Enhancing Data Parallel Aplications with Task Parallelism

Fernandez J., Guerrero R., Piccoli F., Printista M., Villalobos M. *
Departamento de Informética

Universidad Nacional de San Luis
Ejército de los Andes 950
5700 - San Luis
Argentina

e-mail: {jmfer, rag, mpiccoli, mprinti, mavi}@unsl.edu.ar

Abstract

Most parallel applications contain data paral-
lelism and almost all discussion of its solutions
has limited to the simplest and least expressive
form: flat data parallelism. Several generaliza-
tion of the flat data parallel model have been
proposed because a large number of those ap-
plications need a combination of task and data
parallelism to represent their natural computa-
tion structure and to achieve good performance
in their results. Their aim is to allow the capa-
bility of combining the easiness of programming
of the data parallel model with the efficiency of
the task parallel model.

In this work, we examine how to enhance two
basic data parallel computation applications with
task parallelism. Applications presented: N-body
Simulation and Echo Elimination Process have
been chosen from an unlimited scope of applica-
tions where the benefit of the integration of task
and data parallelism can be shown.

Keywords: Data parallelism, Task parallelism,
Nested data parallelism, Pipeline parallelism, All-
pairs computations, Image-Processing, Color im-
ages.

*Group supported by the UNSL and ANPCYT (Agen-
cia Nacional para la Promocién de la Ciencia y Tecnologia)

1 INTRODUCTION

Data parallelism is one of the more successful
efforts to introduce explicit parallelism to high
level programming languages. The approach is
taken because many useful computations can be
framed in terms of a set of independent sub-
computations, each one strongly associated with
an element of a large data structure. Such com-
putations are inherently parallelizable. Data par-
allel programming is particularly convenient for
two reasons: the first, is its easiness of program-
ming and the second is that it can scale easily to
larger problem sizes.

Developments in parallelism have primarily
focused on data parallelism [8][23] as a means
to portable and efficient parallel programming.
Most parallel applications contain data paral-
lelism and almost all discussion of its solutions
has limited to the simplest and least expressive
form: unstructured data parallelism (flat). How-
ever, a large number of such applications need a
combination of task and data parallelism to rep-
resent the natural computation structure or to
enhance performance.

The task parallel model achieves parallelism
by using multiple threads of control, each one
getting a part of the problem. Task parallelism
is based on the concept of a processor subgroup,
which is a collection of processors executing in
data parallel manner. An instance of a program
statement is executed by a processors subgroup,
which may include all processors executing the
program, or only a subset of them. Task paral-

lelism is obtained by dividing the current proces-
sors into processors subgroup and performing in-
dependent parallel computations on disjoint pro-
cessors subgroups.

The two application presented here (the N-
body Simulation and the Echo Elimination Pro-
cess) have been chosen from an unlimited scope of
applications where the benefit of the integration
of task and data parallelism is shown and, since
they provide an excellent scenario for benchmark-
ing. We illustrate how to enhance two basic data
parallel computation structures with task paral-
lelism.

If a data parallel computation is repeated for
a sequence of data sets, it is also possible to di-
vide the processors into subgroups and assign the
entire processing of each data set to one of the
processors subgroups. This kind of parallelism is
normally called Replication. It is possible to use
Replication in combination with pipeling to im-
prove scalability of stream based computations.

Many computational problems encountered
in practice have an outer-level of coarse grained
parallelism, where the number of task are few,
but where each task contains a large amount of
work. Each such outer-level task might itself be
a parallel task of more fine grained parallelism.
These kind of problems invite to the use of mul-
tilevel parallelism or nested parallelism [5].

This paper is organized as follows. Section
2 presents the two referred problems, the follow-
ing section describe the data, data & task and,
task parallelism solutions for the presented appli-
cations. The last section contains the conclusions.

2 STUDY CASES

In this section, a brief introduction about the se-
lected problems and the involved concepts are ex-
plained. They will try to show how their nature
apply for different parallel solutions.

