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Abstract

Modular neural networks (MNNs) are increasingly popular models for dealing
with complex problems constituted by a number of dependent subtasks. An impor-
tant problem on MNNs is finding the optimal aggregation of the neural modules,
each of them dealing with one of the subproblems. In this paper, we present a func-
tional network approach, based on the minimum description length quality measure,
to the problem of finding optimal modular network architectures for specific prob-
lems. Examples of function approximation and nonlinear time series prediction are
used to illustrate the performance of these models when compared with standard
functional and neural networks.
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1 Introduction

Neural networks are simple and efficient computing techniques which have proven their

efficiency in many practical problems [1]. One of their most popular applications of

these models is approximating a target mapping y(x) = y(x1, . . . , xm) from a sampled

data set, (x1, y1), . . ., (xn, yn). To this aim, an specific architecture of processing units

(neurons) organized in layers and connected by weights is designed (multilayer feedforward

networks, MFNs). Then, the set of input-output data representing the problem of interest,

xi − yi, i = 1, . . . , n, is used to fit the weights using backpropagation-like algorithms. For

instance, Fig. 1(a) shows the structure of a MFN consisting of an input layer with two

processing units, a hidden/intermediate layer with four units, and a single output unit.

The computation performed by a single neuron unit is schematically shown in Fig. 1(b)

(see [2], chapter 1, for a detailed overview of neural networks). Therefore, the network in

1(a) maps a 2D space into a 1D space as follows:

y1 = f(
4∑

j=1

Wj1hj −Θ1) = f(
4∑

j=1

Wj1f(
2∑

i=1

wijxi − θi)−Θ1), (1)

where Wj1, wij, Θ1, and θi are the parameters of this fully-connected network (4 + 8

weights and 1+4 bias) to be adjusted with the sampled data to approximate the original

mapping.
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Figure 1: (a) A simple MFN with two inputs and a single output; (b) Schematic neuron
computation consisting of a weighted sum of the inputs from other neurons, including
a threshold value θi, and a processing activity function f(x) (e.g., the sigmoid logistic
function f(x) = 1/(1 + e−x)).



On the one hand, the main advantage of neural networks is their simple application to

real-world problems, which allow us obtaining valuable approximations of complex input-

output mappings (universal approximation property [3]). On the other hand, the key

disadvantage of these models is their rigid structure of fully connected layers with many

degrees of freedom that may overfit the data, train slowly, or converge to local minima.

In recent years, several attempts for obtaining more flexible neural structures beyond

the fully connected rigid topology of neural networks have been developed using the idea of

modularity (hybrid neural systems [4], Modular Neural Networks (MNNs) [5], mixtures of

experts [6], etc.). The concept of modularity is linked to the notion of local computation,

in the sense that each module is an independent system and interacts with others in a

whole architecture, in order to perform a given task.

For instance, the concept of module in MNNs is defined as a group of unconnected neu-

rons, each connected to the same set of nodes. The local structure and the complexity

reduction sustained by modularity in MNNs have shown to overcome some of the prob-

lems of fully connected MFNs [7]. However, in order to have meaningful and efficient

models, each module has to perform an interpretable and relevant function according to

the mathematical or physical properties of the system. Unfortunately, it is unclear how

to best design such a modular topology based on the data. For example, given the trivial

modular network shown in Fig. 2(a) (a MFN consisting of four modules: an input layer,

two hidden layers and an output layer, respectively), several nontrivial modular networks

can be easily obtained by splitting up some layers into sub-layers, hereby reducing the

number of weights (two of such modular networks are shown in Fig. 2(b) and (c)). How-

ever, there is no general procedure to design optimal modular structures according to

some available domain knowledge.

(a) (b) (c)

Figure 2: (a) A fully connected feedforward 2:4:4:1 network; (b) and (c) modular neural
networks with different aggregation configurations.

This problem has been partially addressed with functional networks (see [2] for an in-

troduction to functional networks). In a recent work, Cofiño and Gutiérrez [8] presented

an hybrid model combining both functional and neural networks for obtaining efficient

modular architectures from qualitative and quantitative knowledge. Domain knowledge



was used for obtaining an appropriate functional network for the given problem; after-

wards, the resulting processing units were trained with neural networks using the available

data. However, this technique lacks of an efficient adaptive method for determining the

computational requirements needed for each of the processing units according to a problem

of interest. In this paper, we present a quality measure derived from the Minium Descrip-

tion Length (MDL) criterion for obtaining the optimal modular functional architecture

for a given problem, both in terms of network topology and modules training.

