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Many parallel applications do not completely fit into the data parallel model. Although these 

applications contain data parallelism, task parallelism is needed to represent the natural 

computation structure or enhance performance. To combine the easiness of programming of 

the data parallel model with the efficiency of the task parallel model allows to parallel forms 

to be nested, giving Nested parallelism. 

In this work, we examine the solutions provided to N ested parallelism in two standard 

parallel programming platforms, HPF and MPI. Both their expression capacity and their 

efficiency are compared on a Cray- 3TE, which is distributed memory machine. Finally, an 

additional speech about the use of the methodology proposed for MPI is done on two 

different architectures. 

Keytvords: Parallel Programming model, Nested Parallel model, Divide and Conquer 

technique. 



l. Introduction 

Many parallel programming models have been proposed, differing in their flexibility, task iteration 

mechanisms, task granularities, and support for locality, scalability, and modularity. Two standard 

models that can be taken to representing parallel computation are Data parallelism and Task 

parallelism [ 1]. 

Data parallelism is one of the more successful efforts to introduce explicit parallelism to high level 

programmíng languages. Data parallel programming ís particularly conveníent for two reasons. The 

first, is its ease of programming. The second is that it can scale easily to larger problem sizes. 

Several data parallellanguage implementations are available now[l3],[14]. However, a perceived 

disadvantage of data parallelism is that it is only applicable to problems where a large set of data 

has to be uniformly operated, it is to say, monolithic problems. Hence, a set of independent sub­

computations is strongly associated to a subset of these data. Such computations are inherently 

parallelízable, but each computatíon ítself must be sequentíal. 

The task parallel model achieves parallelism by using multiply threads of control, each getting part 

of the problem. Although the multíple threads of control have the disadvantage of to be more 

difficult to understand and use, a task parallel approach allows efficient implementations of 

irregular algorithms. 

Nested parallel model ís an extension of standard data parallel model, which includes the capability 

of nested parallel invocations. In this way, it combines the ability to apply a function in parallel to 

each element of a collection of data and the ability to nest such parallel calls [2],[3]. 

In this paper we examine the solutions provided by the two standard parallel programmmg 

platforms, HPF and MPI, comparing their efficiency on a Cray- 3TE, which is a distributed 

memory machine. 

From the unlimited scope of applications that benefit from Nested parallelism, it has chosen the 

Divide and Conquer technique sínce it provides an excellent scenario for benchmarking. Both the 

general technique and the particular case that will be considered all along the paper are introduced 

in section 2. The two following sections describe in detail the expression of a Nested Parallel Fast 

Fourier Transform, exploiting both data and code parallelísm in MPI and HPF. The fifth and sixth 

sections present the compara ti ve study of the computational results and the conclusions. 



2. Divide and Conquer as a test bed for Nested Parallelism Constructs 

The divide and conquer approach is characterised by dividing the problems into sub-problems that 

are of the same structure as the larger problem. Further divisions into still smaller sub-problems are 

usually done by recursion. The recursive method will continually divide a problem until the 

problem cannot be broken down into smaller parts. Then the very simple tasks are performed. The 

tasks' results are combined with the others tasks' results in the same level. N ested parallelism is 

critical for describing divide and conquer algorithms [9][11][15]. A simple data parallel algorithm 

could not exploit the task parallelism that is available in divide and conquer algorithms, and a 

simple task-parallel algorithm could not exploit the data parallelism that is available [18]. By 

contrast, Nested parallelism accomplishes the ability to take a parallel function and apply it over 

multiple instances in parallel. 

1 procedure pDC(x: prob1em; r: so1ution); 
2 begin 
3 if trivia1(x) then conquer(x, r) 
4 e1se 
5 begin 
6 divide (x, xo, x1); 
7 para11e1 do pDC (xo, ro) 1 1 pDC (x1, r1)); 
8 combine (r, ro, r1); 
9 end; 
10 end; 

Figure l. General frame for a parallel divide and conquer algorithm 

Let us consider the special case of the divide and conquer approach presented in Figure 1 where 

both the solutions r and the problems x have a vectorial nature. In such case there are opportunities 

to exploit parallelism not only at the task level (line 7) but also in the divide and combine 

subroutines (lines 6 and 8). Thus, data parallelism can be introduced by doing every processor in 

the current group to work in a subsection of the array x in the division phase (respectively a 

subsection of r in the combination phase ). 

As benchmark instance for this paper we will consider the Fast Fourier Transform (FFT) algorithm. 