2.1 The N-Body Problem

The original motivation was to simulate the N-
Body Problem. This problem is concerned with
determining the effects of the forces between
"bodies”. The objective is to find the positions
and movements of the bodies in space that are
subject to gravitational forces from others bodies
using Newtonian laws of physics[20][24]:

(5251 N N ij(i;j
52 Zaii = Z_ I P
j#i j#i J

where

Direct implementation of this system is a
trivial programming exercise. It is simply a dou-
ble loop which vectorizes very well. At discrete
time intervals, the algorithm computes the forces
on the bodies and adjust their velocities and po-
sitions:

While time < t_end do

O Accumulate forces by finding the force £(i,j) of
particle pair i,j (All-pairs force)

O Integrate the equations of motion by updating
the position (leapfrog)

O Update time counter

Unfortunately, it has an asymptotic time
complexity of O(N?). When there are large num-
ber of bodies, the evaluation of the force function
can consume too much time. If we have N bodies,
then there will be N evaluations of the force func-
tion, each of which will have N-1 terms that in-
volve expensive operations. In ours experiments
with a system of 256 bodies, the evaluation of the
force function will account for well over 95% of
the CPU time used. The integration required for
to compute new_position and all the other house-
keeping taking up around 5%. For other N-body
programs that have to evaluate thousands or even
millions of bodies, this method of evaluating the
force function is almost completely useless. Be-
cause the efficient evaluation of the force function
is so critical for most N-body programs, this has
been a very active area of research in the last 15

years. Many different approaches [2][3] have been
used which reduce the overall time and allow sim-
ulation of systems with larger values of N, but its
trade-off and profit is not seem to be known.

The basic algorithm is shown in Figure 1. We
omit declarations of arrays and variables for con-
ciseness when they are not relevant to the discus-
sion. For a computer simulation, we need to pro-
duce several generations until to arrive to t_end
(maximum time of processing).

void N-body(Body *particles)
{

t=0; /*time variable */
while (t <t_end) {
for (i=0;i<N;i++){
force(particles , i);
new_position(particles[i] , dt);

}
t+=dt;
new_tstep(dt);

}
}

Figure 1: N-Body program

If force(body, i) process in Figure 1, is im-
plemented in the obvious fashion, the distance to
every body must be found for every body. This
particular method of evaluating the force func-
tion is known as a Particle-Particle Method [24]
because each body is treated as a particle and it
is checked against other bodies (particles). The
force calculus process is shown in Figure 2.

void force(Body *particles, int i)
{/* The parameter i determines which body will be trated *
i=0:
{Nhile (<N){
if (particles|j] !=particles][i]);
f(particles]i], particles][j]);
j++;

}

Figure 2: Force Calculus Function

An all-pairs computation [15]performs an op-
eration f(particlefi],particlefj]) on every possible
pair of bodies. This operation transforms parti-
clefi/ without involving any other elements. We
will say that the operation defines an interac-
tion between a pair of elements (only particlefi]

is modified). In our problem all operations on
a particular body take place strictly one at the
time. There is no possibility of race conditions
when the all-pairs computation is performed in
parallel.

The choice of time-step used in new_position
process is critical to the success of any of the in-
tegration schemes. In each generation we use in-
tervals being as short as possible to achieve the
most accurate solution. If a constant time-step
is used, the particle will travel too fast and the
errors can get unacceptably large when two par-
ticles come close together. The way to solve this
problem is to vary the time step during the cal-
culation. It is to say, we considered a numerical
integration scheme that uses variables time-step.
In our algorithm the time integrator is a simple
leapfrog scheme[17]. Its simplicity makes it an
attractive alternative. These schemes automati-
cally cut the time-step down when the particles
are near each other, and increase the time step
when the particles are far away.

2.2 The Color-Image Echo Restoration
Problem

Any image-acquisition process is submitted to
problems when it is converting images between
physical and electronic media, so there exist many
different image-processing techniques and algo-
rithms involved on improve or enhance stored dig-
ital images [1][10]. The usefulness of each one
depends on the problem in particular.