In section 2 we briefly introduce the functional network paradigm and describe hybrid

modular functional-neural networks. In Sec. 3 the MDL quality measure is analyzed and

applied to our problem; some comparative examples are presented to illustrate this new

technique. Finally, in Sec. 4 the resulting models are applied to a nontrivial problem in

nonlinear time series prediction.

2 Modular Functional Networks

Functional networks are a generalization of neural networks which allow combining both

domain and data knowledge to develop optimal functional structures for several problems.

The topology of the network (functional units and connections) is obtained using qualita-

tive knowledge of the problem at hand (symmetries or other functional properties) which

are analyzed and simplified using functional equations [9]. Then, the resulting functional

units are fitted to data as linear combinations of a predetermined set of appropriate func-

tions such as polynomials, trigonometric Fourier functions, etc. (see [10] for an overview

of functional network applications).

Apart from the input, output and hidden layers of processing units, a functional network

also includes a layer of intermediate units, which do not perform any computation, but

only store intermediate information and may force the outputs of different processing

units to be equal. For instance, in Fig. 3(a) the output unit u is connected to the

processing units I and F3, so their outputs must be coincident. Therefore, this network

is the graphical representation of the functional equation:

F4(x, y) = F3 (F1(x, z), F2(y, z)) , ∀x, y, z. (2)

This property characterizes the so-called general associativity models, which generalize

the class of models which combine the separate contribution of independent variables.

The above functional equation imposes some constraints in the neuron functions

F1, . . . , F4, which may lead to a simplification of the functional structure. In this case,

the solution of the functional equation is:

F1(x, y) = f−1
4 (f1(x) + f6(y)) ,

F2(x, y) = f−1
5 (f2(x)− f6(y)) , (3)

F3(x, y) = f−1
3 (f4(x) + f5(y)) ,

F4(x, y) = f−1
3 (f1(x) + f2(y)) .

(4)
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Figure 3: (a) Functional network (dots represent intermediate units, circles represent the
processing units, and I denotes the identity function); (b) simplified functional network.

where f1, . . . , f6 are arbitrary continuous and strictly monotonic functions.

Replacing (3) in (2) we obtain the simplest functional expression of general associativity

models models

u = F4(x, y) = F3 (F1(x, z), F2(y, z)) = f−1
3 (f1(x) + f2(y)) , (5)

defining the functional network in Figure 3(b).

The problem of learning the above functional network now reduces to estimating the

neuron functions f1, f2 and f3 from the available data of the form (xi, yi, ui), i = 1, . . . , n.

To this aim each of the functions fs in (5) is supposed to be a linear combination of known

functions from given families φs = {φs1, . . . , φsms}, s = 1, 2, 3, i.e.,

f̂s(x) =
ms∑
i=1

asiφsi(x); s = 1, 2, 3, (6)

where the coefficients asi are the parameters of the functional network (see [11] for imple-

mentation details).

The efficiency of functional networks depends on the appropriate choice of the family

of functions in (6). However, in general it may not be possible to specify a convenient

family of functions. In these cases, it would be desirable to learn the neuron functions

using some standard non-parametric technique, such as neural networks. This idea was

presented in [8] with the so-called hybrid functional-neural modular networks. Fig. 4

illustrates the architecture resulting from the functional network in Fig. 3(b) when us-

ing MFNs for approximating each of the processing units f1, f2, and f3. The resulting



models can be considered particular types of modular neural networks, where some of the

processing units may be known (such as the sum operator in module 3) and other may

be unknown (modules 1, 2 and 4). Therefore, the parameters can be estimated from data

using modular backpropagation [12]. The resulting network is an optimal modular neural

network architecture for this problem.
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Figure 4: Modular neural network resulting form the functional network in Fig. 3(b).

In order to illustrate the performance of the above methodologies, we have imple-

mented some modular architectures using the Matlab Neural Network Toolbox [13]. We

generated some data by randomly simulating a hundred of points from the model

u3
i = xi + x2

i + y2
i + y3

i + εi; xi, yi ∈ (0, 1); i = 1, . . . , 100, (7)

where ε is a noise term given by a uniform random variable in (−0.01, 0.01).

As a first experiment, the MFN in Fig. 2(a) was used as a black-box method for this

problem, fitting the weights to data using the backpropagation algorithm; we performed

ten experiments with networks consisting of two neurons in each of the hidden layers

(2:2:2:1 MFN with 15 parameters) and random initial weight configurations. The average

Root Mean Squared Error (RMSE) obtained in these experiments was 0.0074. The same

experiment was repeated considering three neurons in each of the hidden layers (2:3:3:1

with 25 parameters) obtaining a significant improvement (RMSE=0.0031).

