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ABSTRACT

The travelling salesman problem (TSP) is a NP-hard problem. Techniques as either Branch and
Bound or Dynamic Programming supplied the global optimum solution for instances with more
than 7000 cities. But, they needed more than 4 years of CPU time. Fortunately, faster algorithms
(simulated annealing, tabu search, neural networks, and evolutionary computation) exist although
they do not guarantee to find the global optimum.

Recently an EA based on a operator inver-over [4], provides optimal or near-optimal solutions in a
very short time. A latest approach included a variant of inver-over called multi-inver-over [6]. The
corresponding results showed advances when compared with other search techniques.

This work shows a further enhancement, the Hybrid Multi-inver-over Evolutionary Algorithms
(HMEAs), which consists in hybridizing multirecombined evolutionary algorithms with Tabu
Search. In these algorithms local search is inserted in different stages of the evolutionary process as
in [7 and 8]. They were tested on the hardest set of the test suite chosen in previous works. Details
on implementation, experiments and results are discussed.
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1. PROBLEM DESCRIPTION

TSP is one of the most widely studied and challenging NP-hard combinatorial optimization
problems. Here, a travelling salesman wants to visit each of » cities starting and ending at a
designated city 1. He visits no other city twice. Let c¢; > 0 the cost (or distance) between city i and
city j. When there is no direct connection between them, we assign c; = co. The optimization
problem is to find a minimum cost (shortest) tour. There are several mathematical formulations of
the problem. The following one uses relatively few variables. Define the zero-one variables:

= 1 if a tour includes travelling from city i to cityj
=
0 otherwise

for all i and ;.
The objective is to minimize,
n n
¢,x;, where c;= o fori=1,..,n
i=1 j=1
s.t.

n

x, =1 fori=1,..,n (departure) (1)

i
j=1

=

x, =1 forj=1,..,n (arrival) (2)
1

g

x; nonnegative integers forall iandj.  (3)

Restrictions (1), (2) and (3) ensure that each x; is either zero or one. Restriction (1) requires that a
tour include one departure from each city, while (2) guarantees one arrival at each city.

2. THE EVOLUTIONARY ALGORITHM WITH INVER-OVER OPERATOR AND
MULTIRECOMBINATION

This algorithm [4] works with a population of a single individual, where each parent can be
replaced by its unique child, or vice versa. Unlike traditional EAs, which use two genetic operators
(i.e, mutation and crossover), this new evolutionary algorithm uses only the inver-over operator
which combine the mutation and recombination. The mutation is done through inversions in a
segment of the same individuals; but the segment to be inverted depends on the other individual in
the population (recombination).

The evolutionary algorithm based on the inver-over operator can be seen as a set of m-parallel hill
climbing procedures. The method provided optimal or near-optimal solution very fast and
outperformed other evolutionary operators proposed in the past for the TSP like PMX, OX, CX,
ER, etc.

Taking that idea we tried to improve it by incorporating multiplicity features [1, 2]. Expecting to
find better solutions, the inver-over operator is applied a number »n; of times on the current
individual. In this way the multi-inver-over operator is created and many other individuals can



offer their knowledge to create a better solution. So, when the evaluations of the new and the
original individuals are compared, if the new one does not improve the original then the loop for the
inver-over operation is repeated, for a maximum number n; of times. As a subclass of MFEAs
(Multiplicity Features Evolutonary Algorithms), in previous works these algorithms were called
multiple inver-over evolutionary algorithms (MEAs) and according to the number of operations to
be applied to a single solution they were identified as IO-n; (standing for “Inver Over n; times™).

3. TABU SEARCH

The main idea behind tabu search is related with a memory, which drives the exploration toward
new regions of the problem space. Some solutions, which have been tested recently in the past, can
be memorised and became tabu (forbidden) points. In this way, these solutions are not tested again
during some predetermined time interval /4 (horizon). As a consequence, Tabu Search is essentially
deterministic.

