
Component Assessment using Testing

Marisa A. Sánchez, Elsa Estévez, and Pablo Fillottrani

Departamento de Ciencias de la Computación
Universidad Nacional del Sur,

Avda. Alem 1253, 8000 Bah́ıa Blanca,
Telephone +291 459 5135, Fax +291 459 5136,

mas[ece,prf]@cs.uns.edu.ar

Abstract. In the last years software researchers have been looking for
ways of assembling systems in a style of software construction similar
to “LEGO blocks”. Software components are reusable building blocks
for constructing software systems. Component-based development may
greatly increase the productivity of software engineers and improve the
quality of software. There are many issues related with components that
are of wide interest both to academics and people from industry. One
of them is the retrieval of components that will be assembled into a
new system. It is difficult to decide whether an implementation fits on
a predefined design. In this work, we consider the problem of assessing
that the implementation of a concrete component is consistent with the
specification of the desired functionality. We assume that the component
source code is not available and we have a formal specification of the
system of interest. We propose to perform a dynamic assessment using
tests derived from the specification (semantic criteria) but executed using
the implementation of the candidate component.

Key words: Software engineering, component retrieval,
reusable software, software libraries, testing, algebraic

specifications.

1 Introduction

The growing size and scope of systems have changed the traditional
practices of software engineering. Building new reliable solutions
within a tight schedule is the key point of most current projects.
Doug McIlroy predicted that mass-produced components would end
the so-called software crisis. He introduced the idea about software
reuse, proposing an industry of source code for components “off the
shelf”. Reuse is a very simple concept: to use the same thing more
than once. In software engineering this concept means to use already



developed parts of software to construct new software. Software reuse
is the process of building or assembling software systems from pre-
defined components that are designed for reuse. It deals with the
production and use of components.

Components and component-based development are approaches
that enable practical reuse of software ”parts”. More and more orga-
nizations are turning to components as a way to encapsulate existing
functionality, acquire third-party solutions, and build new services
to support emerging business processes. The latest technologies for
distributed systems support and encourage a component view of ap-
plication integration and deployment [1]. Furthermore, component-
based development provides a design paradigm well suited for todays
approach, were the traditional design and buid has been replaced by
select and integrate. All aspects of software design, implementation,
deployment, and evolution are affected when a component-based ap-
proach is followed. As a result, a software project can be transformed
from a development-intensive grind of code writing and bug fixing, to
a more controlled assembly process in which new code development
is minimized and system upgrade becomes the task of replacement
of well-bounded functional units of the system.

For component-based development, a component is much more
than a subroutine in a modular programming approach, an object or
class in an object-oriented system, or a package in a system model.
The notion of component both subsumes and expands on those ideas.
A component is used as the basis for design, implementation, and
maintenance of component-based systems. Informally, a component
may be defined as an independently deliverable piece of functionality
providing access to its service through interfaces [1]. An interface de-
fines a set of properties, methods, and events through which external
entities can connect to, and communicate with, the component, [2].

One of the main problems in component based development is
the retrieval of the components that will be assembled into the new
system. It is difficult to decide whether an implementation fits on a
predefined design. Most research in the area of component assesst-
ment is focused on retrieval from a repository based on syntactic
characteristics of the components. Significant effort has been placed
on the development of interface definition languages (IDL) to sup-
port syntactic retrieval criteria. IDLs are necessary, but they only



consider information defined in the interfaces. On the other hand,
semantic criteria is fundamental when some components must be
composed to perform the desired behavior for the system.