The most common problem is noise, that is,
unwanted variations added to the captured origi-
nal signal. Noise can sometimes be characterized
by its effect on the image. This is the case of im-
ages with ghost (echo). Echo is a particular kind
of noise where the combined signal is the original
signal convoluted with itself, that was delayed in
the time of arrive and has suffered an attenuation
in its intensity as a delay consequence.

The echo problem can be resolved thru an
image restoration process that makes possible the
extraction of the parameters (the delay and the
attenuation) of the signal producing the noise
[7][19] and then separates the combined signals.

The whole process involves to accomplish differ-
ent extended mathematical stages that can be re-
duced when the images are treated on the fre-
quency domain by using the Fast Fourier Trans-
form. At last, six stages are settled [13]:

O to compute the Direct Fast Fourier Transform of
the image,

O to calculate the Cepstrum,

O to compute de Direct Fast Fourier Transform of
the Cepstrum

O to obtain the delay () and the attenuation («),
0 to apply the Filter and then,

O to compute the filtered image Inverse Fast
Fourier Transform

Because it involves extensive repetitive calcu-
lations on large amount of data and the calculat-
ing time usually grows linearly with the data size,
a computational approach (Echo Elimination
Process) accepts naturally, many different par-
allel solutions [18][25][26]. While there exist dif-
ferent good and practical approaches, these works
are based on grey-scale images because of its char-
acteristics and representation simplifies its ma-
nipulation.

Nevertheless, as a result of technological evo-

lution, full color images have turned significant
in a broad range of applications. A color may be
characterized by its brightness and chromaticity.
Owing the structure of the human eye, all colors
are seen as variable combinations of the three so-
called primary colors: red, green and blue. The
amounts of red, green, and blue needed to form
any particular color are called the Tristimulus
Values.
The purpose of the any color model is to facili-
tate the specification of color in some general and
standard accepted way. The model most com-
monly used in practice for color monitors and a
broad class of color video cameras is RGB. An
RGB monitor produces colors by mixing differ-
ent amounts of red, green and blue light.

In a more tidy world, the use of EEP on color
images could be thought as an extention of EEP
on gray-scale images and this would be the end
of the story. Unfortunately, it doesn’t work this
way. In a gray-scale EEP there exist a range of

errors while it is trying to get back the original
photometric content of a pixel. In spite of that it
takes advantage from a human-eye skill; the eye
only have to respond to the sensation of bright-
ness, so it interprets the corresponding value and
makes the proper adjustment.

In color images with echo, the echo is reflected
over the three color planes, then at first, they
must be treat independently in order to get the
restored image. If we want to match a particu-
lar color at the original image, we just need to
find the values of the three corresponding planes
RGB. Then we can mix proportional amounts of
our lights to produce the desired color but regard-
ing that it must belong to the range of colors that
RGB monitors can reproduce and must match the
color that human eye can see.

Finally, there exist two aspects that should
be considered in a parallel color EEP: the inher-
ent parallelism on the full color images (the color
planes‘ independence, the echo influence onto the
image planes and onto the plane pixels) and the
inherent parallelism to the whole EEP [7].

3 DATA and TASK PARAL-
LELISM

When speaking about Data parallelism, it must
be understood as the use of multiple functional
units that apply the same operation simultane-
ously to elements of a data set. Instead, task or
control parallelism is achieved by applying differ-
ent operations to different data elements simulta-
neously. Data parallelism is simple for program-
ming and can scale easily to larger problem sizes.
Nevertheless, task parallel model achieves paral-
lelism by using multiple threads of control, each
one getting a part of the problem. These two
types of parallelism have disadvantages: the first
one is only applicable to problems where a large
set of data has to be uniformly operated and the
second one is more difficult to understand and
use, but allows efficient implementations of irreg-
ular algorithms [23].

Many parallel applications do not completely
fit into data parallel model. Although some ap-
plications contain data parallelism, task paral-

lelism is needed to represent the natural compu-
tation structure or enhance performance. Com-
bining the programming easiness of the data par-
allel model with the efficiency of the task parallel
model allows to obtain parallel forms that repre-
sents the nature of the problem [9].