Here, a particular Tabu Search procedure is used for the TSP [5] and it is explained through the
following example. A solution with » = 8 cities is considered and the neighbours are produced by
swapping two cities in a particular solution. Let (2,4, 7, 5, 1, 8, 3, 6) be the initial solution. Hence

(’2’ )= n(n2 D _ 28 neighbours are possible.

Two different memories are used; a recency- 23456738

based memory and a frequency-based memory. 1

The first indicates the number of remaining 2
iterations for which a given swap stays on the 3

tabu list, while the second indicates the total 4
number of swaps that occurred within some 5
horizon A For a recency-based memory the 6
structure given in figure 1 can be used, where 7

the interchange of cities i/ and j is recorded in Figure 1: the structure of the recency-
the i-th row and j-th column (for i < j). The based memory for the TSP

same structure can also be used for frequency-

based memory.

Assume both memories were initialized to zero and 500 iterations of the search process have been
completed. The current status of the search then might be as follows.

2
The current solution is (7, 3, 5, 6, 1, 2, 4, 8) with 0
the total length of the tour being 173. The best
solution encountered during these 500 iterations
yields a value of 171. The status of the recency-
based and frequency-based memories are

displayed in figures 2 and 3, respectively.
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Figure 2: the contents of the recency-based
memory M for the TSP after 500 iterations.
The horizon is 5 iterations.



The value M (2, 6) = 5 indicates that the most recent swap was made for cities 2 and 6, i. e., the
previous current solution was (7, 3, 5, 2, 1, 6, 4, 8).

Therefore, swapping cities 2 and 6 is fabu for the next five iterations. Similarly, swaps of cities 1
and 4,3 and 7, 4 and 5, and 5 and 8, are also on the tabu list. Among them, the swap between cities
1 and 4 is the oldest (it happened five iterations ago) and this swap will be removed from the tabu
list after the next iteration. Note that only 5 (recency-based horizon) swaps (out of 28 possible
swaps) are forbidden (tabu).

The frequency-based memory provides some
additional statistics of the search. It indicates
that swapping cities 7 and 8 was the most
frequent move (it happened 6 times in the last
50 —frequency-recency horizon— swaps), and
there were pairs of cities (e.g. 3 and 8) that
weren’t swapped within the last 50 iterations.
7 This kind of memory might useful to diversify

Figure 3: the contents of the frequency- the search. Because it provides information

based memory F for the TSP after 500 concerning which flips have been under-
iterations. The horizon is 50 iterations.
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represented (i.e less frequent) or not represented at all, and then diversify the search by exploring
these possibilities.

There are many possibilities here for incorporating this information into the decision-making
process. The most typical approach makes the most frequent moves less attractive. Usually the
value of the evaluation score is decreased by some penalty measure that depends on the frequency,
and the final score indicates the winner.

The following figure shows an implementation of tabu search reported in [3].

procedure tabu search
begin
tries =0
repeat
generate a tour
count = 0
repeat
identify a set T of 2-interchange moves
select the best admissible move from T’
make appropriate 2-interchange
update tabu list and other variables
if the new tour is the best-so-far for a given tries
then update local best tour information
count = count +1
until count = ITER
tries = tries +1
if the current tour is the best-so-far (for all tries)
then update global best tour information
until tries = MAX-TRIES
end
Fig. 4. Implementation of tabu search for the TSP.




4. HYBRID ALGORITHMS

The Hybrid Multi-inver-over Evolutionary Algorithms (HMEAs) presented here incorporate TS to
the 10-n; versions, in distinct stages of the evolutionary process, as follows:
e HMEA-IP. Applies TS to each individual of the initial population and the EA begins from this
improved population.
¢ HMEA-MP. Applies TS to some individuals of intermediate populations. The decision to apply
TS is taken according to the following policy. After a given number ¢ of generations, a control
of the convergence begins. From that point in the evolutionary process, when after a given
number A of consecutive generations no improvement is detected in the best solution, then TS is
applied. This approach has the following variants,
v HMEA-MPB10 and HMEA-MPB20. They apply TS to the 10% or 20%, respectively, of
the best individuals in the population.
v" HMEA-MPW10 and HMEA-MPW20. They apply TS to the 10% or 20%, respectively,
of the worst individuals in the population
v HMEA-MPR10 and HMEA-MPR20. They apply TS to the 10% or 20%, respectively, of
randomly selected individuals in the population.
e HMEA-FP. Applies TS to individuals of the final population. Similarly to HMEA-MP, this
approach has the following three variants.
v HMEA-FPB10 and HMEA-FPB20. They apply TS to the 10% or 20%, respectively, of
the best individuals in the final population.
v HMEA-FPW10 and HMEA-FPW20. They apply TS to the 10% or 20%, respectively, of
the worst individuals in the final population
v HMEA-FPR10 and HMEA-FPR20. They apply TS to the 10% or 20%, respectively, of
randomly selected individuals in the final population.