In this work, we consider the problem of assessing that the im-
plementation of a concrete component is consistent with the specifi-
cation of the desired functionality. There are a number of challenges
that arise when attempting to assess the behavior of a component,
particularly one that is “off the shelf”. First, the source code of the
component is generally not available. Second, component behavior is
rarely described formally, thus preventing any direct transformation
into a model suitable for direct analysis. Additionally, retrieval ap-
proaches that address semantic criteria assume that the components
in the repository are specified using a formal language [3]. In this
paper, we address the problem of assessing a software component
when its source code is not available and we have a formal specifi-
cation of the desired component. Thus, we assume we have a formal
specification of the system of interest and a library with components
that we would like to retrieve for reuse. We consider RSL (RAISE
Specification Language) [4], [5]. However, the approach is valid for
any algebraic specification language.

Assume that a specification SC for the desired component C is
created. We propose a systematic approach to generate test cases
from the specification where axioms are used as tests. Each axiom of
the specification defines some properties of the operations occurring
in it. Hence, the axioms are very close to requirements. Also, since
the result of the evaluation of a test derived from an axiom is always
true (false) there is no problem with constructing and validating the
expected results. These tests are executed using the candidate com-
ponents. Hence, we propose tests very close to what the user really
wants (semantic aspects) but executed using the implementation of
the component that is been evaluated for reuse.

The paper is organized as follows: Sections 2.1 briefly introduce
algebraic specifications. Section 2.2, is devoted to describe our test-
ing approach. We first define how we generate tests and then we
discuss the selection of terms and concrete data. We then describe
how to perform tests using the implementation of a given component
(Section 2.3). Conclusions are presented in Section 3.



2 Description of the Approach

2.1 Algebraic Specifications

An algebraic specification is a pair (Σ, Ax) where Σ is the signa-
ture of the specification, and Ax is a set of axioms which define the
properties of the operations of Σ. A set of sentences φΣ is associated
with each signature Σ. Among the operations of the signature, there
is a subset of generators. Any ground term can be proved equal to a
term built from generators only [6]. The other operations are called
observer operations.

The semantics of an algebraic specification is defined by a class of
Σ− interpretations, IntΣ , and a validation predicate on IntΣ × φΣ

denoted by |=. For each Σ− interpretation A and for each formula φ,
A |= φ should be read as A validates φ. The class of interpretations
validating a specification module SC is called the class of models of
SC and is denoted by Mod(SP ):

Mod(SC) = {A ∈ IntΣ | A |= Ax}
Let C be an implementation of a component to be tested, which is

supposed to implement a specification module SC = (Σ, A). Testing
C with regard to SC is only possible if the semantics of C and SC
are expressible in a common framework. As we are interested in
dynamic testing, we have to execute C or a finite subset of its input
domain, and interpret outputs with regard to SC. Bernot et al. ([7],
[8]) developed a theory and a tool to generate practicable test sets
based on algebraic specifications. Each axiom of the specification
defines some properties of the operations occurring in it. Thus, each
ground instance of these axioms is a test of the properties of the
operations defined in the specification. Also, since the result of the
evaluation of a test derived from an axiom is always true (false)
there is no problem with constructing and validating the expected
results. The authors introduce the notion that a test data set cannot
be considered independently of some hypotheses. Hypotheses are
the assumptions that allow us to infer the correctness of a program
from the success of the test set and incorrectness from failure. Based
on the work of Bernot et al. we described a framework for testing
implementations of systems specified using an algebraic language
RSL [9].



2.2 Generation of Test Cases

RAISE is a product which consists of a method to develop software, a
formal specification language, RSL (RAISE Specification Language)
and a set of tools. In a RAISE development, we start with an ab-
stract specification, we make some design decisions and produce a
new specification which conforms to the previous one. The aim is to
construct a more concrete specification and this process is known as
a development step. So, each development step contributes with new
information and more details about the design.

