
JBLIF, a Tool for Non-interference Analysis
of Java and Java Bytecode Programs

Salvador V. Cavadini
Project EVEREST, Institut National de Recherche en

Informatique et Automatique (INRIA)
Sophia-Antipolis, 06902, France

Salvador.Cavadini@sophia.inria.fr

Abstract

Protecting sensitive information has become an important facet of software de-
velopment. One aspect of software security relies on information flow control (IFC),
a technique for discovering information leaks in software. Despite the large body
of work on language-based IFC, there are only few implementation of information
flow analyzers for full-scale real programming languages. This lack signifies a gap
between IFC theory and practice. This work introduces, a tool that helps to over-
pass this gap: JBLIF –acronym from Java Bytecode-Level Information Flow–, a
tool capable of statically detect information leaks in systems coded in Java and/or
Java bytecode.

Keywords: information flow control, non-interference, data security, software en-
gineering.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

Congreso General

1714

1 Introduction

There is an urgent need for software applications with strong confidentiality guarantees.
Protecting sensitive information –e.g. credit card data, personal medical information,
military secrets– has become an important facet of software development. The problem
is not new but it has acquired relevance due to ubiquity of computing systems.

One aspect of software security relies on information flow control (IFC), a technique
for discovering information leaks in software. One of the two main tasks of IFC is guar-
antee that confidential data is not made public through public variables. Contemporary
IFC use different kinds of program analysis to provide such a guarantee.

Language-based IFC uses the program code to discover security leaks. Most language-
based IFC approaches uses non standard type systems where security levels are coded as
special types for variables and the typing rules catch illegal flow of information [12].

Non-interference, a semantical condition on programs, ensures that high-security data
will not be observable on low-security channels [3]. Despite the large body of work
on language-based IFC, there are only few full-scale implementation of non-interference
analyzers for real programming languages. This lack signifies a gap between theory and
practice.

We have developed a tool that can help to overpass this gap: JBLIF –acronym
from Java Bytecode-Level Information Flow–, is a tool capable of perform static non-
interference analysis of software systems coded in Java and/or Java bytecode and supports
security annotations at both levels: source and bytecode.

This paper is organized as follows. Next section explains how non-interference and
program dependencies are related and why program slicing can be naturally used in non-
interference analysis. Section 3 provides a description of JBLIF and section 4 shows two
examples of non-interference analysis using JBLIF. Related work is discussed at section
5. Finally, the conclusions and future works.

2 Non-interference and Program Dependencies

Typically, a confidentiality policy labels certain variables as being secret to enforce the
independence between the final value of non-secret –i.e. public– variables and the initial
values of secret ones. This is semantically interpreted by non-interference: a program
satisfy the confidentiality policy if every pair of computations, from a pair of initial states
differing only in secret variables, leads to final states with identical public variables [3].
Non-interference generalizes to a security lattice with more than two elements but for the
sake of the explanation two elements lattices are used.

The property of non-interference is naturally related with the dependencies between
program statements, and expressions [1]. If statement y uses a variable defined at state-
ment x, then y is data dependent on x. If the execution of statement y is controlled by
the value of an expression x, then y is control dependent on x. The set of statements/ex-
pressions on whom y depends is called the backward slice of y [16]:

BS(y) = {x|y depends on x}
From this definition, it is possible to conclude that if statement y directly or indirectly

depends on statement x, then information could flow from x to y, noted x ; y. If y do

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

Congreso General

1715

not depends on x, then it is guaranteed that information can not flow from x to y, noted
x 6; y [14], symbolically:

x 6∈ BS(y) =⇒ x 6; y

2.1 Using Program Slicing in Non-interference Analysis

This last implication permits to develop a slicing-based non-interference analysis [5].
The idea is to mark certain selected statements as providing or allowing flows at certain
security level. A provided security level specifies that a statement generates information
at this security level. An allowed security level specifies that a statement accepts flows
with a security level up to this security level.

Non-interference analysis consists in check that statements allowing security level l1
do not depend on statements providing information at security level l2 higher than l1.
More formally, program Prg is non-interferent iff

∀a ∈ A : (6 ∃p ∈ P | p ∈ BS(a) and Allows(a) < Provides(p))

where A (P) is the set of statements in Prg with an allowed (provided) security level and
Allows(x) (Provides(x)) is the security level allowed (provided) by statement x.

