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ABSTRACT

The problem of how to find a schedule wn> 2 processors of equal capacity that minimises the
whole processing time of independent tasks has been shown as belonging to the NP-complete class
(Horowitz and Sahni [12]). Evolutionary Algorithms (EAs) have been used in the past to implement
the allocation of the components (tasks) of a parallel program to processors [12], [13], [14], [16],
[17]. Those approaches showed their advantages when contrasted against conventional approaches
and different chromosome representations were proposed.

This paper shows four algorithms to solve the problem of allocating a number of non-identical re-
lated tasks in a multiprocessor or multicomputer system. The model assumes that the system con-
sists of a number of identical processors and only one task may execute on a processor at a time. All
schedules and tasks are non-preemptive. Three evolutionary algorithms, using an indirect-decode
representation, are contrasted with the well-known Graham'’s [11] list scheduling algorithm (LSA).

All of them use the conventional Single Crossover Per Couple (SCPC) approach and indirect-
decode representation but they differ in what is represented by the decoders. In the first representa-
tion scheme, decoders represent processor dispatching priorities, in the second decoders represent
tasks priority lists, and in the third decoders represent both processor dispatching priorities and
tasks priority lists in a bipartite chromosome. Chromosome structure, genetic operators, experi-
ments and results are discussed.

Key words: Parallel task allocation, Evolutionary algorithm, multirecombination, indirect-decode
representation, List Scheduling Algorithm, Optimisation.
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1. INTRODUCTION

A parallel program is a collection of tasks, with precedence constraints to be satisfied among them.
These precedence constraints between tasks are commonly delineated in a directed acyclic graph
known as théask graph Nodes in the graph identify tasks and their duration and arcs represent the
precedence relationship. Factors, such as number of processors, number of tasks and task prece-
dence make harder to determine a good assignment. Fig. 1 shows a task graph with six tasks and a
simple single precedence constraint.
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Fig. 1: A task graph Fig. 2. Two feasible schedules for the task graph of figure 1.
Related to the makespan the shortest schedule is op-
timal.

A schedule is an allocation of tasks to processors, which can be depicted by a Gantt chart. In a
Gantt chart, the initiation and ending times for each task running on the available processors are
indicated. By simple observation of the Gantt chart the completion time of the last task abandoning
the system, called makespan, the processors utilisation, the speed up and other performance meas-
ures can be easily determined. Connected with the makespan, an optimal schedule is one such that
the total execution time is minimised. Other performance variables, such as individual processor
utilisation or evenness of load distribution can be considered (see fig.2). Some simple scheduling
problems can be solved to optimality in polynomial time while others can be computationally in-
tractable.

As we are interested in the scheduling of arbitrary task graphs onto a reasonable number of proces-
sors we would be content with polynomial time scheduling algorithms that provide good solutions
even though optimal ones can not be guaranteed. In the following sections we discuss conventional
and evolutionary algorithms to solve this problem on a set of selected instances.

2. A CONVENTIONAL APPROACH : THE LIST SCHEDULING ALGORITHM (LSA)

For a given list of tasks ordered by priority, it is possible to assign tasks to processors by always
assigning each available processor to the first unassigned task on the list whose predecessor tasks
have already finished execution.

Let be:

T={T, ...,Tn}a set of tasks,

w: T - (0, o) a function which associates an execution time to each task,

< a partial order ifm and

L a priority list of tasks ifT.

Each time a processor is idle, it immediately removes fiothne first ready task; that is, an un-
scheduled task whose ancestors urtérave all completed execution. In the case that two or more
processors attempt to execute the same task, the one with lowest identifier succeed and the remain-



ing processors look for another adequate task. Using this heuristic, contrary to the intuition, some
anomalies can happen. For example, increasing the number of processors, decreasing the execution
times of one or more tasks, or eliminating some of the precedence constraints can actually increase
the makespan. We are seeking for heuristics, which are free from these anomalies.

