
Analisis and Tools for Performance Prediction

González J.A. 1, León C.1, Piccoli, F. 2, Printista M.2, Roda J.L.1, Rodríguez C.1
Rodríguez J.M.1 and Sande F.1

1Dpto. Estadística, Investigación Operativa y Computación,
 Universidad de La Laguna, Tenerife, Spain

2 Universidad Nacional de San Luis
Ejército de los Andes 950, San Luis, Argentina

{mpiccoli, mprinti}@unsl.edu.ar

Abstract. We present an analytical model that extends BSP to cover both
oblivious synchronization and group partitioning. There are a few
oversimplifications in BSP that make difficult to have accurate predictions.
Even if the numbers of individual communication or computation operations in
two stages are the same, the actual times for these two stages may differ. These
differences are due to the separate nature of the operations or to the particular
pattern followed by the messages. Even worse, the assumption that a constant
number of machine instructions takes constant time is far from the truth.
Current memory hierarchies imply that memory access vary from a few cycles
to several thousands. A natural proposal is to associate a different
proportionality constant with each basic block, and analogously, to associate
different latencies and bandwidths with each “communication block”.
Unfortunately, to use this approach implies that the evaluation parameters not
only depend on given architecture, but also reflect algorithm characteristics.
Such parameter evaluation must be done for every algorithm. This is a heavy
task, implying experiment design, timing, statistics, pattern recognition and
multi-parameter fitting algorithms. Software support is required. We have
developed a compiler that takes as source a C program annotated with
complexity formulas and produces as output an instrumented code. The trace
files obtained from the execution of the resulting code are analyzed with an
interactive interpreter, giving us, among other information, the values of those
parameters.

Keywords: Complexity model, Performance analysis, Performance
prediction, Performance profiling, Oblivious
synchronization.

1 Introduction

Most of the approaches to performance analysis and prediction fall into two
categories: Analytical Modeling and Performance Profiling. Analytical methods use
models of the architecture and the algorithm to predict the program runtime. The
analysis can be independent of the target architecture. Among the analytical models,
the Bulk Synchronous Parallel (BSP) model [13] is the most popular . Profiling may
be conducted on an existing parallel system to recognize current performance
bottlenecks. Performing measurements requires special purpose hardware and
software and, since the target machine is used , the measurement method can be
highly accurate [4, 5, 9, 11, 14]. Although much work has been developed in
Analytical Modeling and in Parallel Profiling, sometimes seems to be a divorce
between them. Analytical modeling is considered to be too theoretical to be accurate
in practical cases and profiling analysis is criticized of lack of generality. This work
attempts to find a hybrid approach, proposing and analytical model supported by a
profiling tool. The class of parallel algorithms whose performance behavior can be
predicted includes the Bulk Synchronous Parallel Algorithm class.
The asynchronous nature of some parallel paradigms like farms and pipelines
hampers the efficient implementation in the scope of a flat-data-parallel global-barrier
Bulk Synchronous Programming software like the BSPLib [10]. To overcome these
limitations, the Paderborn University BSP library (PUB [1]) offers the use of
collective operations, processor-partition operations and oblivious synchronization. In
addition to the BSP most common features, PUB provides the capacity to partition the
current BSP machine into several subsets, each of which acts as an autonomous BSP
computer with their own processor numbering and synchronization points. The
authors of the BSP Worldwide Standard Library report claim that an unwanted
consequence of group partitioning is a loss of accuracy [7, page 18]. Other of the
novel features of PUB is the oblivious synchronization. It is implemented through the
bsp_oblsync(bsp,n) function, which does not return until n messages have been
received. Although its use mitigates the synchronization overhead, it implies that
different processors can be in different supersteps at the same time. The BSP semantic
is preserved in PUB by numbering the supersteps and by ensuring that the receiver
thread buffers messages that arrive out of order until the correct superstep is reached.