As an example, consider the specification of an abstract data
type, a bounded queue. The requirements for a bounded queue are
that items may be extracted (“dequeued”) only in the order in which
they were inserted (“enqueued”) and that at any time any number
of items up to the maximum may have been enqueued and not yet
dequeued. Consider the following Abstract Applicative Specification
of a Queue A QUEUE0:

scheme
A QUEUE0(P : ELEM BOUND) =

hide List of Queue, list of in
class

type Queue, List of Queue = {| l: P.Elem∗• len l ≤ P.bound |}
value

/� generators �/
empty : Queue,
enq : P.Elem × Queue →̃ Queue,
deq : Queue →̃ P.Elem × Queue,
/� hidden observer �/
list of : Queue → List of Queue,
/� observers �/
is full : Queue → Bool
is full(q) ≡ len list of(q) = P.bound,
is empty : Queue → Bool
is empty(q) ≡ list of(q) = 〈〉

axiom
[list of empty] list of(empty) ≡ 〈〉,
[list of enq]

∀ e : P.Elem, q : Queue •
list of(enq(e, q)) ≡ list of(q) ˆ 〈 e 〉 pre ∼ is full(q),

[deq ax]
∀ q : Queue •

deq(q) as (e, q′ )
post e = hd list of(q) ∧ list of(q′ ) = tl list of(q)
pre ∼ is empty(q),



[enq defined]
∀ e : P.Elem, q : Queue • enq(e, q)

post true pre ∼ is full(q)
end

Definition of tests As mentioned before, we can produce test cases
from an RSL specification. The axioms from the abstract specifica-
tion give tests. For example, the axioms [list of empty], [list of enq]
and [deq ax] of A QUEUE0 give tests. We do not use the axiom
[enq defined] as a test case because given any input test data we
might not be able to decide if the test is successful or not because of
the lack of an effective oracle for testing termination, which is what
post true effectively means.

Additionally, we can use definitions of derived functions as if
they were written as axioms. The functions is full() and is empty()
are derived, so we use their definitions as axioms giving tests. This
allows us to evaluate each operation separately. The test derived
from axioms focus on the interactions among functions. We can also
write a theory, justify it and use it as another test.

In the following, we describe how to select terms to instantiate
the proposed axioms.

Generation of terms Any value of the type of interest can be
denoted by a composition of some generators. However, the set of
terms of this type is infinite. So, we need to bound the size of the
list terms. This can be done if we define a regularity hypothesis.
Given a complexity measure of level k on the terms (for instance,
the number of operations of the type occurring in a term), we can
select only those terms that scores less or equal to k. The regularity
hypothesis states that if a formula is valid for all the selected terms,
then it is valid for all terms of the algebra. The reader is refered to
[8] for a detailed discussion of selection hypothesis.

We have to select terms of the type Queue. Given a definition
of a complexity measure, we can specify an algorithm to generate
the desired terms. Let us use a complexity measure on the terms
of this type defined as follows: a term scores the sum of scores of
its generators. The scores for the generators are 1 for empty and



enq, and 0 for deq. We apply a regularity hypothesis (of level 3) and
generate the following terms:

1. empty
2. enq(e1,empty)
3. enq(e2,enq(e3,empty))
4. let (e,q) = deq(enq(e4,empty)) in q end
5. let (e,q) = deq(enq(e4,empty)) in enq(e5,q) end
6. let (e,q) = deq(enq(e7,enq(e8,empty))) in

let (e′ ,q′ ) = deq(q) in q′ end end
7. let (e,q) = deq(enq(e9,empty)) in

let (e′ ,q′ ) = deq(enq(e10,q)) in q′ end end

Data that does not satisfy the precondition of the axiom is not
used. For example, enq(e, q) where q is a full queue. In general, we
reject test data when the precondition of the proposed axiom is not
provable because it is false or irreducible (as for deq(empty)).

Selection of Concrete Data We need to instantiate the terms
selected for testing. Data will be needed for any variables universally
quantified in the axioms.

Additionally, we should also select data for the imported types in
the specification of interest. The variable e included in the axioms is
of the imported type P.Elem. We can assume that imported types
belong from components that have already been assessed. Hence,
as proposed in [8], we can use an uniformity hypothesis to select
data for the imported types. A uniformity hypothesis states that if
a formula is true for some value then it is always true.