In the following subsections different solu-
tions to the proposed problems are shown, ones
using data parallelism and the others combining
the two parallel paradigms.

3.1 Data Parallelism Solutions

This section presents a solution to each one of
the problems by using data parallelism. The N-
body solution applies data pipelining as a basic
computation structure while the color EEP uses
just a simple replicated data parallelism.

3.1.1 Data Pipeline N-body algorithm

In this section, we describe the N-body algorithm
using the pipeline technique [21]. We will solve
the N-body problem simulating a pipeline with
Np nodes or stages, where 1 <Np<N. The nodes
communicate only through data messages. The
input data is distributed in Nﬂp size blocks (npart)
among the Np processors. Each processor estab-
lishes communication with other two, it receives
data from one of them and sends it to the other
in a ring fashion. Figure 3 shows the pipeline:

processo processo processo

0 1 Np
N/Np N/Np N/Np

Figure 3: Pipeline N-Body

Figure 4 shows the pseudo-code of the N-
body pipeline algorithm:

The algorithm presented here uses a pipeline
to compute the forces among all pairs of bodies.
First, the pipeline is created and initialized, then
the forces are calculated among the local parti-
cles. After that, each processor sends data to the
proper one and receives data from other. Later,
it computes forces with the local and the received

void PipeNbody (Body *particles)

{
Pipe pipe;
Body *auxp; /* It will have partial solutions*/
Body *buffer; /* It will contain interchanged data of pipe*,
double dt; [* time step */

MPI_Pipe_create(MPI_COMM_WORLD, Np, &pipe);
npart = N/Np;
while (t <t_end){
MPI_Pipe_start(pipe, particles, npart);
force(particles, auxp, npart, particles, npart);
buffer=particles;
for (step=1; step < Np; step++) {
MPI_Pipe_sendright(pipe, buffer, sizeofbuf);
MPI_Pipe_receiveleft(pipe, buffer, sizeofbuf);
force(particles, auxp, npart, buffer, sizeofbuf);

}

new_position(*particles, auxp, dt);
t+=dt;

new_tstep(dt);

Figure 4: Pipeline N-body algorithm

data. This task is repeated Np-1 times, when it
finishes a combination phase is necessary. This
phase calculates, in each processor and with its
own particles, the new particle position in the
space. The process is repeated by a fixed period
of time, t_end.

The MPI Pipe instructions were imple-
mented using standard MPI instructions, such
as MPI_Cart_create, which creates a new com-
municator to which topology information has
been attached; a ring topology in our case, and
MPI_Cart_shift which returns the shifted source
and destination process ranks. The process ranks
which a process receives data from and the one
which it sends data to.

3.1.2 Replicated one-plane EEP

If a parallel computation is replicated for different
data subsets, it is also possible to consider the
whole processing as a unique parallel operation
on the data set.

In this case the simplest system arises as a
consequence of taking advantage from the RGB
model for color images: every plane is saved inde-
pendently from the others and so they could be
treated in that way. The image will be divided in
three images (one for each plane), then every one

of these is processed as a gray-scale image and,
at the end, the recovered planes are joined into
a final image. The Figure 5 shows the referred
architecture.

Image with Echo

Master
Py P2 P3

[Image DFFﬁ [Image DFFﬂ
i |
[Cep‘s(rum]

[Ceplstrum]

DFFT Ceptstrul

!

a,T Calculus
)

[Filtering]
]

o)

[Image DFFﬂ
!

[Cep(strum]

DFFT Ceptstrui

!

Q,T Calculus
)

[Filtering]
!

o)

DFFT Ceptstrul

i

O,T Calculus
)

[Filtering]
i

o)

Image without Echo
Figure 5: Data Parallelism EEP

Applying EEP to each plane implies an image
plane parallel processing where, because their in-
dependence, no communication among processes
is necessary, so the proposed recovery process is
Embarrassingly Parallel [26]. At the implementa-
tion time, no more than four real processors will
be needed: a master and three children.

As the master will be idle during each plane re-
covering process, this situation can be solved by
giving a double identity (master and child) to a
particular processor.