Fig. 1 on the left illustrates the impact of the
second improvement, oblivious synchronizations,
in BSP prediction accuracy. The diagram
corresponds to an application running on a 2-
processor machine in 2 supersteps. White areas
correspond to computation while black areas stand
for communication. During the first superstep,
processor P1 performs a task heavier (4 sec) than
the performed by processor P0 (2 sec). After an
exchange operation (2 sec) and an oblivious
synchronization, the situation is inverted and
processor P0 does the lighter part compensating

P1P0

tim
e

w

w

2w

2w

Lb

Lb

g*h

g*h

Fig. 1. Oblivious Supersteps

the former unbalance. Finally, there is another oblivious exchange between processors
P0 and P1 (2 sec). While the actual time is 10 sec, the BSP prediction corresponding
to a global synchronous barrier is of 12 sec.

There are other sources of inaccuracy intrinsic to the definition of BSP. One
comes from characterizing the computing time W through a single parameter s,
considering that all the elementary local operations take the same quantity of time
(called time step). Significant differences are observed in practice, partly due to the
separate nature of the operations (number of floating point arithmetic operations,
number of memory transfers, etc.) involved [15, page 123]. The other comes from
characterizing the communication time through two single parameters g and L,
considering that any h-relation takes the same quantity of time, independently of the
particular communication pattern involved. In [12] we studied the impact of such
patterns in the h-relation time.

A natural (and more realistic) alternative is to associate a different proportionality
constant with each basic block (maximal segment of code without jumps), and
analogously, to associate different latencies and bandwidths with the same h-relation,
depending on the pattern. However, although these new parameters means an
improvement, this approach does not suffices to have accurate predictions. Most
modern microprocessors have at least two levels of cache. Furthermore, operating
systems use main memory as a cache for a larger virtual address space for each
process and translate between virtual addresses used by a program and the physical
addresses required by the hardware. Memory is divided into blocks called pages. To
keep the overhead address translation low, the most recently used page addresses are
cached in a translation lookaside buffer (TLB). While a L1 cache hit typically takes 2
or 3 cycles a TLB miss requiring only reload of the TLB can take the order of 2000
cycles [2 page 3]. The assumption that a constant number of machine instructions
takes constant time is far from the truth. Any model attempting to be accurate has to
have into account this paradoxical “variation of the constants”. On the other side of
the balance, the model has to be simply enough to be practicable. To have into
account these considerations implies the evaluation of a finite (but perhaps large)
number of parameters. These parameters are not only architecture dependent, but also
reflect algorithm characteristics. Such parameter evaluation is a heavy task, implying
experiment design, timing, statistics and multi-parameter fitting algorithms. It does
not seem reasonable to ask the algorithm designer to carry on by hand such tasks for
every developed program.

Our proposal attempts to give a solution to all the aforementioned problems. In a
previous work, the authors introduced the Oblivious BSP model (OBSP) to deal with
both oblivious synchronization and group partitioning [6]. Starting from OBSP, we
now address the problem of how to relax the number of parameters without
introducing an unbearable complexity. The resulting model, called OBSP* is
introduced in the following section. The third section presents CALL, a prototype of a
software tool for the analysis and prediction of PUB BSP (and most MPI) programs.
The tool consists of “pragma” language extending C, its associated compiler and a
profiler/analyzer interpreter of the trace files generated by the instrumented target.
The analyzer provides the values of the communication and computation constants,

establishes the segments where the values of the constants are valid and facilitates the
prediction of the performance of the algorithm for any input values. Both the theory
and the computational experiences allow us to conclude, in the fourth section, that an
OBSP* analysis means an improvement in prediction accuracy when compared with
using traditional BSP (if in scope) or OBSP.