Now, assuming that the model satisfies the generalized associativity property, the

hybrid model shown in Fig. 4 was applied, considering MFNs with a single hidden layer

of two neurons for each of the neural modules (7× 3 = 21 parameters); in this case, the

average RMSE after ten initializations and training of the model was 0.0027. Therefore,



hybrid neural-functional networks outperforms standard neural nets due to the optimal

network structure applied to the problem.

Finally, the same experiment was performed assuming also that the functions involved

in the problem are polynomials (domain knowledge). Then we can use the functional

network shown in Fig. 3(b) selecting an appropriate functional family, say {1, x, x2, x3},
obtaining the model:

f1(x1) = 0.3350 + 0.322x1 + 0.352x2
1 − 0.0095x3

1,
f2(x2) = 0.334− 0.00372x2 + 0.331x2

2 + 0.339x3
2,

f3(y) = 0.659 + 0.0322y − 0.037y2 + 0.346y3,

with a RMSE = 0.0024. Note how the error is reduced, even though the functional model

consists only of 12 parameters. In this case, the efficiency of the functional network hinges

on the knowledge of an appropriate functional family for the neuron functions.

This example illustrates how increasing degrees of knowledge allow obtaining more ef-

ficient modular architectures for approximating the problem of interest. However, in the

above examples the number of parameters chosen for estimating each of the processing

units was selected by a trial and error procedure. In this paper we are interested in auto-

matic procedures for selecting the most efficient configuration of parameters for learning

each of the modules. In the next section we illustrate how a technique from information

theory can be applied to this problem.

3 Minimun Description Length for Model Selection

The problem of model selection has been extensively analyzed from several points of

view [14]. Among several proposed methods, the Minimum Description Length (MDL)

algorithm has proven to be simple and efficient in several problems. The description

length measure rewards the quality of the fit, but penalizes the information required to

store the data using the model. In our case, the model is given by the weights of the

different neural networks used for approximating each of the processing units. According

to Rissanen [14], if the parameter θk (a real number) is estimated using a set of data x of

size n, then it can be encoded using log2(θk)+1/2log2(n) bits. Therefore, the information

required to store the data using a model with parameters θ = {θ1, . . . , θk} would be

−
k∑

i=1

log2(θi) +
k log2(n)

2
. (8)

On the other hand, the quality of the model is taken into account by considering

the log-likelihood of the data given the model, logf(x|θ). If the errors ei = xi − x̂i are

supposed to be normally distributed, then it can be shown that a measure of this quality

is
n

2
log


 1

n

n∑
j=1

ej(θ)
2


 . (9)



From (8) and (9) the description length of a model results

DL(θ) = −
k∑

i=1

log π(θi) +
k logn

2
+

n

2
log


 1

n

n∑
j=1

ej(θ)
2


 . (10)

where π(θi) is the “prior” probability given for some human expert. The first term in (10),

that can be removed, allows including the feeling of a human expert about the models

qualities. The second term penalizes the complexity of the model, and the third term

rewards the quality of the fitting.

A computer implementation of this selection method can be done in several ways. In

this paper we consider a simple forward search method, which starts with networks with a

single neuron in each hidden layer. Then, it incrementally analyzes the DL of the models

resulting of incorporating a neuron to the previous model, selecting the one leading to

the smallest DL value. The process continues until no further improvement in the DL is

obtained.

As an illustrative application of this algorithm, we consider the example in (7). We

start with three networks with a single hidden layer with only one neuron (one for each

of the modules in Fig. 4); then, we apply the forward iterative method, looking for

improvements in the DL by considering all the models resulting of adding a single hidden

neuron to some of the neural networks. In the table 1 we show details of the first ten

iterations of the algorithm (see also Fig. 4).

Step Network Parameters RMSE log2(MSE) DL
0 1; 1; 1 17 0.0156 -12.01 -788.3
1 1; 1; 2 20 0.0067 -14.43 -947.5
2 1; 1; 3 23 0.0038 -16.04 -1051.4
3 1; 1; 4 26 0.0037 -16.14 -1050.2
4 2; 1; 4 29 0.0037 -16.15 -1042.9
5 2; 2; 4 32 0.0037 -16.16 -1035.7
6 2; 2; 5 35 0.0028 -16.93 -1081.1
7 3; 2; 5 38 0.0028 -16.93 -1073.5
8 3; 2; 6 41 0.0028 -16.93 -1065.2
9 3; 3; 6 44 0.0028 -16.94 -1058.2
10 3; 4; 6 47 0.0028 -16.94 -1050.5

Table 1: Forward iterative method for selecting the optimal hybrid neural model. Step
denotes the iteration step; network shows the best model found at a given step −a; b; c
stands for the number of neurons in the hidden layer of each of the three networks 1:a:1,
1:b:1, 1:c:1, used for approximating the modules, respectively−; the four last columns
indicate the number of parameters, the RMSE, the error term associated with the DL
and the total description length DL of the successive models.