However, the proposed techniques have been applied to other divide and conquer algorithms with 

similar results. Consider a sequence of complex numbers a=( a[O ], .... , a[N-1]) of length N. The 

Discrete Fast Fourier Transform (DFT) of the sequence a is the sequence A=(A[O], ... , A[N-1]) 

· b A[·¡ \' [k] ki h 2JrV-l/N · h · · · h f h · · h giVen y z = L..k=O .. N-I a w , w ere w = e 1st e pnm1t1ve nt root o t e umty m t e 

complex plane. The following decomposition can be deduced from the definition: 



. 2b i 2b 
A[l] = Lk=O .. N/2-1 a[2k] w + w Lk=O .. N/2-1 a[2k+l] w 

From this formula, it follows that the DFT A of a can be obtained by combining the DFT B of the 

even components and the DFT e of the odd components of a_ 

3. Nested Parallelism in MPI 

The MPI standard defines the user interface and functionality for a wide range of message-passing 

capabilities [17]. MPI, as all good standards, is valuable in that it defines a known, mínimum 

behaviour of message-passing implementations. This relieves the programmer from having to 

worry about certain problems that can arise in the underlying transmission of messages 

Although the natural way to express Nested parallelism in MPI [7] is through the use of 

communicators and the MPJ_eomm_split function, MPJ_eomm_split carries a considerable 

overhead since its execution implies a lot of communications. 

Particularly for develop our experiments, we are using La Laguna e [16], a set of macros and 

functions that extend MPI and PVM with the capacity for Nested parallelism. 

The code in Figure 2 shows a nested implementation of the FFT in MPI [8]. The algorithm assumes 

that the input vector a is replicated in the initial set of processors, while the resulting DFT A is 

delivered block distributed. Let us also assume that the number of elements N is larger than the 

number p of processors. Variable Np holds the quotient Nlp, W is the vector containing the powers 

of the primitive n-th root of the unity and vector D is used as a temporary buffer during the 

combination. 

The key point in the code is the use of the macro (line 9) we have ca11ed PAR. The ca11 to PAR(f1, 

p 1, s1, .f2, p2, s2 ) is expanded so that two subgroups of the current group of processors are generated. 

While the first one executes functionf1, the second does the same with functionh. After the rejoin, 

the two subgroups exchange the results of their computations. For each group i E {1,2} this result is 

constituted by the s1 bytes pointed by p 1. This exchange is done in a pair-wise manner in such a way 

that the processors in one of the subgroups send in parallel their results to their corresponding 

partners in the other subgroups. This methodology can be straightforwardly expanded for non­

binary divisions. The code of the procedure seqFFT (call at line 20) is simply the result obtained 

serialising the code in Figure 2. 



In a prevwus work, we showed that the time taken by macro PAR when the division (and 

reunification) is performed using the alternative division technique proposed above is negligible 

compared with the times needed by the MPI_Comm_split version [7]. 

1 void parDandCFFT(Complex *A, Complex *a, Complex *W, unsigned Np, 
unsigned stride, Complex *D) { 

2 Comp1ex Aux, *pW; 
3 unsigned i, size; 

4 if(NUMPROCESSORS > 1) { 
5 /* Division phase without copying input data */ 
6 size = Np*sizeof(Comp1ex); 
7 /* Subproblems resolution phase */ 
8 PAR(parDandCFFT(A, a, W, Np, stride<<l, D), A, size, 
9 parDandCFFT(D, a+stride, W, Np, stride<<l, A), D, size); 
10 /* Combination phase */ 
11 for(i =O, pW = W+(Np*NAME*stride); i < Np; i++, pW += stride) 
12 Aux.re = pW->re * D[i] .re- pW->im * D[i] .im; 
13 Aux.im = pW->re * D[i] .im + pW->im * D[i] .re; 
14 A[i] .re += Aux.re; 
15 A[i] .im += Aux.im; 
16 
17 
18 e1se 
19 seqFFT(A, a, W, N, stride, D); 
20 

Figure 2. MPI Nested parallelism 

4. Nested Parallelism in High Performance Fortran 

High Performance Fortran (HPF) is a formal language standard. Its mms are to simplify the 

programming of data parallel applications for distributed memory MIMD machines and supply the 

lack of portability of the resulting programs [12][13]. 

For a MIMD architecture, an HPF compiler transforms this program into an SPMD code by 

partitioning and distributing its data as is specified, allocating computation to processors according 

to the locality of the involved data, and inserting, if is necessary, data communications. Although 

HPF is a Data Parallellanguage, it provide task parallelism, therefore, the Nested parallelism can be 

achieved. 