2 The OBSP* model

As in ordinary BSP, the execution of a PUB program on a BSP machine X={0,...,P-1}
consists of supersteps. However, as a consequence of the oblivious synchronization,
processors may be in different supersteps at a given time. Still it is true that:

• Supersteps can be numbered starting at 1.
• The total number of supersteps R, performed by all the P processors is the same.
• Although messages sent by a processor in superstep s may arrive to another

processor executing an earlier superstep r<s, communications are made effective
only when the receiver processor reaches the end of superstep s.

Lets assume in first instance that no processor partitioning is performed in the
analyzed task T. If the superstep s ends in an oblivious synchronization, we define the
set Ωs,i for a given processor i and superstep s as the set

Ωs,i = {j∈X / Processor j sends a message to processor i in superstep s} ∪ { i} (1)

while Ωs,i = X when the superstep ends in a global barrier synchronization. In fact,
this last expression can be considered a particular case of formula (1) if it is accepted
that barrier synchronization carries (directly or indirectly) an AllToAll communication
pattern. Processors in the set Ωs,i are called "the incoming partners of processor i in
step s". Usually it is accepted that all the processors start the computation at the same
time. The presence of partition functions forces us to consider the most general case
in which each processor i joins the computation at a different initial time ξi. Denoting
by ξ = (ξ0 , ..., ξp-1) the vector for all processors, the OBSP* time Φs,i(T, X, ξ) taken
by processor i∈X executing task T to finish its superstep s is recursively defined by
the formulas:

Φ1,i(T, X, ξ) = max {W1,j + ξj / j∈ Ω1,i } + (g * h1,i + L), i = 0,..., P-1,

Φs,i(T, X, ξ) = max {Φs-1,j(T, X, ξ) + Ws,j / j∈ Ωs,i} + (g * hs,i + L),
s = 2,..,R, i = 0,..., P-1

(2)

where Ws,j denotes the time spent in computing by processor j in step s. Assuming the
processors have an instruction set {I1 ,...,It} of size t, where the i-th instruction Ii takes
time pi, the time Ws,j is given by the formula:

Ws,j = ∑i=1,t ws,i,j * pi where ws,i,j = number of instructions of the class Ii
executed by processor j in step s.

(3)

Constant R denotes the total number of supersteps, and constants g and L vary
depending on the algorithm. The value hs,i is defined as the number of bytes
communicated by processor i in step s, that is:

hs,i = max {ins,j @ outs,j / j∈Ωs,i }, s = 1,...,R, i = 0,...,P-1 (4)

and ins,j and outs,j respectively denote the number of incoming/outgoing bytes to/from
processor j in the superstep s. The @ operation is defined as max or sum depending on
the input/output capabilities of the network interface.

At any time, processors are organized in a hierarchy of processor sets. A
processor set in PUB is represented by a structure called a BSP object. Let Q⊆X be a
set of processors (i.e. a BSP object) executing task T. When processors in Q execute
function bsp_partition(t_bsp *Q, t_bsp *S, int r, int *Y), the set Q is divided in r
disjoint subsets Si such that,

Q = ∪0 ≤ i≤ r-1 Si ,

S0 = {0,..., Y[0]-1},

Si = {Y[i-1],..., Y[i]-1}, 1 ≤ i ≤ r-1

(5)

After the partition step, each subgroup Si acts as an autonomous BSP computer
with its own processor numbering, messages queue and synchronization mechanism.
The time that processor j∈Si takes to finish its work in task Ti executed by the BSP
object Si is given by

ΦRi, j(Ti, Si, Φs-1,j+w*s,j) such that j∈ Si , i = 0,...,r-1, (6)

where Ri is the number of supersteps performed in task Ti and w*s,j is the computing
time executed by processor j before its call to the bsp_partition function in the s-th
superstep of original set Q. Observe that subgroups are created in a stack-like order,
so function bsp_partition and bsp_done incur no communication. This implies that
different processors in a given subset can arrive at the partition process (and leave it)
at different time. From the point of view of the parent machine, the code executed
between the call to bsp_partition and bsp_done behaves as computation (i.e. like a
call to a subroutine).