From the initial trivial model 1; 1; 1 (one hidden neuron in the networks of the three

modules), the models 2; 1; 1, 1; 2; 1, and 1; 1; 2 are checked in Step 1, resulting the last



one as the best model at this step. The process then continues by incrementally adding

hidden neurons to the best model found in the previous step. From this table, we can

see how local minima in the DL are attained at the second and sixth steps, whereas

the training error is a non-decreasing function (see also Fig. 5). Therefore, the forward

method will stop at the second step, leading to a sub-optimal solution. In this paper we

use this simple search procedure for the sake of simplicity, since we are only interested

in illustrating the possibilities of the method (we leave a more detailed analysis of a

convenient search technique for a future paper).
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Figure 5: Search steps of the model selection algorithm. (a) error term associated with
the DL; (b) DL measure of the models.

In the following section, the present model is applied to a non-trivial problem of

time series forecasting. We illustrate how valuable information can be obtained from the

analysis of the final model resulting from the optimization process.

4 Nonlinear Time Series Prediction

A challenging problem for time series analysis techniques is modeling nonlinear chaotic

systems from observed data. Neural networks [15] and functional networks [10] have been

efficiently applied to this problem inferring deterministic nonlinear models from data. In

this section we show that the method introduced in the previos section allow us obtaining

optimal MNNs for this task.



We analyze the special case of 2D delayed maps of the form xn = F (xn−1, xn−2); one of

the most illustrative and widely studied of these models is the non-differentiable Lozi map

[16]:

xn = 1− 1.7 |xn−1|+ 0.5xn−2. (11)

We generated a time series {xn}, n = 1, . . . , 200, corresponding to the initial conditions

x0 = 0.5 and x1 = 0.7. From (11) we can see how the model satisfies the general

associativity property (in this particular case the function f−1
3 (x) is simply the identity

function). Note also that there is no obvious choice for the functional families to be used

in this problem; therefore, hybrid functional-neural networks are necessary in this case.

In the following we apply the above model selection technique to this problem, analyzing

the resulting model for discovering particular features underlying the data. We start

with the hybrid network given in Fig. 4, and consider three neural networks with two

hidden layers for approximating each of the functional units (a1:a2; b1:b2; c1:c2 denote the

number of neurons in each of the hidden layers for the neural networks: 1:a1:a2:1 for the

first module, and so on).

Table 2 shows the results of the search process. From this table we can see how

the only module growing in the search process is the second one, associated with the

non-linear term of the Lozi map (11). On the other hand, the networks associated with

f1 and f3 remain unchanged, since they are associated with the linear terms in (11).

The optimal model, found after six iteration steps, contains 44 parameters and has a

RMSE=7.04 × 10−5. If we compare these results with the ones reported in [17], where

Fourier functional families were used for approximating f1, f2, and f3, we can see how the

model selection method presented in this paper clearly outperforms standard functional

models for this problem.

Step Network Parameters RMSE DL
0 1:1; 1:1; 1:1 17 0.171 -64.758
1 1:1; 1:2; 1:1 20 0.016 -192.70
2 1:1; 2:2; 1:1 24 4.8× 10−3 -255.05
3 1:1; 3:2; 1:1 28 7.14× 10−4 -356.75
4 1:1; 3:3; 1:1 33 4.65× 10−4 -370.47
5 1:1; 4:3; 1:1 38 2.52× 10−4 -394.94
6 1:1; 4:4; 1:1 44 7.04× 10−5 -455.32
7 1:1; 5:4; 1:1 50 8.12× 10−5 -433.94
8 1:1; 5:5; 1:1 57 6.84× 10−5 -428.53
9 1:1; 6:5; 1:1 64 8.09× 10−5 -403.49
10 1:1; 7:5; 1:1 71 6.16× 10−5 -403.88

Table 2: Forward iterative method for selecting the optimal hybrid neural model for the
Lozi map.

Moreover, the final distribution of neurons among the different modules gives us a valuable

information about the particular structure of the model underlying the data. In this case,



if we start with empty neural networks the associative model (5) could be simplified to

F (x, y) = lin(x) + f2(y), since both f1 and f3 would result to be linear in the final model

(lin(x) stands for a linear function). Note how this structure corresponds to the Lozi map

xn = F (xn−2, xn−1) = 1− 1.7 |xn−1|+ 0.5xn−2 = lin(xn−2) + f2(xn−1). Therefore, besides

of approximating the model associated with a given data set, the method presented in

this paper allows obtaining some qualitative properties about the structure of the model.
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