3. HEURISTICS TO FACE TASK SCHEDULING PROBLEMS

The task allocation problem has been investigated by many researchers [3], [4], [8], [9], [10], [13],
[14]. Various heuristic methods have been proposed, such as mincut-based heuristics, orthogonal
recursive bisection, simulated annealing, genetic algorithms and neural networks. From the repre-
sentation perspective many evolutionary computation approachesgertdel scheduling problem

exists. With respect to solution representation these methods can be roughly categodiisect as
andindirect representations [1]. In direct representation [2], a complete and feasible schedule is an
individual of the evolving population. The only method that performs the search is the evolutionary
algorithm because the represented information comprises the whole search space. In the case of
indirect representation of solutions the algorithm works on a population of encoded solutions. Be-
cause the representation does not directly provide a schedule, a schedule builder is necessary to
transform a chromosome into a schedule, validate and evaluate it. The schedule builder guarantees
the feasibility of a solution and its work depends on the amount of information included in the rep-
resentation. In this paper the idea is to use@der A decoder is a mapping from the representa-

tion space into a feasible part of the solution space, which includes mappings between representa-
tions that evolve and representations that constitute the input for the evaluation function. This sim-
plifies implementation and produces feasible offspring under different conventional crossover
methods, avoiding the use of penalties or repair actions.

The problem is what to decode? In the problem we are facing, allocation of parallel related tasks
onto processors, we can address the search by looking at the processors or the task priorities, or
even by looking both at the same time.

In this work we propose three different EAs using different decoders and consequently different
chromosome representations. To guide our search towards the optimal makespan, in the first repre-
sentation processor dispatching priorities are encoded. In the second one, tasks priority lists are en-
coded, and in the third scheme a bipartite chromosome represents both processor dispatching pri-
orities and tasks priority lists.

4. THE REPRESENTATION ISSUE

The representation adopted in an EA is crucial to its performance. A particular representation de-
fines the areas of the problem space to be searched making the search more or less effective and
determines possible genetic operators to be applied making the process more or less efficient. In the
following section we discuss the indirect-decode representations used in this work.



4.1 PROCESSOR DISPATCHING PRIORITIES INDIRECT -DECODE REPRESENTATION

Under this approach a schedule is encoded in the chromosome in a way such that the task indicated
by the gene position is assigned to the processor indicated by the corresponding allele, as shown in
fig. 3:

processor - [1[2[3]2[ 1] 3] 1] 2
task - 123456 7 8

Fig. 3. Chromosome structure for the task allocation problem

The idea is to use a decoder to reflect which processor has the priority to dispatch a given task. Here
the chromosome gives instructions to a decoder on how to build a feasible schedule. In our case the
decoder is instructed in the following way: By following the priority list, traverse the chromosome

and assign the corresponding task to the indicated processor as soon as the precedence relation is
fulfilled. The task priority list is defined at the beginning and remains the same during the search
(i.e. canonical order). The processor priorities for dispatching tasks change while searching for an
optimal schedule (minimum makespan).

Under this representation simple recombination operators such as one point crossover can be safely
used. Also, simplest mutation operators can be implemented by a simple swapping of values at ran-
domly selected chromosome positions or by a random change in an allele. The new allele value

identifies any of the involved processors.

4.2 TASK PRIORITY LISTS INDIRECT -DECODE REPRESENTATION

In this second proposal each individual in the population represents a list of task priorities. Each list
is a permutation of task identifiers. Here a chromosome is an n-vector whétetneponent is an

integer in the range 1..(n —i +1). The chromosome is interpreted as a strategy to extract items from
an ordered list L and builds a permutation. We briefly explain how the decoder works. Given a set
of tasks represented by a list L and a chromosome C, the gene values in the chromosome indicate
the task positions in the list L. The decoder builds a priority list L as follows: traversing the chro-
mosome from left to right it takes from L those elements whose position is indicated by the gene
value, puts this element in L and deletes it from L (shifting elements to left and reducing L length).

It continues in this way until no element remains in L. Fig. 4 shows the list L, the chromosome C
and the resulting priority list L.

L= |1]2] 3] 4] 5] 6]
chromosome C = [3] 2] 2] 1] 1] 1]
L= 3] 2] 4] 1] 5] 6]

Fig.4: L is the task list, L’ is the priority task list.



Once decoded, LSA as defined in section 2 (giving prioritshéoprocessor with lowest identifier
when conflict arise), is used to build the schedule. As in the previous case simple genetic operators
can be safely applied.

4.3 TASK PRIORITY LISTS AND PROCESSOR DISPATCHING PRIORITIES
INDIRECT-DECODE REPRESENTATION

Under this representation scheme, a task priority list and a processor dispatching priority are en-
coded in the first and second half of a chromosome (see fig.5).

[3[2]2]a]1]afaf2fa]2[2[1]
1 2 3 45 61 2 3 45 6

task priority list processor dispatching
decoder priority decoder

Fig. 5: Chromosome structure to combine decoders

Here, the left half of the chromosome is decoded first to obtain the corresponding task priority list
L’. Then LSA is applied to build the schedule by using L~ and assigning each task to a processor
according to the dispatching priority described in the second half of the chromosome. The simple
genetic operators are applied now separately to each chromosome half.