3 An OBSP* Environment for Performance Prediction

The CALL system consists of a translator (called call), a run time library (cll.h) and
an analyzer interpreter (llac). Although it can be used for the analysis of sequential
programs, it gives also support for the prediction of PUB and MPI parallel programs.
The run time library makes use, if installed, of the PAPI library [2]. Fig. 2 shows the
execution system of CALL. From a sequential or parallel C program annotated with
call pragmas, the call compiler produces two files containing the necessary code
(*.cll.c) and structures (*.cll.h) to save variable values, to time the corresponding code
and to produce the reports required by the llac analyzer. Once the program has been
compiled and executed, the llac interpreter allows the programmer to play with the

resulting data, considering subsets, transformations of them or merging them with
other data coming from other experiences. The analyzer deduces the values of the
parameters involved, the segments where they are valid, the variation of these
parameters with the input values, predicts the behavior of the different experiments
under study and allows their graphic visualization.

To exemplify the combined use of the OBSP* model and the CALL tool to predict
the time spent by PUB programs we have chosen the Fast Fourier Transform (FFT)
algorithm. The Fourier Transform (FT) decomposes a function into its different-
frequency sinusoidal components. In 1965, Tukey and Cooley [3] proposed a Discrete
Fourier Transform algorithm with a number of computations of order O(N log(N)). It
is a divide and conquer algorithm based on the fact that the transformation of a digital
signal can be obtained by combining the transforms of its even and odd components.
Although it is not a requirement, the expression of the algorithm is simplified using a
signal size, N that is a power of 2.

Line 1 in Figure 3 warns the call compiler to notice that this is a BSP parallel
program using PUB. The optional argument gbsp points to the global BSP object.
This information will be used by the report clause in line 10. When executed, the
code generated from this line will collect all the statistics sampled in the different
processors, routing them to processor 0, where they will be dumped on the
corresponding output file fft.cll.#n.dat.

Lines 5 to 7 in Fig. 3 define a “call experiment”. The experiment is named after

the identifier following the pragma, fft in the example. The complexity formula ruling
the time taken by the segment of code delimited by the experiment appears after its
name. The constants in the complexity formula are referenced indexing its name. In
this case there are 4 constants, fft[0], fft[1], fft[2] and fft[3]. Any call complexity
formula must be in canonical form, i.e. has to be a sum of terms made of complexity
constants multiplied by expressions. More general, the experiment constant must be
the only multiplicative constant in each term. This constraint is due to singularities
appearing in the multidimensional fit algorithm [8] used by the interpreter.

The complexity formula (11) for Φ2,i (FFT,X,0) that will be obtained for the
algorithm in figure 4 is written in terms of the corresponding program variables:

fft[0] + fft[1] * log(P)+ fft[2] *(N/P)* log(N/P)+ fft[3] *N*(P-1)/P

src.c call src.cll.c
src.cll.h

cc+(PUB|MPI)?+PAPI?
? src.cll

(executable)

llac

src.cll
mpirun src.cll
pubrun src.cll

...

(traces)
src.cll.0.dat
src.cll.1.dat

parameters
predictions

plots
 ...

Fig. 2. Diagram of the CALL system

where the relations with the constants introduced in the next subsection are:

fft[0] = G[0];
fft[1] =A[0]+ B[0]+ C[0]+ E[0]+ F[0]+D[0]

fft[2] = G[1];
fft[3]=F[1]+D[1]

For each experiment the front end call compiler generates the code to time it and to
save its state for later report and treatment. Starting from the trace files generated
during the execution, the back end llac analyzer determines the values of fft[0], fft[1],
fft[2] and fft[3]. Actually, what llac determines using linear multifit is a vector of
values for each of these constants and the intervals where those values apply. For this
example, the constants vary with N and P. There are usually values of fft[0], fft[1],
fft[2] and fft[3] for small values of N and P, and another different values for medium
sizes and so forth. When predicting the time for a concrete value –say N = 1024, P =
32 the programmer does not need to concern with the exact parameter values. The llac
system will choose the appropriate constant values of fft[0], fft[1], fft[2] and fft[3]
(the one for the small range of N and P = 32 for the example) to obtain a more precise
prediction. The recognition of the intervals of validity of the constant parameters
imply the use of heuristic statistical techniques.