5. EXPERIMENTS

According to the above described hybrid

algorithms, a set of experiments was performed. Identifier Instance Best know
All of them used the multirecombinative inver- Lol
B127 Bier127 (127 cities) 118282

over operator. Five different approaches, I0-1

to 10-5, were conducted applying from 1 to 5 2l Eil101 (101 cities) 629
inver-over operations, respectively. Kc100 Kroc100 (100 cities) 20749
All approaches were tested for five TSP P76 Pr76 (76 cities) 108159
instances, extracted from TSPLIB95 [9]. They e 8t70 (70 cities) aiE

were:

For each instance a series of ten runs was performed. All the EAs used the following parameter
settings:

Population size 100

Probabilityp ~ 0.02

Stop criterion  After the 500™ generation, if the best individual
does not change during 100 consecutive
generations.

Maximum No. 4000

of generations

Elitism Yes



As the number of cities is considerable, a different way to obtain the neighbourhood was necessary
to devise. For each solution, where TS was applied, a random city was selected; after that the
neighbours were created interchanging this city with every other city. In this way »-1 neighbours
are considered. To determine when TS should be applied ¢ and 4 were fixed in 200 and 50
generations, respectively.

Parameter settings for TS were the following:

Maximun No. of 1000

iterations

Recency-based horizon 5
Frequency-based 50
horizon

Penalty 0.7

The main idea of this implementation is to intensify local search by means of Tabu Search inserted
into the EA, while the global search is mainly carried out by the inver-over and multi-inver-over
operators. This would allow solving large instances of TSP effectively and efficiently.

To measure the performance of the algorithm the following relevant variables were chosen:

v Ebest = (Abs(opt_val - best value)/opt val)100. It is the percentile error of the best found
individual when compared with the known, or estimated, optimum value opt val. It gives us a
measure of how far the best individual is from that opr val.

v Epop = (Abs(opt_val- pop mean fitness)/opt val)100. It is the percentile error of the population
mean fitness when compared with opt val. It tell us how far the average individual is from that
opt val.

v Gbest : Identifies the generation where the best individual (retained by elitism) was found.

6. RESULTS

Ebest values show how good the different approaches are to find their best solutions. In table 1 and
figure 5 an overview (through all recombinative approaches I0-I to 10-5) with the most
representative cases is shown. Regarding the quality of the results from the comparison between the
multi-inver-over EA  (MEA) and the Hybrid Multi-inver-over EAs (HMEAs), a significant
improvement in the performance is observed when the latter are applied. Besides, contrasting the
distinct HMEAs, better results are obtained when the hybridization is applied either in intermediate
or in final populations instead of in the initial one. Although for E101 instance, this difference is
very small.

When HMEA-IP is used 100 applications of TS are done (once on each individual of the
population). In HMEA-MPs, this number depends on the amount of generations the approach needs
to reach its best individual. HMEA-FPs apply TS only in the 10% or 20% of the population only
once. In consequence the latter approach uses much less computational effort than the others.
Besides the quality of results is similar or better than those obtained by HMEA-MPs.

Given the great number of combinations between instances and recombinative approaches, only the
results for the Kc100 instance are shown in detail in the next section, for each recombinative
approach of the hibridized versions. This instance presents a good mixture of number of cities and
distance among them.



