CONTRASTING TWO MCMP ALTERNATIVES IN EVOLUTIONARY ALGORITHMS
TO SOLVE THE JOB SHOP SCHEDULING PROBLEM

Stark N., Salto C., Alfonso H.
Laboratorio de Investigacion en Sistemas Inteligentes (LISI)'
Departamento de Informatica - Facultad de Ingenieria
Universidad Nacional de .a Pampa
Calle 110 esq. 9
(6360) General Pico — LLa Pampa — Rep. Argentina
e-mail: { nstark,saltoc,alfonsoh }@ing.unlpam.edu.ar
Phone: (02302)422780/422372, Ext. 6302

Gallard R.
Laboratorio de Investigacion y Desarrollo en Inteligencia Computacional (LIDIC)
Departamento de Informatica
Universidad Nacional de San Luis
Ejército de los Andes 950 - Local 106
(5700) - San Luis -Argentina
e-mail: rgallard@unsl.edu.ar
Phone: +54 2652 420823
Fax :+54 2652 430224

2

Abstract

Many researchers have shown interest to solve the job shop scheduling problem (JSSP) applying
evolutionary algorithms (EAs). In a previous work we reported an enhanced evolutionary algorithm,
which uses a multiplicity feature to solve JSSP. The evolutionary approach was enhanced by means
of multiple crossovers on multiple parents (MCMP) and the selection of a stud among the
intervening parent. Partially mapped crossover (PMX) was used on each multiple crossover
operation and job based representation (permutation of jobs) was adopted as a coding technique.

The traditional MCMP approach is based on scanning crossover. But the application of this operator
to permutations will yield illegal offspring in the sense that some jobs may be missed while some
other jobs may be duplicated in the offspring, so some modifications to their mechanism are
necessary to guarantee the offspring legality.

This paper contrasts both MCMP approaches, discusses implementation details and shows results
for a set of job shop scheduling instances of distinct complexity.

Keywords: multirecombination, optimization, breeding, scanning crossover, scheduling.

' The Research Group is supported by the Universidad Nacional de La Pampa.
% The LIDIC is supported by the Universidad Nacional de San Luis and the ANPCYT (National Agency to Promote
Science and Technology).

1. INTRODUCTION

Evolutionary algorithms mimic the natural evolution on an abstract level. This stochastic search
technique explores different regions of the search space simultaneously. Since the publications of
Goldberg [13] and Davis [2], genetic algorithms are more and more used to solve scheduling
problems. A job-shop scheduling problem consists of n jobs, or items, to be processed by m
machines [14]. For each job is specified both a set of constraints on the order in which machines can
be used and a given processing time on each machine. Our JSSP consist in finding the sequence of
jobs on each machine in order to minimize the elapsed time needed to finish processing all jobs.
This is the definition of deterministic job-shop scheduling problem, where all processing times are
known exactly and there are no restrictions on when jobs may start.

A very important issue in building an evolutionary algorithm for the job-shop problem is to devise
an appropriate representation of solutions together with problem-specific genetic operations so that
all chromosomes generated in either the initial phase or the evolutionary process will produce
feasible schedules. This is a crucial phase that affects all the subsequent steps of evolutionary
algorithms [1].The genetic operators, which control the stochastic search have to be designed very
carefully with respect to the chosen representation. Exploration and exploitation of the structure of
the search space should be balanced [15]. In direct coding, the representation on the genetic level
directly refers to a point within the search space [1]. A classic example of this kind of representation
for JSSP is job-based representation [11]. Here a schedule (a solution of JSSP) is encoded into a
chromosome, and evolutionary algorithms are used to evolve those chromosomes to determine a
better schedule.

In a job shop representation we deal with permutations, so adequate genetic operators, such as
partially-mapped crossover (PMX) [12], order crossover (OX) [3] and cycle crossover (CX) [18]
should be used. In EAs the common practice of crossover is to operate once on each mating pair
after selection. Such procedure is known as the SCPC (Single Crossover Per Couple) approach. But
in nature when the mating process is carried out, crossover is applied many times and the
consequence is a multiple and variable number of offspring. Multiple crossovers per couple
(MCPC) [7.,8] is a novel crossover method. It was applied to optimize classic testing functions and
some harder (non-linear, non-separable) functions. For each mating pair MCPC allows a variable
number of children. From all the generated offspring, the best, a randomly selected or all of them
can be chosen for insertion in the next generation. In those earlier works it was noticed that in some
cases MCPC found better results than those provided by SCPC. Also a reduced running time
resulted when the number of crossovers per couple increased, and best quality results were obtained
allowing between 2 and 4 crossover per couple. Moreover, seeking for exploitation of a greater
sample of the problem space, an extended multi-recombination can be applied to a set of more than
two parents. In Eiben's multiparent (MP) approach [5,6], offspring creation is based on a larger
sample from the search space and consequently larger diversity is supplied. This can help to avoid
premature convergence. Eiben used different versions of scanning crossover (SX) which can be
categorized as multi-parent genetic operators.