The Figure 6 shows the master’s pseudocode
while the child execute the whole EEP process.
The master process has one incoming parameter,
the image with echo (image), and the outcoming
parameter, the image without echo (IMAGE).

3.2 Data & Task Parallelism Solutions

In this section, the solutions presented combine
data and task parallelism. When considering the
N-body problem, the solution is obtained using
a Divide and Conquer technique and a nesting

void master—echo (Type—image image, Type—-image IMAGE)

Type-plane plane[3];
Type-plane PLANE[3];
initialize—plane (image, plane)
for all processor iof [1..3] do
PLANEJi]= EEP(plane]i];
Build—-image (PLANE, IMAGE)

Figure 6: The pseudocode of the master

data parallelism for the computation structure
[16]. Instead the Color EEP solution applies a
farm style nested data parallelism.

3.2.1 Nested N-body algorithm

We are experimenting with a classic divide-and-
conquer algorithm. In this case the input data
are replicated in all processors. Before beginning
a new generation, the solution to the problem (de-
veloped in the previous generation) is required to
be also in all processors. The process that accu-
mulates forces by finding the interaction of parti-
cle j on particle i, parallelizes easily. The idea is
to recursively divide the spatially unsorted group
of bodies in subgroups until each processor has
the responsibility over one group of bodies. In
general, this method represents a system of N-
bodies in a hierarchical manner. We do not do a
spatial domain decomposition. The bodies will be
joined in a group in accordance with their initial
creation order. This results in a decomposition,
which gives each processor an equal amount of
work.

Then each processor calculates the total ac-
cumulated forces on the bodies belonging to its
subgroup and their new position. After that,
during conquer process, each processor receives
the solution from its partner (processor in the
same dimension of the binary tree), until that all
nodes get the solution of the original problem.
Let us consider the program in Figure 1. The
internal loop (N) is replaced for a call to ParN-
Body(particle,0,N,dt). The procedure ParNBody
is showed in Figure 7. It takes as input a common
array of bodies, an initial index, the number of
bodies and the time interval. The algorithm pro-

[*each plane of original image
[* each plane of restored image

ceeds recursively. The variable Np holds the num-
ber of processors available at any instant. The
algorithm begins testing if there are more than
one processor in the current set. If there is only
one processor, a call to the sequential algorithm
SegNBody(), occurs.

Otherwise, the algorithm is based in parti-
tioning the number of bodies in two subgroups,

each one of npart:% bodies. For that, the cur-

rent set of processors is separated in two sub-
sets of processors, each one is going to be the
owner of the computation to only one subgroup
of bodies. After that, each group makes a re-
cursive call to function ParNBody() in order to
compute these processes in parallel. Upon the re-
turning, the results are exchanged between part-
ner processors in each group. The MPI exchange
instruction was implemented using standard MPI
instructions, such as MPI_sendrecv.

void ParNbody(Body *particles, int from, int npart, double dt)
{ . .
int size;
int from1;
if (Np >1){
size = (npart/2)*sizeof(Body);
from1= from + (npart/2);
if (name > Np/2) {
ParNBody(particles, from, npart/2, dt);
MPI_Barrier(MPI_COMM_WORLD);
MPI_Exchange(particles+from, size, partner(name),
particles+from1, size,partner(name))
}
else {
ParNBody(particles, froml, npart/2, dt);
MPI_Barrier(MPI_COMM_WORLD);
MPI_Exchange(particles+from1, size, partner(name),
) particles+from, size, partner(name));

Np /= 2;
}

else
SeqNbody(particles, from, npart, dt);

Figure 7: Nested Parallel N-body algorithm

First, SeqNbody process has to calculate the
force of every particle in its data portion against
every other particle in space. Then, it has to
adjust the new position (See Figure 8).

void SeqNbody(Body *particles, int from, int npart, double dt);
{

for (i=from; i < from+npart; i++) /* forces calculus*/
for(j=0; j < N; j++)
f(particles[i], particles[j]);
for (i=from; i < from+npart; i++) /*new positions calculus*/
new_position(particles[i],dt);
}