The code in Fig. 4 is a PUB implementation of the FFT algorithm annotated with

CALL pragmas. It has as input a vector of complex numbers a, the vector W
containing the N-th pre-computed roots of unity, the number N of elements, the stride
determining a subproblem of the original problem and the pointer to the data
structure, gbsp defining the current BSP machine. We assume that both the input data
and the result vector A are replicated in each processor.

Let’s denote by FFT the code presented in Fig. 4. At each level d-1 of the recursion,
there is a PUB machine Xd-1 that executes two OBSP* supersteps. The time spent by a
processor i ∈ Xd-1 to perform the first superstep, Φ1,i(FFT, Xd-1, ξ), consists of four
computational blocks and one communication:

a) Input signal division into its even and odd components (line 7). Because the
input data is replicated on each processor, this operation can be implemented
over the same vector a. Variable stride indicates the separation between

1. #pragma parallel PUB gbsp
2. ...
3. initizalize(N, a);
4. Roots(N/2, W);
5. #pragma cll fft fft[0]+fft[1]*log(P)+fft[2]*(N/P)*log(N/P)+\
 fft[3] *N*(P-1)/P
6. parDandCFFT(A, a, W, N, 1, D, gbsp);
7. #pragma cll end fft
8. bsp_sync (gbsp);
9. ...
10. #pragma cll report all
11. ...

Fig. 3. The fft experiment

logical consecutive elements in the input vector. This computation takes a
constant time A[0].

b) The BSP machine Xd-1 is partitioned in two submachines Xd
j with j = 0,1

(lines 10-12). Under the assumption that the number of processors in Xd-1 is a
power of 2, each submachine has the same number of processors. A PUB
machine partition operation takes a constant time B[0].

c) While one of the submachines computes the transformation of the even
components, the other does the same with the odd terms. These computations
correspond to the recursive calls in lines 15 and 29 respectively. The times
required by each of these submachines to perform their computations are given
by Φ2,i(FFT, Xd

j, ξd-1,i + A[0] + B[0]). Where d is the recursion depth, Xd
j is

the set of processors in the current BSP machine, ξd-1,i is the time when the
calling FFT started and w*1,i = A[0] + B[0] denotes the computation
performed by the machine Xd

j in the current superstep before the submachine
begins its computation.

d) When a submachine finishes its task, each processor determines its
communication partner and then rejoins to the father group (lines 17-18 and
31-32 respectively). This operation is performed in constant time C[0].

e) A communication bounds the superstep. Partial results are exchanged between
partner processors (lines 21-22 and 35-36). Each processor has to wait only for
a message from its partner. Under the assumption that the input signal size is a
power of 2, the h-relation is the same for all the processors. We work with the
h-relation definition as the sum of incoming and outgoing message sizes.

h1,i= size = N * sizeof(Complex),

Ωs,i = {i, partneri}
(7)

Therefore, the time for the first superstep is:
Φ1,i(FFT, Xd-1, ξ) = max {Φ2,k(FFT, Xd, ξ k + A[0]+B[0]) + C[0] / k∈ Ω1,i }

+ D[1]* size + D[0]
(8)

The second superstep deals with the combination phase. It consists of two

computational blocks and no communication is required.
a) In the first computation block (lines 25 and 39), the message received from the

partner is retrieved from the communication library buffer to the process
memory. This requires time E[0].

b) The combination itself is performed by the call to routine combine in line 43.
This computation takes time proportional to the signal size, that is F[0]+F[1]
* n.

