
Abstract

SUPPORTING NESTED PARALLELISM

González, J. A 2
, León C. 2, Piccoli F. 1

, Printista M.\ Roda, J.L. ",

Rodríguez, C.~ and Sande, F. 2

1
Departamento de Informática.

Universidad Nacional de San Luis

Ejército de los Andes 950.

San Luis. Argentina

{ mpiccolí, mprinti} @unsl.edu.ar

2Departamento de Estadística, Investigación Operativa y Computación

Universidad de La Laguna.

Tenerife. Spain

Many parallel applications do not completely fit into the data parallel model. Although these

applications contain data parallelism, task parallelism is needed to represent the natural

computation structure or enhance performance. To combine the easiness of programming of

the data parallel model with the efficiency of the task parallel model allows to parallel forms

to be nested, giving Nested parallelism.

In this work, we examine the solutions provided to N ested parallelism in two standard

parallel programming platforms, HPF and MPI. Both their expression capacity and their

efficiency are compared on a Cray- 3TE, which is distributed memory machine. Finally, an

additional speech about the use of the methodology proposed for MPI is done on two

different architectures.

Keytvords: Parallel Programming model, Nested Parallel model, Divide and Conquer

technique.

l. Introduction

Many parallel programming models have been proposed, differing in their flexibility, task iteration

mechanisms, task granularities, and support for locality, scalability, and modularity. Two standard

models that can be taken to representing parallel computation are Data parallelism and Task

parallelism [1].

Data parallelism is one of the more successful efforts to introduce explicit parallelism to high level

programmíng languages. Data parallel programming ís particularly conveníent for two reasons. The

first, is its ease of programming. The second is that it can scale easily to larger problem sizes.

Several data parallellanguage implementations are available now[l3],[14]. However, a perceived

disadvantage of data parallelism is that it is only applicable to problems where a large set of data

has to be uniformly operated, it is to say, monolithic problems. Hence, a set of independent sub­

computations is strongly associated to a subset of these data. Such computations are inherently

parallelízable, but each computatíon ítself must be sequentíal.

The task parallel model achieves parallelism by using multiply threads of control, each getting part

of the problem. Although the multíple threads of control have the disadvantage of to be more

difficult to understand and use, a task parallel approach allows efficient implementations of

irregular algorithms.

Nested parallel model ís an extension of standard data parallel model, which includes the capability

of nested parallel invocations. In this way, it combines the ability to apply a function in parallel to

each element of a collection of data and the ability to nest such parallel calls [2],[3].

In this paper we examine the solutions provided by the two standard parallel programmmg

platforms, HPF and MPI, comparing their efficiency on a Cray- 3TE, which is a distributed

memory machine.

From the unlimited scope of applications that benefit from Nested parallelism, it has chosen the

Divide and Conquer technique sínce it provides an excellent scenario for benchmarking. Both the

general technique and the particular case that will be considered all along the paper are introduced

in section 2. The two following sections describe in detail the expression of a Nested Parallel Fast

Fourier Transform, exploiting both data and code parallelísm in MPI and HPF. The fifth and sixth

sections present the compara ti ve study of the computational results and the conclusions.

2. Divide and Conquer as a test bed for Nested Parallelism Constructs

The divide and conquer approach is characterised by dividing the problems into sub-problems that

are of the same structure as the larger problem. Further divisions into still smaller sub-problems are

usually done by recursion. The recursive method will continually divide a problem until the

problem cannot be broken down into smaller parts. Then the very simple tasks are performed. The

tasks' results are combined with the others tasks' results in the same level. N ested parallelism is

critical for describing divide and conquer algorithms [9][11][15]. A simple data parallel algorithm

could not exploit the task parallelism that is available in divide and conquer algorithms, and a

simple task-parallel algorithm could not exploit the data parallelism that is available [18]. By

contrast, Nested parallelism accomplishes the ability to take a parallel function and apply it over

multiple instances in parallel.

1 procedure pDC(x: prob1em; r: so1ution);
2 begin
3 if trivia1(x) then conquer(x, r)
4 e1se
5 begin
6 divide (x, xo, x1);
7 para11e1 do pDC (xo, ro) 1 1 pDC (x1, r1));
8 combine (r, ro, r1);
9 end;
10 end;

Figure l. General frame for a parallel divide and conquer algorithm

Let us consider the special case of the divide and conquer approach presented in Figure 1 where

both the solutions r and the problems x have a vectorial nature. In such case there are opportunities

to exploit parallelism not only at the task level (line 7) but also in the divide and combine

subroutines (lines 6 and 8). Thus, data parallelism can be introduced by doing every processor in

the current group to work in a subsection of the array x in the division phase (respectively a

subsection of r in the combination phase).