Figure 8: Nested Sequential N-body algorithm

3.2.2 Two Level Nested Parallelism in
Color EEP

Many computational problems encountered in
practice have an outer-level of coarse grained
parallelism, where the number of task are few,
but where each task contains a large amount of
work. Each such outer-level task might itself be
a parallel task of more fine grained parallelism.
These kind of problems invite to the use of multi-
level parallelism or nested parallelism [4][5]. Tak-
ing advantage of the intrinsic parallelism on full
color images and onto each EEP stage enables
to apply nested parallelism; in particular, a two
level nested parallelism where each process in the
coarse grain (outer level), becomes the supervi-
sor of a group of processors at the inner level. At
the first level the processors are divided in three
groups or teams (one per plane) of Np size, where
Np has to be power of 2 [9]. Each group is re-
sponsible of recovering a particular image plane
applying a parallel EEP. Every processor belong-
ing to a group at the inner level will contribute to
develop in parallel the corresponding EEP stage
[12][13][14]. (See Figure 9).

The Figure 10 shows the pseudocode of the
inner level master. The outer level master has
the structure showed in the Figure 6, where the
EEP operation is replaced by its parallel version.

This approach might be improved consider-
ing the independence of the image planes and the
fact that the echo reflects with almost the same
intensity on each plane (because the used RGB
model). Therefore the calculus of the parameters
(1) and («) should be made just only in one group
and the result transmitted to the others.

Image with Echo

Parallel EEP

Parallel EEP Parallel EEP

Py Pwp1 Pe

=T
)

I

Image without Echo

Figure 9: Two Level Nested Parallelism

Type plane innerlevel master (plane)

Parallel-2D-FFT (plane temporary, FFTDirect—plane)
Parallel-Cepstrum (FFTDirect-plane, cepstrum—plane)

Parallel-2D-FFT (cepstrum-plane, FFT-Cepstrum—plane

Calculus the T,d;
Parallel-Filtro {T,A, FFTDirect-plane, Filtred—plane)

Parallel-2D-FFT (Filtred-plane,Final-plane)
Return (Final-plane)

1

Figure 10: The pseudocode of the inner level master

3.3 Task Parallelism Solutions

In this section, the aim is to present solutions that
applies task parallelism. In the EEP case, its na-
ture enables the use of this kind of parallelism,
in particular, a pure task parallelism. In the
N-body case the implemented solution doesn’t
have a trivial task parallel implementation. Nev-
ertheless, there exist other theoretical solutions
(Barnes-Hut algorithm, Fast Multi-pole Method
and Anderson’s Method) that can be applied [3].
At this moment they have being analyzed, try-
ing to exploit the existence of an inherent task
parallelism.

3.3.1 Parallel Pipeline in color EEP

In a pure linear pipeline without feedback and
forward connections the inputs and outputs are
totally independent. In some computation, like
linear recurrence, the output of the pipeline are
fed back as future inputs. In other words, the in-
puts may depend on previous outputs. Pipeline
with feedback may have a nonlinear data flow.
The timing of the feedback inputs becomes cru-
cial to the nonlinear data flow. Improper use of
these connections may destroy the inherent ad-
vantages of pipelining. On the other hand, proper
sequencing with nonlinear data flow may enhance
the pipeline efficiency [18].

In this subsection there is an EEP approach
as a general pipeline with feedback connections.
The implementation uses a parallel processing
technique that can be viewed as a form of func-
tional decomposition. The EEP is divided into
separate functions that must be performed in suc-
cession. As it shall see, the input data stream is
broken up and processed separately. The stages
at the EEP Pipeline execute a specific function
(FFT, Ceptrum Calculus, 7 and « calculus and
Filtering) over the data stream (each plane of the
color-image) flowing through the pipe.

Once the pipeline is started up, the proces-
sors repeatedly perform computations and data
exchanges with other processors. A Reservation
Table shows how successive pipeline stages are
used for the EEP in successive pipeline cycles.
(See Figure 11). The pipeline cycle £ is nor-
malized to the time wasted in a common matrix
operation.