Instance| MEA HMEA HMEA HMEA HMEA HMEA HMEA HMEA
(IP) (MP-R20) | (FP-R20) | (MP-B20) | (FP-B20) | (MP-W20) | (FP-W20)
B127 9.531908021| 6.643986541| 4.897622512| 5.013367444| 5.206745912| 4.392854382| 5.143097733| 5.388130738
E101 10.73360034| 7.850241653| 7.068426073| 7.370883943| 6.981647059( 7.337882353| 7.233173291| 7.498937997
Kc100 |[13.10586964| 7.053017784| 4.901198323( 5.911047376| 4.84217996| 4.749716902( 5.95811509| 5.021373271
P76 10.72419951| 3.087622815| 2.854817704| 2.816946884| 2.634709419( 2.544089054| 2.610719515| 3.075676865
S70 8.088560403| 5.488480000( 2.940568889| 3.148094815| 3.182912593| 3.726850370| 3.530717037| 3.948506667
Table 1. : Average Mean Ebest for each instance
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Fig. 5. : Average Mean Ebest for each instance

6.1. KrOC100 INSTANCE

From the analysis of the mean Ebest values for Kc100 instance (table 2 and figure 6), we can
remark that:

¢ Those HMEAs, where the best individuals were selected, outperform others approaches.

When worst or random individuals are selected, significant differences are not found.

All the algorithmic approaches obtain better solutions when the number of recombinations
grows. Note the great step generated between 10-1 and [0-2, which gives an idea of how
important the multirecombination is.

Method | HMEA HMEA HMEA HMEA HMEA HMEA
(MP-R20) | (FP-R20) | (MP-B20) (FP-B20) | (MP-W20) | (FP-W20)
10-1 9.75899610] 10.44327871| 10.1400949| 6.853086896 11.13703938 8.940117114
10-2 491490192 6.673065690] 4.58555545| 5.345102415| 6.815142898 5.300949925
10-3 3.80093691| 5.260825562| 3.76471300 3.703152923| 3.925253747| 4.346898164
10-4 3.28162658| 4.006229698| 3.00280110| 4.224619018| 4234506723 3.607374331
10-5 2.74953010| 3.171837197| 2.71773531| 3.622623259| 3.678632705| 2.911526821

Table 2: Mean Ebest for Kc¢100 instance

Regarding the error of the average individual in the population (Epop), a similar behavior of the
algorithms can be observed in figure 7. Significant differences between the best individual and the
average individual in the population (fig 6 and 7) are detected for each algorithmic approach. This
is an indication that final populations are highly diverse and, if desired, the search could be
continued to obtain convergence of the population towards the best individual.

From figure 8 we conclude that Gbest, the generation where the best individual is found, also
decreases as long as n; increases. This behaviour, at some degree compensates the extra
computational effort required for multirecombination.
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Fig. 8: Mean Gbest for Kc100 instance

7. CONCLUSIONS

In this work a Hybridization of Multi-inver-over Evolutionary Algorithms (HMEAs), by means of
Tabu Search (TS), is presented to solve hard TSP instances. The Tabu Search procedure was
implemented using two different memories: recency-based and frequency-based. When compared
with previously implemented Multi-inver-over Evolutionary Algorithms (MEAs) we see that better
solutions for these hard instances of the travelling salesman problem were found under HMEAs.
Three main HMEAs were implemented according to the criterion establishing when hybridization
should be applied: HMEA-IP (initial population), HMEA-MP (intermediate populations) and
HMEA-FP (final population). Regarding the quality of results analysed through the performance
variables, all hybrid approaches improve results obtained by MEAs with diverse extra effort.
HMEA-IP allowing the evolutionary process to start with a better initial population provides
solutions of significantly lower quality than those obtained by other hybrid variants. HMEA-MP
and HMEA-FP provide similar quality of results, but HMEA-FP requires lesser computational
effort and consequently is the recommended hybrid option to solve TSP.

All hybrid approaches show substantial improvements as long as the multiplicity of the inver-over
operations is incremented. Future work will be devoted to further study this influence on diverse
local search approaches to hybridize evolutionary algorithms.
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