As benchmark instance for this paper we will consider the Fast Fourier Transform (FFT) algorithm.

However, the proposed techniques have been applied to other divide and conquer algorithms with

similar results. Consider a sequence of complex numbers a=(a[O], , a[N-1]) of length N. The

Discrete Fast Fourier Transform (DFT) of the sequence a is the sequence A=(A[O], ... , A[N-1])

· b A[·¡ \' [k] ki h 2JrV-l/N · h · · · h f h · · h giVen y z = L..k=O .. N-I a w , w ere w = e 1st e pnm1t1ve nt root o t e umty m t e

complex plane. The following decomposition can be deduced from the definition:

. 2b i 2b
A[l] = Lk=O .. N/2-1 a[2k] w + w Lk=O .. N/2-1 a[2k+l] w

From this formula, it follows that the DFT A of a can be obtained by combining the DFT B of the

even components and the DFT e of the odd components of a_

3. Nested Parallelism in MPI

The MPI standard defines the user interface and functionality for a wide range of message-passing

capabilities [17]. MPI, as all good standards, is valuable in that it defines a known, mínimum

behaviour of message-passing implementations. This relieves the programmer from having to

worry about certain problems that can arise in the underlying transmission of messages

Although the natural way to express Nested parallelism in MPI [7] is through the use of

communicators and the MPJ_eomm_split function, MPJ_eomm_split carries a considerable

overhead since its execution implies a lot of communications.

Particularly for develop our experiments, we are using La Laguna e [16], a set of macros and

functions that extend MPI and PVM with the capacity for Nested parallelism.

The code in Figure 2 shows a nested implementation of the FFT in MPI [8]. The algorithm assumes

that the input vector a is replicated in the initial set of processors, while the resulting DFT A is

delivered block distributed. Let us also assume that the number of elements N is larger than the

number p of processors. Variable Np holds the quotient Nlp, W is the vector containing the powers

of the primitive n-th root of the unity and vector D is used as a temporary buffer during the

combination.

The key point in the code is the use of the macro (line 9) we have ca11ed PAR. The ca11 to PAR(f1,

p 1, s1, .f2, p2, s2) is expanded so that two subgroups of the current group of processors are generated.

While the first one executes functionf1, the second does the same with functionh. After the rejoin,

the two subgroups exchange the results of their computations. For each group i E {1,2} this result is

constituted by the s1 bytes pointed by p 1. This exchange is done in a pair-wise manner in such a way

that the processors in one of the subgroups send in parallel their results to their corresponding

partners in the other subgroups. This methodology can be straightforwardly expanded for non­

binary divisions. The code of the procedure seqFFT (call at line 20) is simply the result obtained

serialising the code in Figure 2.

In a prevwus work, we showed that the time taken by macro PAR when the division (and

reunification) is performed using the alternative division technique proposed above is negligible

compared with the times needed by the MPI_Comm_split version [7].

1 void parDandCFFT(Complex *A, Complex *a, Complex *W, unsigned Np,
unsigned stride, Complex *D) {

2 Comp1ex Aux, *pW;
3 unsigned i, size;

4 if(NUMPROCESSORS > 1) {
5 /* Division phase without copying input data */
6 size = Np*sizeof(Comp1ex);
7 /* Subproblems resolution phase */
8 PAR(parDandCFFT(A, a, W, Np, stride<<l, D), A, size,
9 parDandCFFT(D, a+stride, W, Np, stride<<l, A), D, size);
10 /* Combination phase */
11 for(i =O, pW = W+(Np*NAME*stride); i < Np; i++, pW += stride)
12 Aux.re = pW->re * D[i] .re- pW->im * D[i] .im;
13 Aux.im = pW->re * D[i] .im + pW->im * D[i] .re;
14 A[i] .re += Aux.re;
15 A[i] .im += Aux.im;
16
17
18 e1se
19 seqFFT(A, a, W, N, stride, D);
20

Figure 2. MPI Nested parallelism

4. Nested Parallelism in High Performance Fortran

High Performance Fortran (HPF) is a formal language standard. Its mms are to simplify the

programming of data parallel applications for distributed memory MIMD machines and supply the

lack of portability of the resulting programs [12][13].

For a MIMD architecture, an HPF compiler transforms this program into an SPMD code by

partitioning and distributing its data as is specified, allocating computation to processors according

to the locality of the involved data, and inserting, if is necessary, data communications. Although

HPF is a Data Parallellanguage, it provide task parallelism, therefore, the Nested parallelism can be

achieved.

