acute physiology score) + (age points) + (chronic health points)

+4 +3 +2 +1 0 +1 +2 +3 +4
Rectal temp
in C°

>= 41 39-
40.9

38.5
-
38.9

36-
38.4

34-
35.9

32-
33.9

30-
31.9

<=
29.9

Mean
arterial
pressure mm
Hg

>=
160

130-
159

110-
129

70-
109

50-
69

<= 49

Heart rate in
beats/min.

>=
180

140-
179

110-
139

70-
109

55-
69

40-
54

<= 39

Respiratory
rate in
breaths/min

>=50 35-
49

25-
34

12-
24

10-
11

6-9 <= 5

Oxygen:
A-aDO2
(FIO2 >=
0.5)

>=
500

350-
499

200-
349

<
200

Oxygen:
PO2 (FIO2
< 0.5)

> 70 61-
70

55-
60

< 55

Arterial pH >= 7.7 7.6-
7.69

7.5-
7.59

7.33
-
7.49

7.25
-
7.32

7.15
-
7.24

< 7.15

Serum
sodium

>=
180

160-
179

155-
159

150-
154

130-
149

120-
129

111-
119

<=
110

Serum
potassium

>= 7 6-
6.9

5.5-
5.9

3.5-
5.4

3-
3.4

2.5-
2.9

<2.5

Serum
creatinine in
mg/dL

>= 3.5 2-
3.4

1.5-
1.9

0.6-
1.4

<
0.6

Hematocrit
in percent

>= 60 50-
59.9

46-
49.9

30-
45.9

20-
29.9

< 20

WBC in
thousands

>= 40 20-
39.9

15-
19.9

3-
14.9

1-
2.9

< 1

Table 1. Acute Physiology Score.

Age Points
<= 44 0
45-54 2
55-64 3
65-74 5
>= 75 6

Table 2. Age points.

History of severe
organ insufficiency or
immunocompromised

Points

Nonoperative patients 5
Emergency
postoperative patients

5

Elective postoperative
patients

2

Table 3. Chronic Health Points

Table 1, Table 2, and Table 3 are used to obtain the acute physiology score, the age points,
and the chronic health points respectively. In Table 1, the score for serum creatinine is doubled if
the patient has acute renal failure and the mean arterial pressure is calculated as ((systolic blood
pressure) + (2 * (diastolic pressure))) / 2. In Table 3, the organ insufficiency or
immunocompromised state must have preceded the current admission. Immunocompromised means
that: (1) the patient is receiving therapy reducing host defenses (immunosuppression,
chemotherapy, radiation therapy, long term steroid use, high dose steroid therapy), or (2) the patient
has a disease severe enough to interfere with immune function such as malignant lymphoma,
leukemia or AIDS. Liver insufficiency means that one or more of the following situations arises: (1)
biopsy proven cirrhosis, (2) portal hypertension, (3) episodes of upper GI bleeding due to portal
hypertension, (4) prior episodes of hepatic failure, coma or encephalopathy. A cardiovascular
insufficiency means New York Heart Association Class IV. A respiratory insufficiency means (1)
severe exercise restriction due to chronic restrictive, obstructive or vascular disease, (2) documented
chronic hypoxia, hypercapnia, secondary polycythemia, severe pulmonary hypertension, or (3)
respirator dependency. Finally, a renal insufficiency is produced when the patient is on chronic
dialysis.

Several software tools implementing predictive models can be found. The software UTICalculos
[12] and the expert system prototype for evaluation and advising of critical patients [13], are some
examples.

3. A Flexible Model for Predictive Methods

Information, which represents a patient’s record, is summarised by the following
components [8], as shown in Figure 1:

• Observation component: represent the set of data obtained from test, signs, background, etc.
Some data are fixed but others vary depending on therapeutics a patient is receiving. In
general, a patient must go into an intensive care unit because some of these values risk its
life. The main goal of an ICU is to monitor the evolution of these values until a stable and
normal condition is reached. Predictive models are used to quantify risks when a patient
arrives to an ICU.

• Medical conclusion: according to observations, doctors can determine a diagnosis when
information is secure enough or they can deduce a prognosis by analysing a patient’s
evolution.

• Therapeutics: doctors define actions and therapeutics to normalise values measured for a
patient.

Figure 1: Model for Recording Patients.