Once we have the final specification expressed in RSL and we
have generated the test cases we have to derive the test functions
from the axioms. For example, we can derive the following imperative
version of the test function derived from the axiom [list of enq]:

list of enq : Text × Int∗ × Int → write any Bool
list of enq(code, parameters, e) ≡

gen queue(code, parameters) ;
if is full() then

true
else

let l = list of() in enq(e) ; list of() = l ˆ 〈e〉 end
end,



2.3 Execution of Tests

Tests are executed using the implementation of the candidate com-
ponent. Thus, we need to rename the functions using the identifiers
of the respective methods offered by the component. For example,
the test function based on the axiom [list of enq] is translated into
C++ as:

...

Bool test_list_of_enq (const Term code,

const IntList parameters, const int e) {

intRSList* _listQueue;

CPP_Queue* _queue;

Bool result ;

_queue->generate(code, parameters);

if (_queue->is_full()) {

result = true;

}

else {

_listQueue = _queue->list_of();

_queue->enq(e);

result = _queue->list_of() == _ilistQueue +

intRSList(e, intRSList ());

}

return result;

}

...

The type of interest is translated as CPP Queue. An object of
type CPP Queue is created ( queue) and then it is updated accord-
ing with the information included in the parameters ( queue− >
generate(code, parameters)). The parameters code and parameters
indicate which generators should be used to build a valid term to
instantiate the test. For example, the actual parameters “mee” and
5,8 denote the term enq(enq(5, empty()), 8). Note that the function
list of is hidden (see A QUEUE0), but we need to implement it to
execute the tests.

Suppose we want to evaluate if the MFC Library1 component
p queue behaves as desired. We should adapt this code to replace
the definitions of the type Queue with the definition of the class
p queue. As an illustration consider the following portion of code:
1 Microsoft Foundation Class Library



...

Bool test_int_list_of_enq (const Term code,

const IntList parameters, const int e) {

typedef priority_queue<Data,DataVector,less<Data>,

allocator<Data>> DPQueue;

intRSList* _listQueue;

DPQueue* _pQueue;

Bool result ;

_pQqueue->generate(code,parameters);

if (_pQueue->is_full ()) {

result = true;

}

else {

_listQueue = _pQqueue->list_of();

_pQueue->push(e);

result = _pQueue->list_of() == _listQueue +

intRSList(e,intRSList());

}

return result;

}

...

We replace queue with the object of type DPQueue pQqueue.
We should extend the class DPQueue with the new methods list of
and generate. In order to keep this presentation as simple as possible
we have supressed some implementation details.

As a result of the execution of tests we get a true result if the
test is successful, otherwise, the output is false. For the case of the
[list of enq] axiom we get a false output when we enqueue more that
one item. The pop method inserts items in decreasing order while
the expected behavior is of a traditional queue. For example, the
test with the term enq(enq(5, empty()), 8) fails because the object
contain the elements “8,5”, but we expect to have a queue with
elements “5,8”.

3 Conclusions

We have described how to use the testing approach reported in [9]
for the case of component assesment and developments specified us-
ing an algebraic language. The approach can be easily adapted for



systems specified using a Hilbert model, in [10] we describe the gen-
eration of test cases for systems specified using this model.

The main features of our proposal are the use of a semantic cri-
teria to assess components, and that it can be applied only when the
implementation of the component is available. We do not assume
the existence of a formal specification of the candidates components
because this assumption is quite restrictive. Then, our approach is
of wide interest in the software engineering community.

Automated retrieval of software components is usually achieved
with text-retrieval methods [11], [12]. These methods search for words
or phrases associated with a component. There are also controlled
term vocabularies approaches based on classification schemes which
are used to structure libraries [13]. Other retrieval systems use artifi-
cial intelligence techniques to represent and reason about knowledge
of component semantics [14]. However, considerable manual domain
analysis is required to build powerful retrieval systems using these
techniques.