The advantage of this approach is that non-interference analysis depends solely on
the soundness property of correct slices: program slices are computed conservatively thus
they may contain too many statements but never too few. Another advantage is that
analysis precision depends on the slicing algorithm precision, permitting fine tuning of
the computational resources to be used in non-interference analysis.

3 Non-interference Analysis at Java and Bytecode

Levels with JBLIF

In a context where the interest in the enforcement of software security properties increases
and the access to technologies allowing easy of information exchange –such as Internet
and mobile phones– is generalized, tools able to check the security of mobile or embedded
code-based platforms are of capital importance.

These kind of applications are mainly developed in Java language and usually available
as bytecode. That is why it is important to have a security enforcement tool capable to
work on Java and bytecode programs. JBLIF is such a tool. It can be used to enforce
non-interference while system development and also to check that after compilation to
bytecode the system still satisfies non-interference –thus untrusted Java compilers can
be used–. Because JBLIF can work directly on bytecode, non-interference can be also
checked when original Java sources are not available, a common case when the program
is downloaded from Internet.

JBLIF is based on the ideas described in section 2, i.e. it performs non-interference
analysis using the different dependencies between program sentences. More specifically,
in JBLIF, non-interference analysis relies on program slices computed at bytecode level.

JBLIF is coded in Java and uses the slicing library of Indus [10], a framework for anal-
ysis of full Java programs.1 Indus provides a set of libraries that works on Jimple [15]

1With the exception of dynamic class loading, reflection, and native methods.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

Congreso General

1716

Figure 1: Highlevel architecture of JBLIF.

representation for Java bytecode. The slicing library gives access to functions comput-
ing highly customizable interprocedural context-sensitive slices in forward and backward
direction.

In JBLIF, non-interference analysis is performed as follows –Figure 1–. First, the tar-
get system and the corresponding security annotations are loaded. Then, the tool com-
putes the backward slice for each allows-statement and checks if some provides-statement
in the slices has assigned a security level greater than the security level of the allows-
statement being analyzed. If some invalid flow is detected, JBLIF informs it and generates
a dependence graph that encodes the flows traces from the offending provides-statement
to the allows-statement. The graph is the chop [7] between the two conflicting statements
and it is generated in a format compatible with GraphViz [2].

3.1 Security Annotations in JBLIF

One characteristic that distinguish JBLIF from other non-interference analyzers is its
ability to handle security annotations in both high level –Java– and low level –bytecode–
programming languages. This way, users can add annotations to program components
–variables, parameters, fields, statements, etc.– at the more convenient level.

Annotations are provided in separate files, one for each class in the system that the
user needs to annotate and the same file can contain annotations at different levels. This
scheme of annotations separated from the source code permits to check non-interference
without modifying system files, thus preventing for unintentional program errors that
could be introduced in the annotation process.

4 Examples

In this section, two small Java programs –listings 1 and 2– are used to illustrate how
non-interference analysis is done with JBLIF.2

2Security annotations are given as program comments for the sake of clarity. As mentioned before,
in JBLIF, security annotations are actually written in a separated text files.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

Congreso General

1717

Listing 1: A secure Java program.¨ ¥
1 public int s e cu re () {
2

3 int s e c r e t I n f o ;
4 int pub l i c I n f o ; // Provides : Pub l i c
5

6 s e c r e t I n f o = System . in . read () ; // Provides : Secre t
7 i f (s e c r e t I n f o == 0){
8 pub l i c I n f o = 0
9 } else {

10 pub l i c I n f o = 1
11 } ;
12 pub l i c I n f o = 2 ;
13 System . out . p r i n t (pub l i c I n f o) ; // Al lows : Pub l i c
14 }

§ ¦

The examples will also permit to emphasize that the dependence-based approach to
non-interference analysis is more precise than the type system-based approach.

4.1 First Example: a simple Java program

This example exposes the main advantage of JBLIF non-interference analysis w.r.t. the
type system based approach. Because type systems are usually flow insensitive they reject
the program at Listing 1 considering that assignments at lines 8 and 10 are implicit flows
from secretInfo affecting the final value of publicInfo. By the contrary, JBLIF accepts
the program because it can see that invalid implicit flows are killed by the assignment at
line 12, thus the final value of publicInfo is not related with secretInfo. More precisely,
JBLIF computes the backward slice of sentence 13 –annotated as allowing up to Public
level information flows–. This backward slice is the set of statements {4, 12, 13} where
only statement 4 is a provides-statement and generates a flow of Public information, thus
the flow to statement 13 is valid.