€182 &3 |84 |85 &6 |&E7 |E8 |9 |E10|&11 |E12
X

FFT X X X X X X X

Cepstrum X
Tao & Alfa X
Filtering X

Figure 11: Reservation Table

It is possible to have multiple marks in a row.
Two interesting pipeline-utilization features can
be revealed by the reservation table: multiple
marks in a row correspond to the repeated us-
age (marks in far columns) and prolonged usage
(for marks in adjacent columns) of the FFT stage.

That table will be used to study various pipeline
design problems.

First, multiples X’s in a row pose the possibil-
ity of collisions. A Straightforward Greedy Strat-
egy confirms, that upon the initiation of the first
task, the data will have a collision each 1, 2 and 3
pipeline cycles (£). The maximum throughput is
achieved by an optimal scheduling strategy that
achieves minimum average latency without colli-
sions. A good task initiation sequence (without
collision) will be each 4 ¢. Unfortunately, that is
not good.

Second, the processing speeds of pipeline seg-
ments are usually unequal. In the EEP Pipeline,
the FF'T segment is a bottleneck. The throughput
of the pipeline is inversely proportional to the
bottleneck. Therefore, it is desirable to remove
the bottleneck which causes the unnecessary con-
gestion.

When working in parallel with a non-
restrictive number of processors, each one of these
could implement an specific stage. One design
method to increase the throughput is to subdi-
vide the FFT stage in sub-segments. However,
if the bottleneck is not sub-divisible or it is not
advantageous to divide, it is possible to dupli-
cate the bottleneck in parallel as another way to
smooth congestion (See Figure 12).

Nevertheless the control and synchronization
of task in parallel segments are much more com-
plex than those for cascaded segments. A more
natural way is to repeat three times the FFT
stage, transforming the pipeline into a lineal
pipeline. It will consist of a cascade of processors
or processing stages. Once the pipeline is started
up, each processor repeatedly performs computa-
tions on a different data set and exchanges data
with its neighbor processors.

Calculus

Figure 12: Data Parallel Pipeline

4 CONCLUSIONS

In the last years, integration of task an data par-
allelism is currently an active area of research
and several approaches on different problems have
been proposed. Most parallel applications con-
tain data parallelism, but a large number of such
applications need a combination of task and data
parallelism to represent the natural computation
structure or to enhance performance.

In this paper two different and representative
problems had been shown and the corresponding
solutions proposed by using data parallelism, task
parallelism or a combination of them. Image pro-
cessing applications involve extensive, repetitive
and independent mathematical calculus that en-
ables to partition data into small pieces, so a pure
data parallel implementation may not scale well.
Task parallelism can extend the power of data
parallelism and make it significantly more useful.
Therefore the combination of task and data par-
allelism is required to achieve good performance.

The implemented issue for the N-body prob-
lem enables data parallelism as an earlier solution
while task parallelism best fits when it is needed
to recursively divide the available processors to
solve the recursively generated subproblems.

Here, we presented different approaches of in-
tegrate task and data parallelism into two specific
problems. Earlier executions of these suggested
solutions show the advantages of integrate them.

Finally, we argue that if a multidisciplinary
application is modeled as sets of interacting mod-
ules, it can be resolved thru a combination of task
and data parallelism.

5 ACKNOWLEDGMENTS

We acknowledge the co-operation of the project
group for providing new ideas and constructive
criticisms. Also to the Universidad Nacional de
San Luis and the ANPCYT from which we receive
continuous support.

References

[1]

[2]

[5]

[10]

[11]

Andrews, H. C. and Hunt B. R. , Digital Im-
age Restoration, (Prentice-Hall,1977).

Appel A.W. An efficient program for many
body simulation. STAMJ. COMPUTING.
VOL. 6, P. 85, 1985.

Barnes J., Hut P. A hierarchical O(NlogN)
force calculation algorithm. nature. Vol
324.P. 446,1986.

Blelloch G. Programming Parallel Algo-
rithms. Communications of ACM. 39(3).
March 1996.