Thus, the formulas for the second superstep are:

Ωs,i = {i}

Φ2,i(FFT, Xd-1, ξd-1,i) = Φ1,i(FFT,Xd-1, ξd-1,i) + E[0] + F[0] + F[1] * n

(9)

This recursive process follows until only one processor remains in the BSP
submachine. These single-processor machines only perform one superstep. No
communication is needed and the computations consist on calling to routine
seqDandCFFT in line 49, which transforms a signal with size N/P using a sequential
version of the same algorithm. The computational complexity is O((N/P)*log(N/P)),
and is approximated by the linear expression:

Φ1,i(FFT, Slog(P), ξlog(P)) = G[0] + G[1] * N/P * log(N/P) (10)

Since all processors start the computation at the same instant ξ0,i = 0. Using
successively formulas 7, 8 and 9, leads to the expression:

1. void parDandCFFT(Complex *A, Complex *a, Complex *W,
 int N, int stride,t_bsp *gbsp) {
2. /* variable declarations */
3. if (bsp_nprocs(gbsp) > 1) {
4. if(N == 1) { A[0].re = a[0].re; A[0].im = a[0].im; }
5. else {
6. #pragma cll A A[0]
7. n = N / 2; size = n*sizeof(Complex); B = A; C = A + n;
8. #pragma cll end A
9. #pragma cll B B[0]
10. subgroup[1] = bsp_nprocs(gbsp);
11. subgroup[0] = (bsp_nprocs(gbsp) / 2);
12. bsp_partition(gbsp, &bsp_new, 2, subgroup);
13. #pragma cll end B
14. if(bsp_pid(gbsp) < subgroup[0]) {
15. parDandCFFT(B, a, W, n, stride*2, &bsp_new);
16. #pragma cll C C[0]
17. partner = bsp_pid(&bsp_new) + subgroup[0];
18. bsp_done(&bsp_new);
19. #pragma cll end C
20. #pragma cll D D[0]+D[1]*size
21. bsp_hpsend(gbsp, partner, B, size);
22. bsp_oblsync(gbsp, 1);
23. #pragma cll end D
24. #pragma cll E E[0]+E[1]*size
25. C = (Complex*)bspmsg_data(bsp_getmsg(gbsp, 0));
26. #pragma cll end E
27. }
28. else {
29. parDandCFFT(C, a+stride, W, n, stride*2, &bsp_new);
30. #pragma cll C C[0]
31. partner = bsp_pid(&bsp_new);
32. bsp_done(&bsp_new);
33. #pragma cll end C
34. #pragma cll D D[0]+D[1]*size
35. bsp_hpsend(gbsp, partner, C, size);
36. bsp_oblsync(gbsp, 1);
37. #pragma cll end D
38. #pragma cll E E[0]+E[1]*size
39. B = (Complex*)bspmsg_data(bsp_getmsg(gbsp, 0));
40. #pragma cll end E
41. }
42. #pragma cll F F[0]+F[1]*n
43. combine(A,B,C,W,n);
44. #pragma cll end F
45. }
46. }
47. else
48. #pragma cll G G[0]+G[1]*N*log(N)
49. seqDandCFFT(A, a, W, N, stride);
50. #pragma cll end G
51. }

Fig. 4. Parallel Fast Fourier Transform

Φ2,i(FFT, X, ξ) = log(P) * (A[0] + B[0] + C[0] + E[0]) +

G[0] + G[1] * (N/P) * log(N/P) +

 log(P)* F[0] + F[1] * ((P-1)/P) * N +

 D[1]* ((P-1)/P) * size + log(P) * D[0]

(11)

4 Results and Conclusions

Table 1 presents the results. The OBSP* approach implies an improving in prediction
accuracy for both computation and communication parts. The benefits are remarkable
if they are compared with the errors obtained using raw BSP, where they can reach
large values [15].