3.1 Patterns for Medical Domains

The following description concentrates on the static elements of an observation as is
presented in [14]: what an observation or measurement is and how we can record it in a generic way
to support the analysis that clinicians need to perform on it.

Modelling quantities as attributes may be useful for a single hospital department that
collects a couple of dozen measurements for each in-patient visit. However, thousands of potential
measurements can be made on one person. One solution is to consider all the various things that can
be measured (height, weight, blood glucose level, and so on) as objects and to introduce the object
type phenomenon type. A person would then have many measurements, each assigning a quantity to
a specific phenomenon type. The person would have only one attribute for all measurements, and
the complexity of dealing with the measurements would be shifted to querying thousands of
instances of measurement and phenomenon type.

Just as there are many quantitative statements made about a patient, there are also many
important qualitative statements, such as gender, blood group, etc. To record a person’s gender,
which has two possible values – male and female – a new type, category observation, can be
devised. It is similar to a measurement but has a category instead of quantity, so a new type of
observation acts as a supertype to a measurement and a qualitative observation. In this model,
gender is an instance of phenomenon type, and male and female are instances of category.

But certain categories can be used only for certain phenomenon types. For example, “tall”,
“short”, or “average” might be categories for the phenomenon type height, while ”A”, “B”, “A/B”,
and “O” might be categories for the phenomenon type blood group. So, a phenomena class defines
the possible values for some phenomenon type (see Figure 1). For example, the fact that a person is
blood group A is indicated by a category observation of a person whose phenomenon is blood group
A. The blood group A phenomenon is linked to the phenomenon type of blood group.

Many observations involve merely a statement of absence or presence rather than a range of
values. The model shown in Figure 2 allows any category observation to have presence or absence.
Observation Concept is a supertype of phenomenon to allow observation concepts without attaching
them to some phenomenon type. For example, the fact that a person has diabetes is recorded by a
presence observation of the person linked to the observation diabetes.

Figure 2: Analysis Pattern for Observations

3.2 Flexible Structures

The following description introduces some modelling artefacts we have built by reusing
existing patterns and structures or by creating new elements based on the notion of “hot spots”
given by Pree [15].

Our abstraction of observations is quite different from the concepts introduced in Section
3.1. The state of a patient in an ICU is monitored by measuring different variables – temperature,
blood pressure, cardiac frequency, etc. – which conforms an observation. So, an observation
represents the variables measured for a patient instead of a general measure. However, our
observations are also classified building a hierarchy. This hierarchy represents that an observation is
composed of the more recently observation and a set of all previous observations of a patient. A
temporal classification is used to recursively specify the complete record of a patient in which two
adapted &RPSRVLWH >16] patterns are used [7].

Predicting the evolution of a patient based on the variables measured during the
observations, is one of the more common applications. The methods mentioned in Section 2 –
APACHE II and SAPS II – are used to predict the evolution of a patient and by analysing them,
many common features can be detected. A general model of predictive methods can be abstracted
by reusing an 2EVHUYHU [16]: every time the status of a patient – modelled as a set of measured
variables – changes, observer objects modify their states depending on the changed variables. In
that way, the prediction given by a particular test remains consistent with the status of a patient [7],
as Figure 3 shows.

Figure 3: Structure for Predictive Models in ICU’s

In similar way, other structures have been developed [7][8]. Some of the classes in the
model depends on the implementation context and should be flexible enough for allowing
customisation and adaptation. For example, subclassing “Predictive Model ICU” in Figure 3, makes
extension and modification easier. Several other flexible characteristics, not discussed here for
brevity, have been underlined in our model

4. Implementation: A Java Framework

In this Section, we present an example of some behavioural features in our Java [17]
implementation. A sequence of actions and messages performed as a consequence of recording a
new observation is first introduced. In this case, the last temperature measured for a patient is
recorded, and a calculation of the predictor APACHE II is performed. Figure 4 shows the
corresponding sequence diagram.

As a way of dealing with complexity, the framework was divided into clearly identifiable
components. Functionality was split and a more understandable model was created. For example,
there is a component for dealing with monitoring of observations, another component for
monitoring treatments, another for monitoring medical conclusions, and another for dealing with
predictors. The following example is part of the component for predictors.

Figure 4: Sequence diagram for updating a predictor.