HPF augments a standard Fortran 90 [14] program. The initial aim of the High Performance Forum

meetings held during 1995 and 1996 was to expand High Performance Fortran 1.1 with capabilities

such as enhanced data distributions, task parallelism and computation control, parallel 110 and

directives to assist communication optimisation. The final decision was not to consider all these

extensions as part of the new version HPF 2.0, but as "HPF 2.0 Approved Extensions" [10]. The

expression meaning that, to be considered standard HPF 2.0, a compiler must provide full support

for the HPF 2.0 features, but it is not required to support any of the Approved Extensions. The only

HPF compiler compliant with version 2.0 approved extensions is ADAPTOR [4].

HPF increases a Fortran 90 program with directives. A directive is a structured Fortran comment

that are distinguished by starting the characters 'HPF$' immediately after the comment character.

A directive can specify the data distribution, define the abstract processor or implement task

parallelism. In especial, the ON [5] directive allows the programmer to control the distribution of

computations among the current active processors set. This directive don't change the active

processors set, the called inherits the caller's active processors.

1 recursive subroutine FFT (R,N2,NAME,k,NP2)
2 implicit none
3 integer, parameter :: N = 1024*1024
4 integer, intent (in) :: N2, NAME, k, NP2
5 comp1ex, dimension (O:N2-1), intent(out) R
6 complex, dimension (O:N-1) ::A
7 complex, dimension (0 :N/2-1) :: W
8 common //A, W
9 comp1ex, dimension (O:N2-1) :: B
10 !hpf$ processors Set(NP2)
11 !hpf$ distribute (block) onto Set(l:NP2) R
12 !hpf$ align with R :: B
13 integer :: S, k2
14
15 k2 = k*2
16 if (NP2 > 1) then
17 !hpf$ on (Set (1 :NP2/2)), resident
18 call FFT (B (0: (N2/2) -1), N2/2, NAME, k2, NP2/2)
19 !hpf$ on (Set((NP2/2)+l:NP2)), resident
20 ca11 FFT (B(N2/2:N2-1), N2/2, NAME+k, k2, NP2/2)
21 S = N2/2
22 R(O:S-1) = B(O:S-1) + B(S:N2-1)* W(O:N/2-1:k)
23 R(S:N2-1) = B(O:S-1) - B(S:N2-1)* W(O:N/2-1:k)
24 e1se
25 call seqiterativeFFT (R,NAME, N2,N2/2)
2 6 end if
27 end subroutine FFT

Figure 3. FFT: Nested parallelism in ADAPTOR HPF 6.1

Task parallelism is expressed in HPF using three new directives. These extensions, proposed in

[10], are the ON, RESIDENT and TASK_REGION directives. The ON directive specifies the set of

processors to perform a computation. Line 17 in Figure 3 specifies that only processors in the first

half have to execute the call in line 18. The RESIDENT directive, used with the former, asserts that

accesses to the specified objects within the scope of the ON directive are local. Finally, the

TASK_REGION ... END TASK_REGION directive defines a block of code in which it can be

guaranteed that only the specified active processors of an execution task need to participate in its

execution, and that the other processors can skip it.

At any time in the execution of a HPF statement there are a set of processors involved. Line 10 in

Figure 3 declares the set of current active processors. The ON directive restricts the active

processors to those named in its home.

In HPF approved extensions it is legal to nest ON directives, if the set of active processors named

by the inner ON directive is included in the set of active processors from the outer directive. As in

the MPI code, the input array A is replicated in each processor (lines 6 and 8) while the result R is

block distributed (line 11). A difference with the MPI code is the subroutine called in the sequential

case (line 25). The seqlterativeFFT procedure is the iterative solution used in the CMU Task

Parallel Program suite [6].

5. Comparative Analysis

The experiences were carried out in CRA Y 3TE, at Ciemat, Spain. This is a MIMD (Multiple

Instruction Multiple Data) machine, massively parallel with distributed memory. It has 32

processor DEC EV-5 (Alpha), with 128M of main memory size. The MPI library was the CRAY

native implementation. The HPF compiler was GMD ADAPTOR 6.1 installed on top of MPI.

Columns in Tables 1 and 2 present for the different software platforms, the running times and speed

up respectively.

PROCS HPF MPI

1 11.970 5.95

2 6.748 3.03

4 3.298 1.58

8 1.673 0.81

16 0.835 0.42

Table l. Running time to FFT. 1 Mega complex

Cray- 3TE.

PROCS SP-HPF SP-MPI

2 1.77 1.96

4 3.63 3.76

8 7.15 7.34

16 14.33 14.16

Table 2. Speed Up to FFT. 1 Mega complex

Cray- 3TE.