Podgurski et al. [15] proposed an approach for selecting and test-
ing reusable components that is very close to dynamic assessment.
The authors propose a behavior sampling that identifies relevant rou-
tines by executing candidates on a searcher supplied sample of op-
erational inputs and comparing their output to output provided by
the searcher. Although this work is very close in spirit to ours, they
do not address in a systematic way the problems of definition of tests
(which tests should be executed), selection of a finite set of terms,
and, more importantly the oracle problem.

One important limitation of our approach is that we cannot re-
trieve components whose behavior is close, but not identical, to that
required. In order to address this limitation we should define a theory
for the behavior that an adapter must provide, such that, when com-
posed with the candidate component we obtain the required behav-
ior. In particular, if the candidate component has missing behavior
with respect to the specification, we need to include in the adapter
definitions of new functions. Also, more axioms will be required to
explore the interactions among all funcions. This issue requires thor-
ough investigation. We intend to work on this topic in the future.



References

1. Alan W. Brown. Large-Scale Component-Based Development. Prentice Hall Inter-
national, 2000.

2. David Krieger and Richard M.Adler. The emergence of distributed component
platforms. IEEE Computer, March:43–53, 98.

3. A. Zaremski and J. Wing. Specification Matching of Software Components. ACM
Transactions on Software Engineering and Methodology, 6(4), 1997.

4. The RAISE Language Group. The RAISE Specification Language. The Practi-
tioner Series. Prentice Hall International (UK) Limited, 1992.

5. The RAISE Method Group. The RAISE Development Method. The Practitioner
Series. Prentice Hall International (UK) Limited, 1995.

6. P. Dauchy, M.-C. Gaudel, and B. Marre. Using algebraic specifications in software
testing: a case study on the software of an automatic subway. Journal of Systems
and Software, 21(3), june 1993.

7. G. Bernot, M.-C. Gaudel, and B. Marre. Software testing based on formal specifica-
tions: a theory and a tool. Software Engineering Journal, 6(6):387–405, November
1991.

8. Bruno Marre. Toward automatic test data set selection using Algebraic Specifica-
tions and Logic Programming. In Proceeding of the Eight Internationl Conference
on Logic Programming, ICLP91. MIT Press, 1991.

9. Marisa A. Sanchez. Integrating Testing with a Formal Development Process. In
Ram Chillarege and Thomas Illgen, editors, ISSRE 98, The Ninth International
Symposium on Software Reliability Engineering, Paderborn, Germany, November
4-7 1998, pages 205–213, 1998.

10. Marisa A. Sanchez and Juan Carlos Augusto. Testing an Implementation of a Tem-
poral Logic Language. In 2000 20th International Conference of the Chilean Com-
puter Society, Santiago, Chile, 13-18 Nov 2000. IEEE Computer Society Press,
2000.

11. G. Salton. Another look at automatic text-retrieval systems. Communications of
ACM, 29(7):648–656, July 1986.

12. S. P. Arnold and S.L. Stepoway. The REUSE system: Cataloging and retrieval of
reusable software. In Proceeding of the 1987 Spring Joint Computer Conference,
San Francisco, February 23-27, 1987, pages 376–379. IEEE, 1987.

13. R. Prieto-Diaz. Implementing faceted classification for software reuse. In Proceed-
ings of the 12th International Conference on Software Engineering, pages 300–304.
IEEE Computer Society Press, 1990.

14. H. Tarumi, K. Agusa, and Oiino. A programming environment supporting reuse
of object-oriented software. In Proceedings of the 10th International Conference
on Software Engineering, pages 265–273. IEEE Computer Society Press, 1988.

15. A. Podgurski and L. Pierce. Retrieving Reusable Software by Sampling Behavior.
ACM Transactions on Software Engineering and Methodology, 2(3):286–303, July
1993.