HPF augments a standard Fortran 90 [14] program. The initial aim of the High Performance Forum 

meetings held during 1995 and 1996 was to expand High Performance Fortran 1.1 with capabilities 

such as enhanced data distributions, task parallelism and computation control, parallel 110 and 

directives to assist communication optimisation. The final decision was not to consider all these 

extensions as part of the new version HPF 2.0, but as "HPF 2.0 Approved Extensions" [10]. The 



expression meaning that, to be considered standard HPF 2.0, a compiler must provide full support 

for the HPF 2.0 features, but it is not required to support any of the Approved Extensions. The only 

HPF compiler compliant with version 2.0 approved extensions is ADAPTOR [4]. 

HPF increases a Fortran 90 program with directives. A directive is a structured Fortran comment 

that are distinguished by starting the characters 'HPF$' immediately after the comment character. 

A directive can specify the data distribution, define the abstract processor or implement task 

parallelism. In especial, the ON [5] directive allows the programmer to control the distribution of 

computations among the current active processors set. This directive don't change the active 

processors set, the called inherits the caller's active processors. 

1 recursive subroutine FFT (R,N2,NAME,k,NP2) 
2 implicit none 
3 integer, parameter :: N = 1024*1024 
4 integer, intent (in) :: N2, NAME, k, NP2 
5 comp1ex, dimension (O:N2-1), intent(out) R 
6 complex, dimension (O:N-1) ::A 
7 complex, dimension (0 :N/2-1) :: W 
8 common //A, W 
9 comp1ex, dimension (O:N2-1) :: B 
10 !hpf$ processors Set(NP2) 
11 !hpf$ distribute (block) onto Set(l:NP2) R 
12 !hpf$ align with R :: B 
13 integer :: S, k2 
14 
15 k2 = k*2 
16 if (NP2 > 1) then 
17 !hpf$ on (Set (1 :NP2/2)), resident 
18 call FFT (B (0: (N2/2) -1), N2/2, NAME, k2, NP2/2) 
19 !hpf$ on (Set((NP2/2)+l:NP2)), resident 
20 ca11 FFT (B(N2/2:N2-1), N2/2, NAME+k, k2, NP2/2) 
21 S = N2/2 
22 R(O:S-1) = B(O:S-1) + B(S:N2-1)* W(O:N/2-1:k) 
23 R(S:N2-1) = B(O:S-1) - B(S:N2-1)* W(O:N/2-1:k) 
24 e1se 
25 call seqiterativeFFT (R,NAME, N2,N2/2) 
2 6 end if 
27 end subroutine FFT 

Figure 3. FFT: Nested parallelism in ADAPTOR HPF 6.1 

Task parallelism is expressed in HPF using three new directives. These extensions, proposed in 

[10], are the ON, RESIDENT and TASK_REGION directives. The ON directive specifies the set of 

processors to perform a computation. Line 17 in Figure 3 specifies that only processors in the first 

half have to execute the call in line 18. The RESIDENT directive, used with the former, asserts that 

accesses to the specified objects within the scope of the ON directive are local. Finally, the 



TASK_REGION ... END TASK_REGION directive defines a block of code in which it can be 

guaranteed that only the specified active processors of an execution task need to participate in its 

execution, and that the other processors can skip it. 

At any time in the execution of a HPF statement there are a set of processors involved. Line 10 in 

Figure 3 declares the set of current active processors. The ON directive restricts the active 

processors to those named in its home. 

In HPF approved extensions it is legal to nest ON directives, if the set of active processors named 

by the inner ON directive is included in the set of active processors from the outer directive. As in 

the MPI code, the input array A is replicated in each processor (lines 6 and 8) while the result R is 

block distributed (line 11). A difference with the MPI code is the subroutine called in the sequential 

case (line 25). The seqlterativeFFT procedure is the iterative solution used in the CMU Task 

Parallel Program suite [6]. 

5. Comparative Analysis 

The experiences were carried out in CRA Y 3TE, at Ciemat, Spain. This is a MIMD (Multiple 

Instruction Multiple Data) machine, massively parallel with distributed memory. It has 32 

processor DEC EV-5 (Alpha), with 128M of main memory size. The MPI library was the CRAY 

native implementation. The HPF compiler was GMD ADAPTOR 6.1 installed on top of MPI. 

Columns in Tables 1 and 2 present for the different software platforms, the running times and speed 

up respectively. 

PROCS HPF MPI 

1 11.970 5.95 

2 6.748 3.03 

4 3.298 1.58 

8 1.673 0.81 

16 0.835 0.42 

Table l. Running time to FFT. 1 Mega complex 

Cray- 3TE. 

PROCS SP-HPF SP-MPI 

2 1.77 1.96 

4 3.63 3.76 

8 7.15 7.34 

16 14.33 14.16 

Table 2. Speed Up to FFT. 1 Mega complex 

Cray- 3TE. 