Implementation is presented with hot classes, that are classes customised or extended in a
particular application, written in Italics. The class Enumeric_Type was created for classifying all
sort of observations (temperature, blood pressure, etc.). Every subclass represents a possible kind
of observation.

The following pieces of code show a partial Java implementation:

abstract classs Patient_icu
{ ...
 private void notify ()
 { int i = 0;
 while (i < Observers .count)
 { (Observers .getObject (i)).update ;
 inc (i); } }
 ...
 private list_of_observers Observers;
}

class Concrete_Patient_icu extends
Patient_icu
{ ...
 public boolean getparam (Enumeric_type
et; Observation obs)
 {
 return O_monitor.getLastObservation
(et,Obs);
 }
 private Observation_monitor O_monitor;
 ... }
 abstract class Observer
{ ...
 private Conrete_Patient_icu Patient
 ... }

abstract class Predictive_Model_icu extends
Observer
{ ...
 abstract public void update ();
 private int test_value;
 ...}
abstract class Observation_Monitor
{ ...
 abstract public boolean
getLastObstervation (EnumericTyoe et;
Observation obs)
 ...}

class apacheII extends Predictive_Model_icu
{ ...
 public void update ()
 { test_value=0;
 float temperature_value ;
 Observation temperature_object;
 Teperature_enumeric_Type ett= new
Temperature_enumeric_Type;

 if (patient.getParam
(ett,temperature_object))
 { temperature_value =
temperature_object.getValue;

 if (temperature_value >=41)
 test_value = test_value + 4
 else
 if (temperature_value >=39)
 test_value = test_value + 3
 else

 if ((temperature_value >=38.5) ||
((temperature_value <36) &&
(temperature_value<=34)))
 test_value = test_value + 1
 else
 if (temperature_value >= 32)
 test_value = test_value + 2
 else
 if (temperature_value >=30)
 test_value = test_ value + 3
 else
 if (temperature_value < 30)
 test_ value = test_value + 4 ;
 } ...
 return test_value } ...
}

class Temperature_Enumeric_Type extends
Enumeric_Type
{ boolean Compare (Enumeric_Type et)
 { return (et instanceof
Temperature_Enumeric_type) } }

class Observation_record extends
Observation_Monitor
{ ...
 public boolean getLAstObservation
(EnumericType et; Observation obs)
 { int i =0;
 while (i < obslist.Count) && (! (obslist
.GetObject (i)).IsType (et)))
 inc (i);

 if (i == obslist.Count)
 { Obs=obslist .GetObject (i)
 return True
 else
 return False ; }
 ...

 private List_of_observations obslist; }

class Historical_Observation_Record extends
Observation_Monitor
{ ...
 public boolean getLastObservation
(EnumericType et; observation Obs)
 { if (Actual_Record.getLastObservation
(et,Obs))
 return True
 else
 return
Historic_Record.getLastObservation (et,Obs);
 }
 private Observation_Record
Actual_Record;
 private Observation_Monitor
Historic_Record;
 ...}

class Phenomenon_Type
{ public boolean isType (Enumeric_Type et)
 { return description.Compare(et);
 }
 private enumeric_Type description;
 ... }

abstract class Observation
{ ... abstract public boolean isType
(Enumeric_Type et);
 abstract public float getValue () ;
 ... }
class Measurement extends Observation
{ ...
 public boolean isType (Enumeric_Type et)
 { return ph_Type.isType (et); }

 public float getValue ()
 { return q.getValue (); }

 private Phenomenon_Type ph_Type;
 private Quantity q;
 ... }

class Quantity
{ ...
 public float getValue ();
 { return value; }
 private float value;
 ... }

class list_of_observations
{ ...
 public Observation getObject (int index)
 { if (index < upperBound)
 if (index < lastAssigned)
 return data[index]
 else
 return null
 else
 return null }

public int Count ()
 { return lastAssigned; }

 private int upperBound=50;
 private int lastAssigned;
 private Observation [] data = new
observation [upperBound];
... }

abstract class Enumeric_Type
{ abstract boolean Compare
(Enumeric_Type et); }

class list_of_observers
{ ...
 public Observer getObject (int index)
 { if (index < upperBound)
 if (index < lastAssigned)
 return data[index]
 else
 return null

 else
 return null }

public int Count ()
 { return lastAssigned; }

 private int upperBound=50;
 private int lastAssigned;
 private Observer[] data = new observation
[upperBound];
... }

Conclusions and Future Work

In this paper, we have presented an object-oriented framework for predictive models used in
Intensive Care Units. The framework was developed focusing on flexible characteristics to be
extended or adapted, and a partial Java implementation was presented.