If statement 12 is removed from the program, then the backward slice of 13 will result
in the set {3, 6, 7, 8, 10}. Because statement 6 provides information at Secret level, JBLIF
will be rejected the program as insecure.

4.2 Second Example: a more complex Java program

The program at Listing 2 –with a security lattice High → Low– will permit to show
how JBLIF deals with more complex features of Java language such as object sensitivity
and dynamic dispatch. As explained before, JBLIF computes the backward slice for each
one of the allows-statements, in this program, these statements are 18, 22, and 24. Then
JBLIF checks each one of the slices looking for statements providing information at a
security level higher than the allowed level:

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

Congreso General

1718

Listing 2: A Java program with insecure flows (Taken from [4])¨ ¥
1 public class A {
2 int x ;
3 void s e t (){ x=0;}
4 void s e t (int i){x=i ;}
5 int get () { return x ;}
6 }
7 public class B extends A {
8 void s e t (){ x=2;}
9 }

10 public class InfFlow {
11 public stat ic void main (St r ing [] a) {
12 int s e c = 0 ; // Provides : High
13 int pub = 1 ; // Provides : Low
14 A o = new A() ;
15 o . s e t (s ec) ;
16 o = new A() ;
17 o . s e t (pub) ;
18 outputInt (o . get ()) ; // Al lows : Low
19 i f (s e c==0 && a [0] . equa l s (”007”))
20 o = new B() ;
21 o . s e t () ;
22 System . out . p r i n t l n (o . get ()) ; // Al lows : Low
23 o . s e t (4 2) ;
24 System . out . p r i n t l n (o instanceof B) ; // Al lows : Low
25 }
26 }

§ ¦

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

Congreso General

1719

Figure 2: Partial backward slice, as is generated by JBLIF, from line 22 of Listing 2
highlighting –gray nodes– an invalid flow trace.

• The backward slice for statement 18 includes only one provides-statement : state-
ment 13. Because 13 provides Low flows, the flow to 18 is safe. Notice that JBLIF
is able to see that the object referenced at line 18, is in fact the object created at
line 16 and set with a Low value –variable pub– and not the first created object
–line 14– which was set with a High value –variable sec–. This is possible because
JBLIF has object sensitivity, something that is very hard to achieve with a type
system.

• The backward slice for statement 22 includes statement 20, thus statements 19 and
12 are also included. Beacause the later provides a High flow, JBLIF will indicate
the existence of an invalid flow from 12 to 22, and the corresponding flow trace
–Figure 2– is generated.

• The backward slice for statement 24, as the slice for 22 does, includes statement 12
because statements 19 and 20 are also included; JBLIF will highlight the invalid
flow from 12 to 24 and generate the corresponding flow trace.

5 Related Work

Language-based information-flow security has a long, rich history with many –mostly
theoretical– results [12]. Despite this large body of work, there are only few full language
implementations of non-interference analyzers. In this section we provide a short overview
of them and a comparison with JBLIF.

Jif is an information-flow typed extension of Java that builds upon the decentralized
label model [9] and supports flexible and expressive information flow policies. Recently,
Hicks et al. introduced FJifP, an extension of Jif that implements the trusted declassifi-
cation model [6]. Flow Caml by Simonet et al. consists in an extension of the Objective
Caml language with a type system tracing information flow [13].

The main advantage of JBLIF over these tools is that non-interference is enforced
without rewriting the system in a new language. Moreover, the original source code of
the system is not needed because JBLIF works at bytecode level, thus only .class files

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

Congreso General

1720

are necessary. Other distinctive characteristic of JBLIF w.r.t. the above mentioned tools
is related with the analysis approach: while JBLIF uses a dependence-based technique,
Jif, FJifP, and Flow Caml use type systems; thus JBLIF analyses are more precise and,
as mentioned previously, less false alarms are generated.

Recently, in [8], Li and Zdancewic presented an embedded security sublanguage of
Haskell for enforcing information-flow policies in the standard Haskell programming
language. Their approach has the advantage, over other systems like Jif, that the
information-flow type system encoding is done using general features of Haskell with-
out the need of a new language. Anyway, parts of the system where non-interference is
to be enforced must be recoded, something that is not needed with JBLIF.