We also ported the MPI algorithm to a SGI Origin 2000. The SGI Origin 2000 used is a shared 

distributed memory machine with 64 MIPS RlOOOO processors and 8 GB of main memory. The 

results appear in Table 3. 

PROCS SGI-Origin 2000 Cray -T3E 

Time Speed Up Speed Up 

9.091 

2 7.201 1.26 3.03 1.96 

4 3.604 2.54 1.58 3.76 

8 2.211 4.11 0.81 7.34 

Table 3. FFT - 1 Mega complex, MPI implementation. 

6. Conclusions 

The purpose of Nested data parallel is provided the advantages of data parallelism while extending 

their applicability to algorithms that use 'irregular' data structures. The main advantages of data 

parallelism that should be preserved are efficient implementation of fine-grained parallelism and the 

simple synchronous programming model. 

We have described a methodology to implement Nested Parallelism for Divide and Conquer 

algorithms. The results obtained prove that, not only the MPI performance is considerably better 

than the provided by HPF, but what is more remarkably, the effort invested in software 

development is similar. 

7. Acknowledgements 

We wish to thank to CCCC (Barcelona), CIEMAT (Madrid) for allowing us the access to their 

computational resources, like thus also to the National University of San Luis, CONICET, and 

ANPCYT from which continuous support is received 



8. References 

[1] Blelloch G. - Programming Parallel Algorithms. Communícatíons of ACM. 39(3). March 
1996. 

[2] Blelloch, G., Hardwick J., Sipelstien j., Zahga M. - NESL user's manual Technical report 
CMU-CS-93-114, School of computer Science. Carnegie Mellon luniversity. July, 1995. 

[3] Blelloch, G., Hardwick J., Sipelstien j., Zahga M., and Charterjee S. - Implementation (~{a 
portable nested data-parallel language. Journal of Parallel and distributed Computing, 
21(1):4-14, April1994. 

[4] Brandes, T.: ADAPTOR Programmer's Guíde (Versíon 6.0). Technícal Documentatíon, 
GMD, http://www .gmd.de/SCAI/lab/adaptor/adaptor_home.html ( 1998). 

[5] Brandes, T.: Exploiting Advanced Task Parallelism in High Performance Fortran via a Task 
Library . Proceedings of Euro-Par'99 Parallel Processíng, Toulouse, France. (1999). 

[6] Dinda, P., Gross, T., O 'Hallaron, D., Segall, E., Sttichnoth, E., Subhlok, J., Webb, J., Yang, 
B.: The CMU Task Parallel Program Suite. Technical Report CMU-CS-94-131, School of 
Computer Science, Carnegie Mellon University (1994). 

[7] González, J.A., León, C. , Piccoli, F., Printista, M., Roda, J.L., Rodríguez, C., Sande, F. . 
Groups in Bulk Synchronous Parallel Computing. Proc. 8th Euromicro Parallel and 
Distributed Processing. Pp 246-253. January 2000. 

[8] Gonzalez, J.A., Leon, C., Piccoli, M.F., Príntísta, M, Roda, J.L., Rodríguez, C., Sande, F. 
"Collective Computing ". V Congreso Argentino de Ciencias de la Computación en la 
Universidad del Centro. Octubre 1999. Tandil, Argentina. 

[9] Hardwick J. - An Efficient lmplementation of nested data Parallelism fo r Irregular Divide 
and Conquer Algorithms. Fírst International Wokshop on Hígh programming Models and 
Supportive Environments. April 1996. 

[lO] High Performance Fortran Forum - High Peiformance Fortran Language Specification. 
1997 

[11] Li, X., Lu, P., Schaefer, J., Shillington, J., Wong, P.S., Shi, H. - On the Versatility of 
Parallel Sorting by Regular Sampling. Parallel Computing, 19, pp. 1079-1103. 1993. 

[12] Merlín J., Hey A. - An íntroductíon to Hígh Performance Fortran. University of 
Southampton. 1994. 

[13] Merlin, J ., Chapman, B. High Peiformance Fortran 2.0. VCPC University of Viena. 1997. 

[14] MetcalfM., Reid J.,- Fortran90 Explained. Oxford University Press. 1990 

[15] Quinn M.- Parallel Computing. Theory and Practice. Second Edition. McGraw-Hill, lnc. 

[16] Rodríguez C., Sande F., Leon C. and García L. - Extending Processor Assignment Statements. 
211

d !ASTED European Conference on Parallel and Distributed Systems. Acta Press. 1998. 

[17] Snír, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J. - MPI: The complete 
Reference. Cambridge, MA: MIT Press, 1996. 

[18] The Design and Analysis ofParallel Algorithms. Prentice-Hall (1989) 