These previous ideas gave rise to multiple crossovers on multiple parents (MCMP) [9,10], which
provides a balance in exploitation and exploration because the searching space is efficiently
exploited (by the multiple application of crossovers) and explored (by a greater number of samples
provided by multiple parents). MCMP provides a means to exploit good features of more than two
parents selected according to their fitness by repeatedly applying one of the scanning crossover (SX)
variants [5]: a number #n; of crossovers is applied on a number 7, of selected parents. From the 7

produced offspring a number #; of them are selected, according to some criterion, to be inserted in the
next generation. This is the method used in all our experiments.

This novel approach was successfully applied to single and multicriteria optimization. Recently it
was also applied to JSSP under other representations, such as: decoders, dispatching rule
representation and operation based representation [17,19, 20, 21, 22]. It was shown that a greater
number of crossovers for a given number of parents provide better results.

Due to the use of permutations in the chromosome representation and aiming to apply MCMP, the
traditional SX methods need to be modified in order to produce feasible offspring. Details of the
original SX methods and the modifications are discussed in next sections. Also another view of MCMP
on job based representation is introduced here. Instead of using the traditional SX methods, we show
how to introduce PMX to a scheme of multirecombination (breeding techniques).

This work is organized as follows. Section 2 introduces job-based representations and one of the
special operators developed for it: PMX. Section 3 shows the different variants of multiparent
genetic operator introduced by Eiben and its further modifications to be applicable to sequence
problems. Breeding techniques via the idea of a stud individual is explained in section 4. Finally,
section 5 explains details of implementation and analyses of the obtained results.

2. JOB-BASED REPRESENTATION AND OPERATORS

Job-Based Representation consists of a list of » jobs and a schedule is constructed according to the
sequence of jobs. For a given sequence of jobs, the first operation of the job under treatment is
allocated in the best available processing time for the corresponding machine the operation requires;
and then the second operation is allocated, and so on, until all operations of the job are scheduled.
The process is repeated for each job in the list in the appropriate sequence. Any permutation of jobs
corresponds to a feasible schedule.

Using this kind of representation it is necessary to consider special crossover operators. The
conventional ones (one-point or multipoint crossover) generally might produce illegal offspring in
the sense that some jobs may be missed while some others may be duplicated in the offspring.
There are some specific crossover operators designed to apply to a permutation such as: partial-
mapped crossover (PMX), order crossover (OX), cycle crossover (CX), order-based crossover,
heuristic crossover, and so on. PMX was proposed by Goldberg and Lingle [12] and can be viewed
as an extension of two-point crossover for binary string to permutation representation. It uses a
special repairing procedure to solve the illegitimacy caused by the simple two-point crossover. Thus
the essentials of PMX are a simple two-point crossover plus a repairing procedure. Figure 1
explains the PMX procedure [11].

For mutation a simple inferchange operator, which randomly exchanges chosen genes of the
chromosome can be used.

PMX operation
Select two positions along the string uniformly at random. The sub-strings defined by the two
positions are called the mapping sections.
Exchange two sub-strings between parents to produce a proto-children.
Determine the mapping relationship between two mapping sections.
Legalize offspring by using the mapping relationship.

Figure 1: PMX procedure

3. MULTI-PARENT GENETIC OPERATORS

Eiben in his multiparent approach [4] proposed different versions of multiparent genetic operators.
These operators used two or more parents to generate children. The basic mechanism used in order
to define multiparent operators is gene scanning (figure 2). All the scanning techniques described
here generate a single child from » parents (n > 2).

Initially, three scanning crossover (SX) methods were proposed, which essentially take genes from
parents to contribute in building the offspring. The SX general mechanism assigns a marker to each
parent and to the offspring. The offspring’s marker traverses all of its positions from left to right. Each
time a gene is selected this implies updating the parent’s marker. The pseudo-code in figure 2 shows
the scanning mechanism.

initialize parent markers
for child marker = 1 to chromosome_length do

update parent markers

child.allele[child marker] = choose from values indicated by the parent markers
endfor

Figure 2: the general gene scanning mechanism.