Blelloch, G., Hardwick J., Sipelstien j., Za-
hga M., and Charterjee S. Implementation
of a portable nested data-parallel language.

Journal of Parallel and distributed Comput-
ing, 21(1):4-14, April 1994.

Bogert B., Healey M. & Tukey J., ”The Fre-
quency Analysis of Time Series for Echoes:
Cepstrum, Pseudo-Auto-covariance, Cross-
Cepstrum, and Saphe Cracking”, Proc.
Symp. Time Series Analysis, (M. Rosenblatt
Ed., J. Wiley & Sons, 1963, pp. 209-243).

Choudhary A. and Ranka S., ”Parallel Pro-
cessing for Computer Vision and Image Un-
derstanding”, IEEE Computer, (Vol 25. Nro.
2, 1992, pp. 7-9).

Foster 1., Designing and Building Parallel
Programs, (Addison Wesley, 1995).

Gonzalez J., Leén C., Piccoli F., Printista
M., Roda J., Rodriguez C. & Sande F.,
?Groups in Bulk S. Parallel Computing”,
Proceedings 8th. Euromicro Parallel and Dis-
tributed Processing (2000, pp. 246-253).

Gonzalez R. and Woods R., Digital Image
Processing, (Addisson Wesley, 1992).

Guerrero R., Gonzalez A., Zavala E. &
Colavita A., ”Aplicacién de un sistema
Homomorfico a la Deteccion de Ecos en
Senales de Video B/N”, Proc. III CACIC,
Congreso Argentino de Computacion, (Ar-
gentina, 1997, pp 157-164)

[12]

[14]

[15]

[16]

Guerrero R., Piccoli F., Printista M.,
Colavita A., ”A Parallel Approach of Im-
age Processing System on PVM” , Proc.
The IASTED International Conference on
Computer Systems an Applications, (Jordan,
1998, pp 17-20)

Guerrero R., Piccoli F., Printista M.,
"Improvement of a Parallel System for
Image Processing” 1V CACIC,
Congreso Argentino de Computacion, (Ar-
gentina, 1998, pp 655-664)

Proc.

Guerrero R., Piccoli F., Printista M., ”Par-
allelism and Granularity in an Echo Elimi-
nation System”, Proc. CSCS-12, 12th Inter-
national Conference on Control Systems and
Computers Science, IEEE, ISBN 973-96609-
5-9, (Romany, 1999, pp 232-237)

Hansen, B. Studies in Computational Sci-
Parallel Programming Paradigms.
Prentice Hall, Englewood, New Jersey. 1995

ence:

Hardwick J. An Efficient Implementation of
nested data Parallelism for Irregular Divide
and Conquer Algorithms. First International
Wokshop on High programming Models and
Supportive Environments. April 1996.

Hut P., Makino J.,McMlIllan S. Building
a Better Leapfrog. Institute for Advanced
Study, Princeton. NJ 08540. USA.

Hwang K. & Briggs F., Computer Architec-
ture and Parallel Processing, (Mc Graw-Hill,
1996).

Lynn P. & Fuerst W., Digital Signal Process-
ing with Computer Applications, (J. Wiley &
Sons, 1994).

Marciniak, A.Numerical solutions of the N-
body Problem. D. Reidel Publishing Co.,
Dordrecht. 1985.

Module 5. Particle applica-
tions Pipeline Computing.
http://www.npac.syr.edu/EDUCATION/

Parker J., Algorithms for Image Processing
and Computer Vision, (J. Wiley & Sons,
1997).

[23]

[24]

[25]

[26]

Quinn M. Parallel Computing. Theory and
Practice. Second Edition. McGraw-Hill, Inc.

Schlitt, W. The Xstar N-body Solver Theory
of Operation. 1996.

Webb J., ”Steps Toward Architecture-
Independent Image Processing”, IEEE Com-
puter, (Vol. 25, Nro. 2, 1992, pp. 21-31).

Wilkinson B. & Allen M. - Parallel program-
ming: Techniques and Application using
Networked Workstations and Parallel Com-
puters, (Prentice-Hall, 1999).