However, a complete framework also includes guidance for using and adapting it.
Framework documentation is considered as relevant as the process used for building it. In the next
stage of our work, we will add several helpful features to our actual description of the framework,
such as application examples instantiated on particular domains. A more unambiguous description
could also be of interest considering previous works on this area [9][10][11], so formalisation of
some parts of the framework will be considered.

Acknowledgements

The authors wish to thank personnel of the Castro Rendom Hospital, and personnel of the
Pasteur Clinic (Neuquén City), especially Dr. Urdapilleta, Dr. Calvo, Dr. Shutto, Dra. Morán, and
Dr. Moyano for their invaluable collaboration.

References

 [1] Fayad M., Schmidt D., Object-Oriented Application Frameworks, Communications of the
ACM, Vol. 40, No. 10, October 1997

 [2] Fayad M., Schmidt D., Johnson R., Building Application Frameworks, John Wiley & Sons,
1998.

 [3] Johnson R., Documenting Frameworks using Patterns. Object-Oriented Programming Systems,
Languages, and Applications Conference Proceedings, 1992 (63-76)

 [4] Johnson R., Frameworks = (Components + Patterns). Communications of the ACM, Vol. 40,
No. 10., October 1997 (39-42)

 [5] Pusajó J.F. , Doglio G.R. , Hernandez M.S., Salvador M.C. , Bonfigli G.C. Valoración Del
Paciente en Estado Crítico, Hernandez Editoriales, 1989

 [6] Svirbely John and M.G. Sriram, The Medical Algorithms Project – Chapter 30, 1999
http://www.medal.org/ch30html

 [7] Luzuriaga J., Martínez R., Moyano M., Braicovich G., Camaña R., Cechich A., Object-Oriented
Patterns Applied to Predictive Models in Intensive Care Units, 3rd Argentine Symposium on
Health Care Informatics, 29 JAIIO, 2000 (116-125)

 [8] Luzuriaga J., Martínez R., Moyano M., Camaña R., Cechich A., Un Modelo basado en Reuso
para Sistemas de Pronóstico en Unidades de Terapia Intensiva, 4th Argentine Symposium on
Health Care Informatics, 30 JAIIO, September 10-14, 2001(to be published)

 [9] Cechich A., A Formal Model for Semantic Statements of Analysis Patterns, IV Workshop
Iberoamericano de Ingeniería DE Requisitos y Ambientes de Software, San José, Costa Rica, 3-
6 April 2001 (22-30)

 [10] Buccella A. and Cechich A., A Formal Model for Some Behavioural Features of Analysis
Patterns, 6° Congreso Argentino en Ciencias de la Computación, CACIC’2000, Usuhaia, 2-7
October 2000 (123-132)

 [11] Cechich A. and Moore R., A Formal Basis for Object-Oriented Patterns, APSEC’99 – 6th Asia-
Pacific Software Engineering Conference, Takamatsu, Japan, Dec. 1999 (284-291)

 [12] Zarazaga A. , Prast A. , Castell J.T. , Valderrábano S. , Rodríguez Montes J.A., Metodología,
desarrollo y validación de un Sistema Asesor Informatizado para la toma de decisiones
clínicas. Predicción del Riesgo y de la Supervivencia, Calidad de vida. Análisis comparativo de
la utilidad y costes de los procedimientos terapéuticos en la clínica, Hosptital Universitario La
Paz - Universidad Autónoma Madrid, 1997, http://www.servitel.es/infosalud97/10/10.htm

 [13] Campos Eneida Rached, Un Sistema Interactivo de Cálculo para Terapia Intensiva,
INFORMÉDICA, 1993, http://www.epub.org.br/informe/uticalc.html

 [14] Martin-Fowler, Analysis Patterns - Reusable Object Models. Addison-Wesley, 1997
 [15] Pree W., Design Patterns for Object-Oriented Software Development, Addison-Wesley, 1995
 [16] Gamma E., Helm R., Johnson R., and Vlissides J., Design Patterns - Elements of Reusable
Object-Oriented Software, Addison-Wesley 1995

 [17] http://java.sun.com/products