5. EXPERIMENTS AND RESULTS

The experiments implemented evolutionary algorithms withrect representation of solutions,
randomised initial population of size fixed at 50 individuals for the smaller instances (1 to 8) and
100 individuals for the larger instances (9 to 12). Series of ten runs each were performed on the 12
testing cases, using elitism, one point crossover under SCPC, and big creep mutation. The maxi-
mum number of generations was fixed at 2000, but a stop criterion was used to accept convergence
when after 20 consecutive generations, mean population fitness values diffegiggif01 were
obtained. Probabilities for crossover and mutation were fixed at 0.65 and 0.01, respectively. The
testing cases corresponded to:

Instance 1:Task graph G1 (6 tasks and 2 processors)

Instance 2:Task graph G2 (7 tasks and 3 processors)

Instance 3:Task graph G3 (9 tasks and 3 processors)

Instance 4:Task graph G3 (9 tasks and 4 processors)

Instance 5:Task graph G4 (9 tasks and 3 processors, decreasing task’s duration)
Instance 6:Task graph G5 (9 tasks and 3 processors, eliminating precedence constraints)
Instance 7:Task graph G7 (10 tasks and 2 processors)

Instance 8:Randomly generated task graph G8 (13 tasks and 3 processors)
Instance 9:Randomly generated task graph G9 (25 tasks and 5 processors)
Instance 10:Randomly generated task graph G10 (50 tasks and 5 processors)
Instance 11:Randomly generated task graph G11 (25 tasks and 5 processors)
Instance 12:Randomly generated task graph G12 (70 tasks y 10 processors)



In contrast to other scheduling problems as Flow Shop or Job Shop, which have different machine
environments and more oriented to production scheduling, after an intensive search in the literature
we could find few benchmarks. The first 7 instances were extracted from the literature [11], [15]
and they have known optima. Instances 8 to 12 were generated by random assignment of relations
and tasks duration. Their optimum values are unknown. Nevertheless for these instances several
trials were run (under this and previous approaches [5] to determine the best quasi-optimal solution
under the whole set of contrasted algorithms. This value will be referred in what follows as an esti-
mated optimal value (the best known value assumed as optimal). Diverse performance variables
were considered to contrast the algorithms. To measugutiigy of solutiongprovided by EAs we

used:

Ebest (Abs(opt_val — best value)/opt_val)/100. It is the percentile error of the best found individual
in one run when compared with the known (or assumed) optimum value opt_val. It gives us a
measure of how far are we from that opt_val.

Best is the best (minimum) makespan value found throughout all the runs. This value has been
reached by different solutions (schedules).

AvEbest is the mean value of the error, over the total number of runs.

AvBest is the mean value, over the total number of runs, of the best makespan found in each run
(average best individual).

MinEbest: is the minimum value of the error, over the total number of runs.

We defined theversatility of an evolutionary algorithm as its ability to find diverse schedules of
similar minimum makespan. To measure the versatility of the algorithms we used:

TotB defined as the total number of best solutions. It is the mean total number of distinct best solu-
tions found by the algorithm throughout all runs.

In the following tables quality of solutions and versatility of the algorithms are contrasted. EA1
corresponds to the EA using processor dispatching priorities decoders, EA2 corresponds to the EA
using tasks priority lists decoders, and EA3 corresponds to the EA using processor dispatching pri-
orities and tasks priority lists decoders.

Regardingquality of solutionsfrom tables 1 and 2 it can be observed that EA2 is the best performer
finding best minimum values (Best, Ebest) and best mean values (MBest, MEbest) in the hardest
instances (9 and 10). Also, all EAs are free from LSA anomalies (instances 3, 4, 5 and 6).

As a general remark we can say that EA2, task priority list decoders, was the best representation
and even more important it found, for instance 9, a new upper bound (270) which could not be
reached by more sophisticated and costly multirecombinated evolutionary algorithms [5], [6], [7].
These results confirm the fact that if better representation is used less computational effort will be
needed in order to provide high quality solutions.



Regardingversatility, table 3, except for hard instances 9 and 10, all EAs find more than a single
best solution (distinct schedules with the same optimal or quasi optimal makespan). For instance 9
only EA2 finds a single optimum while for instance 10 non of the EAs here studied reach the
opt_val, which was determined by means of a multirecombined EA [5], [6], [7]. In this table it can
be observed that all EAs are more versatile than LSA, providing in most cases more than a single
solution. EA3 is the algorithm that shows highest versatility.