We also ported the MPI algorithm to a SGI Origin 2000. The SGI Origin 2000 used is a shared

distributed memory machine with 64 MIPS RlOOOO processors and 8 GB of main memory. The

results appear in Table 3.

PROCS SGI-Origin 2000 Cray -T3E

Time Speed Up Speed Up

9.091

2 7.201 1.26 3.03 1.96

4 3.604 2.54 1.58 3.76

8 2.211 4.11 0.81 7.34

Table 3. FFT - 1 Mega complex, MPI implementation.

6. Conclusions

The purpose of Nested data parallel is provided the advantages of data parallelism while extending

their applicability to algorithms that use 'irregular' data structures. The main advantages of data

parallelism that should be preserved are efficient implementation of fine-grained parallelism and the

simple synchronous programming model.

We have described a methodology to implement Nested Parallelism for Divide and Conquer

algorithms. The results obtained prove that, not only the MPI performance is considerably better

than the provided by HPF, but what is more remarkably, the effort invested in software

development is similar.

7. Acknowledgements

We wish to thank to CCCC (Barcelona), CIEMAT (Madrid) for allowing us the access to their

computational resources, like thus also to the National University of San Luis, CONICET, and

ANPCYT from which continuous support is received

8. References

[1] Blelloch G. - Programming Parallel Algorithms. Communícatíons of ACM. 39(3). March
1996.

[2] Blelloch, G., Hardwick J., Sipelstien j., Zahga M. - NESL user's manual Technical report
CMU-CS-93-114, School of computer Science. Carnegie Mellon luniversity. July, 1995.

[3] Blelloch, G., Hardwick J., Sipelstien j., Zahga M., and Charterjee S. - Implementation (~{a
portable nested data-parallel language. Journal of Parallel and distributed Computing,
21(1):4-14, April1994.

[4] Brandes, T.: ADAPTOR Programmer's Guíde (Versíon 6.0). Technícal Documentatíon,
GMD, http://www .gmd.de/SCAI/lab/adaptor/adaptor_home.html (1998).

[5] Brandes, T.: Exploiting Advanced Task Parallelism in High Performance Fortran via a Task
Library . Proceedings of Euro-Par'99 Parallel Processíng, Toulouse, France. (1999).

[6] Dinda, P., Gross, T., O 'Hallaron, D., Segall, E., Sttichnoth, E., Subhlok, J., Webb, J., Yang,
B.: The CMU Task Parallel Program Suite. Technical Report CMU-CS-94-131, School of
Computer Science, Carnegie Mellon University (1994).

[7] González, J.A., León, C. , Piccoli, F., Printista, M., Roda, J.L., Rodríguez, C., Sande, F. .
Groups in Bulk Synchronous Parallel Computing. Proc. 8th Euromicro Parallel and
Distributed Processing. Pp 246-253. January 2000.

[8] Gonzalez, J.A., Leon, C., Piccoli, M.F., Príntísta, M, Roda, J.L., Rodríguez, C., Sande, F.
"Collective Computing ". V Congreso Argentino de Ciencias de la Computación en la
Universidad del Centro. Octubre 1999. Tandil, Argentina.

[9] Hardwick J. - An Efficient lmplementation of nested data Parallelism fo r Irregular Divide
and Conquer Algorithms. Fírst International Wokshop on Hígh programming Models and
Supportive Environments. April 1996.

[lO] High Performance Fortran Forum - High Peiformance Fortran Language Specification.
1997

[11] Li, X., Lu, P., Schaefer, J., Shillington, J., Wong, P.S., Shi, H. - On the Versatility of
Parallel Sorting by Regular Sampling. Parallel Computing, 19, pp. 1079-1103. 1993.

[12] Merlín J., Hey A. - An íntroductíon to Hígh Performance Fortran. University of
Southampton. 1994.

[13] Merlin, J ., Chapman, B. High Peiformance Fortran 2.0. VCPC University of Viena. 1997.

[14] MetcalfM., Reid J.,- Fortran90 Explained. Oxford University Press. 1990

[15] Quinn M.- Parallel Computing. Theory and Practice. Second Edition. McGraw-Hill, lnc.

[16] Rodríguez C., Sande F., Leon C. and García L. - Extending Processor Assignment Statements.
211

d !ASTED European Conference on Parallel and Distributed Systems. Acta Press. 1998.

[17] Snír, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J. - MPI: The complete
Reference. Cambridge, MA: MIT Press, 1996.

[18] The Design and Analysis ofParallel Algorithms. Prentice-Hall (1989)