Table 1. Real and predicted times (sec.) for the FFT in the CRAY T3E (2 Megacomplex).

PROCS TIME OBSP* ERROR %
1 11.7748 11.8096 -0.30
2 6.0036 5.8943 1.82
4 3.2120 3.0908 3.77
8 1.8939 1.7735 6.36
16 1.2750 1.1644 8.68
32 0.9664 0.8919 7.71

The CALL environment is currently under development. The values of the parameters
and intervals of validity where manually computed . A first deliverable is expected to
be publicly available by the end of 2001.

Acknowledgements

We would like to thank to Centro de Investigaciones Energéticas,
Medioambientales y Tecnológicas (CIEMAT), like thus also to the National
University of San Luis, CONICET, and ANPCYT, Argentina, from which continuous
support is received. This research has been partially supported by Comisión
Interministerial de Ciencia y Tecnología under project TIC1999-0754-C03, Spain.

References

1. Bonorden, O., Juurlink, B., von Otte, I., Rieping, I. The Paderborn University
BSP (PUB) Library- Desing, Implementation and Performance- 13th International

Parallel Processing Symposium & 10th Symposium on Parallel and Distributed
Processing (IPPs/SPDP). 1999.

2. Browne, S. Dongarra, J. Garner, N. Ho G., Mucci, P. A Portable Programming
Interface for Performance Evaluation on Modern Processors. The International
Journal of High Performance Computing Applications 14:3, Fall 2000, pp. 189-
204.

3. Cooley, J. W. and Tukey, J. W.: An algorithm for the machine calculation of
complex Fourier series. Mathematics of Computation, 19:90, 1965 pp. 297-301.

4. Espinosa A., Margalef, T., Luque E. Automatic Performance Evaluation of
Parallel Programs. Proc. Of the 6th Euromicro Workshopon PDP. IEEE CS.
1998. 43-49.

5. Fahringer T, Zima H. Static Parameter Based Performance Prediction Tool for
Parallel Programs. ICS. ACM Press. 1993. 207-219.

6. González, J.A., León, C., Piccoli, F., Pristinta, M., Roda, J.L., Rodríguez, C.,
Sande, F. Performance Prediction of Oblivious BSP Programs. EuroPar 2001.
Springer-Verlag. 2001.

7. Goudreau, M. Hill, J., Lang, K. McColl, B., Rao, S., Stephanescu, D., Suel, T.,
Tsantilas, T. A Proposal for the BSP Worldwide Standard Library. http://www.
bsp-worldwide.org/standard/stand2.htm. 1996.

8. Groom, D. E. et al. Statistics. The European Physical Journal C15 (2000).
http://pdg.lbl.gov/2000/statrppbook.pdf

9. Heath M. Etheridge J. Visualizing the Performance of Parallel Programs. IEEE
Software. 8 (5) September 1991. 29-39.

10. Hill J. McColl W. Stefanescu D. Goudreau M.. Lang K. Rao S. Suel T. Tsantilas
T. Bisseling R. BSPLib: The BSP Programming Library. Parallel Computing.
24(14) pp. 1947-1980. 1988.

11. Labarta J., Girona S., Pillet V., Cortes T., Gregoris L. Dip: A Parallel Program
Development Environment. Europar 96. Lyon. August. 1996.

12. Rodríguez C., Roda J.L., Morales D.G., Almeida F. h-relation models for
Current Standard Parallel Platforms. EuroPar'98. Springer-Verlag. pp 234-243.

13. Valiant L.G. A Bridging Model for Parallel Computation. Communications of
the ACM. 33(8). pp. 103-111. 1990.

14. Pallas. Vampir 2.0. Visualization and Analysis of MPI Programs.
http://www.pallas.com.

15. Zavanella, A. Milazzo, A. Predictability of Bulk Synchronous Programs Using
MPI. 8th Euromicro PDP pp. 118-123. 2000.