Inst. | Opt- LSA EA1l EA2 EA3
value Best | Ebest| Best| Ebest Best Ebest Best Ebest

1 6 7 16.6 6 0.0 6 0.0 6 0.0

2 9 9 0.0 9 0.0 9 0.0 9 0.0

3 12 12 0.0 12 0.0 12 0.0 12 0.0

4 12 15 25 12 0.0 12 0.0 12 0.0

5 10 16 60 10 0.0 10 0.0 10 0.0

6 12 13 9.3 12 0.0 12 0.0 12 0.0

7 31 38 225 31 0.0 31 0.0 31 0.0

8 30 33 10 30 0.0 30 0.0 30 0.0

9 270 375 38.8 288 6.6 270 0.0 284 5.18
10 552 591 7.0 583 5.6 553 0.18 596 7.9
11 410 412 0.48 410 0.0 410 0.d 410 0.0
12 963 963 0.0 963 0.0 963 0.0 963 0.0
Avg. | 193.08 207 15.8| 197.1 1.01 193416 0.01 197.91 1/09

Tablel: Quality of solutions. Minimum makespans and minimum errors.

Inst. | Opt- EAl EA2 EA3
value MBest| MEbest] MBesf MEbest MBest MEbest
1 6 6 0.0 6 0.0 6 0.0
2 9 9 0.0 9 0.0 9 0.0
3 12 12 0.0 12 0.0 12 0.0
4 12 12 0.0 12 0.0 12 0.0
5 10 10 0.0 10 0.0 10 0.0
6 12 12 0.0 12 0.0 12 0.0
7 31 31 0.0 31 0.0 31 0.0
8 30 30.8 2.6 30 0.0 30 0.0
9 270 | 290.2 7.4 276.4 2.3 290)4 7.5
10 552 | 595.5 7.8 559.2 1.3 6169 11.7
11 410 410 0.0 410 0.0 410 0.0
12 963 963 0.0 963 0.0 963 0.0
Avg. | 193.08] 198.41 1.4 194.21 0.3 200,19 1.6

Table2: Quality of solutions. Mean makespans and Mean errors.

Concerning convergence towards the best individual, the halting point of algorithms range from 60
to 200 generations in the smaller instances. For larger instances (9 tol2) this halting point was
ranging from 116 to 942 under EA2, but for EA1 and EA3 the algorithm halted at 2000 generations
reaching the maximum number of generations allowed. We see that he best performer EA2 con-
verges before reaching the maximum number of generations while this does not happens for EA1



and EA3. Consequently, we can expect better performance if we allow these versions to run for a
longer time.

Inst. | LSA | EAl EA2 EA3
Totb | Totb | Totb | Totb

1 0 2 69 438
2 1 39 14 444
3 1 11 231 251
4 0 42 312 324
5 0 26 284 349
6 0 12 218 170
7 0 4 222 120
8 0 1 91 30
9 0 0 1 0
10 0 0 0 0
11 0 24 150 67
12 1 2 15 4

Avg. | 0.25 | 13.58| 133.91 183.08

Table 3: Versatility of the algorithms.
6. CONCLUSIONS

In this paper we approached the general problem of the allocation of related parallel tasks, described
by a task graph, to a number of processors attempting to minimise makespan. This is a difficult and
important issue in computer systems. As we are interested in scheduling of arbitrary tasks graphs
onto a reasonable number of processors, in many cases we would be content with polynomial time
scheduling algorithms that provide good solutions even though optimal ones can not be guaranteed.
The list scheduling algorithm (LSA) satisfies this requirement providing a fast, acceptable single
solution, but it is prone to show anomalies.

In previous woks multirecombined EAs [5], [6], [7] being free of LSA anomalies, showed their ef-
fectiveness providing not a single but a set of near optimal solutions to diverse graphs belonging to
a selected test suite.

In this paper the test suite was augmented and the conventional version of recombination (SCPC)
was run under three different indirect decode representations. After analysing the results, task pri-
ority list decoders (EA2) was detected as the best representation. The minimum makespan value
(270) found for instance 9, is a new value which could not be reach by more sophisticated (and

costly) multirecombined evolutionary algorithms. As a general remark we can say that by using a

better representation less computational effort will be needed to provide high quality solutions.

Further work will be oriented to enhance these algorithms and exploit the combined decoders ap-
proach expecting to obtain better results, with different parameter settings. Multirecombined ver-
sions of the indirect-decode approaches will be studied.
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