In [4], Hammer et al. present a dependence graphs-based system to check intransitive
non-interference [11]. They inform that the system was implemented as an Eclipse plug-
in that handles full Java. As far as we know, this tool and JBLIF are the sole tools
implementing non-interference analysis for full Java language. The principal differences
between JBLIF and this system are:

1. JBLIF works at both Java and bytecode level while Hammer’s system works only
at Java level,

2. JBLIF is not able to handle intentional information declassification as Hammer’s
system does,

3. In JBLIF, annotations are made in separated files and source code remains un-
touched. In Hammer’s system, annotations are made in the Java source files,

4. JBLIF is available upon request to the authors.

6 Conclusions and Future Work

Despite the urgent need for strong confidentiality guarantees, the large body of litera-
ture, and considerable attention from the research community, information-flow based
enforcement mechanisms are not widely used. One reason for this is the lack of a full-
scale implementation of non-interference analysis for popular programming languages.
JBLIF helps to overpass this gap between research and practice by making available non-
interference analysis for full Java and also for Java bytecode. Moreover, JBLIF is the
first tool to provide a flexible annotation mechanism allowing annotations at both Java,
and bytecode level in separated files keeping source code untouched.

We have planned to extend JBLIF as a plug-in for the Eclipse IDE to facilitate the
use of JBLIF in real cases of confidential Java programs development. Future work also
includes adding the possibility of information declassification. Many realistic systems
need to declassify some kind of confidential information as part of their normal behavior.
The actual challenge is to differentiate between proper and improper declassification of
confidential information. This problem will be the object of our coming research efforts.

JBLIF is available upon request to the authors.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

Congreso General

1721

References

[1] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core calculus
of dependency. In POPL ’99. Proceedings of the 26th ACM SIGPLAN-SIGACT on
Principles of programming languages, January 20–22, 1999, San Antonio, TX, pages
147–160, New York, NY, USA, 1999. ACM Press.

[2] Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering. Software — Practice and Experience,
30(11):1203–1233, 2000.

[3] Joseph A. Goguen and José Meseguer. Security policies and security models. In
IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[4] Christian Hammer, Jens Krinke, and Frank Nodes. Intransitive noninterference in
dependence graphs. In Second International Symposium on Leveraging Application
of Formal Methods, Verification and Validation (ISoLA 2006), pages 136–145, 2006.

[5] Christian Hammer, Jens Krinke, and Gregor Snelting. Information flow control
for java based on path conditions in dependence graphs. In IEEE International
Symposium on Secure Software Engineering, 2006.

[6] Boniface Hicks, Dave King, Patrick McDaniel, and Michael Hicks. Trusted declassi-
fication:: high-level policy for a security-typed language. In PLAS ’06: Proceedings
of the 2006 workshop on Programming languages and analysis for security, pages
65–74, New York, NY, USA, 2006. ACM Press.

[7] Daniel Jackson and Eugene J. Rollins. A new model of program dependences for
reverse engineering. In SIGSOFT ’94: Proceedings of the 2nd ACM SIGSOFT sym-
posium on Foundations of software engineering, pages 2–10, New York, NY, USA,
1994. ACM Press.

[8] Peng Li and Steve Zdancewic. Encoding information flow in haskell. In CSFW ’06:
Proceedings of the 19th IEEE Workshop on Computer Security Foundations, page 16,
Washington, DC, USA, 2006. IEEE Computer Society.

[9] Myers and Liskov. Complete, safe information flow with decentralized labels. In RSP:
19th IEEE Computer Society Symposium on Research in Security and Privacy, 1998.

[10] V. P. Ranganath and J. Hatcliff. An overview of the indus framework for analysis
and slicing of concurrent java software (keynote talk - extended abstract). pages 3–7,
2006.

[11] A. W. Roscoe and Michael Goldsmith. What is intransitive noninterference? In
PCSFW: Proceedings of The 12th Computer Security Foundations Workshop. IEEE
Computer Society Press, 1999.

[12] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Journal
on Selected Areas in Communications, 21(1), 2003.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

Congreso General

1722

[13] V. Simonet. Flow caml in a nutshell. In Proceedings of the first APPSEM-II work-
shop, pages 152–165, 2003.

[14] Gregor Snelting, Torsten Robschink, and Jens Krinke. Efficient path conditions in
dependence graphs for software safety analysis. 15(4):410–457, October 2006.

[15] Raja Vallee-Rai and Laurie J. Hendren. Jimple: Simplifying java bytecode for anal-
yses and transformations, 1998.

[16] Mark Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th international
conference on Software engineering, pages 439–449, Piscataway, NJ, USA, 1981.
IEEE Press.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

Congreso General

1723