The main characteristics of all gene-scanning procedures are the marker update mechanisms and the
way to choose a marked gene from the parents. If the way in which the values to be inserted in the
child are chosen is changed, then three specific scanning techniques can be defined, namely:

v Uniform scanning crossover (USX). This method is a natural extension of uniform crossover.
Each parent has equal chance to be a donor for each gene in the child.

» QOccurrence-based scanning crossover (OBSX). This method selects that gene value which
occurs more frequently in a particular position of the parent’s chromosomes. If none of the
values are repeated then the gene pointed by the marker in the first parent is selected.
Alternatively a random choice can be performed.

v Fitness-based scanning crossover (FBSX). This method chooses the gene value to inherit being
proportional to the fitness value of the parents (roulette wheel restricted to selected parents
subset).

These scanning procedures might be defined for different representations types introducing chances
to the marker update mechanism. This mechanism is very simple when representations with
independent positions (no epistasis) are adopted; the parent markers are all initialized to the first
position in each of the parents and traverses the parents from left to right by increasing it by one
each step. Problems where epistasis occurs, as in our case, need a more sophisticated marker update
mechanism to ensure that no value is added to the child twice. For each parent this means increasing
its marker until it denotes a value that has not already been added to the child. Figure 3 shows a
modification to the marker update mechanism using OBSX for permutations while figure 4 explains
the mechanism using USX as a method to select the gene value to be inherited.
Another case of scanning crossover is adjacency-based crossover (ABX), which is specially
designed for representations where relative positioning of values is important. Its principal
difference with the other scanning procedures are the way in which the first value is selected and
the marker update mechanism. The first gene value in the child is always inherited from the first
gene value in the first parent. For each parent its marker is set to the first successor of the previously
selected value, which does not already occur in the child.

parent 1 [1]3]2]7]5]4][8]6]|

[1[8]2]7]5]4]8]6]

[1[3]a]7]5]4]8]6]

[1[3[2[7]5]4]8]6]

parent2 [2]3]8[5]6]4[1]7]

[2[3]8]5[6]4]1]7]

[2[3]8]5[6[4]1]7]

[2[3[8]5]6[4[1]7]

parent3 [3]7]2]4]8]1]6]5]

Bl7[2]4]8]1]6]5]

31a]2]4]8]1]6]5]

[317]2]4]8]1]6]5]

Parent4 [1]5[2]7]6[3]8]4]

[1[5]2]7]6[3]8]4]

[1[5]2]7]6[3]8]4]

[1[5]2]7]6[3]8]4]

child [[[[[[]]

HENEEEEN

sl [[]]

ez L[]

parent 1 [1[3]2]7[5]4[8]6]

[1[3]2]7]5[4]8]6]

[1[3]2]7]5]4][8]6]

[1]3]2]7]5]4]8]6]

parent2 [2|3[8]5]6[4]1]7]

[2][3]8]s]6[4]1]7]

[2[3]8]s]6[4]1]7]

[2]3[8]5[6[4]1]7]

parent3 [3|7]2]4]8]1]6]5]

3]7]2]4]8]1]6]5]

3[7]2]4]8]1]6]5]

[3]7[2]4]8]1]6]5]

parent4 [1[5]2]7]6][3[8]4]

[1]s][2]7]6[3]8]4]

[1]s][2][7]6[3]8]4]

[1]5[2]7]6[3]8]4]

child [1[3[2]7]5] [[|

[13]2]7]s]4] | |

[1[3]2]7]s]4]8] |

[1]3[2]7]5[4]8]6]

Figure 3: OBSX on job based representation

parent 1 [1]3]2]7]5]4][8]6]|

[f3[2]7]s][4]8]6]

[1[8]2]7]5]4]8]6]

[1]3[2[7]5]4]8]6]

parent2 [2]3[8]5]6]4]1]7]

[2]8]8]s[6[4]1]7]

[2]5]8[s[6[4]1]7]

[2]3[8]5[6[4]1]7]

parent3 [3]7]2]4]8]1]6]5]

Bl7[2]4]8]1]6]5]

Bl7[2]4]8]1]6]5]

[317]2]4]8]1]6]5]

parent4 [1]5]2]7]6]3[8]4|

[s[2][7][6[3]8]4]

L1I5]2]7]6[3]8]4]

[15]2]7]6[3]8]4]

Child

Rl TTT]]]

HiNEEEER

s [[]]]

[2]1[3[s[[[]]

parent 1 [1[3[2]7]5]4[8]6]|

[1[3]2]7]s]4]8]6]

[1[3]2]7]5s][4]8]6]

[1]3[2]7]5]4]8]6]

parent2 [2|3[8]5]6[4]1]7]

[2][3]8]s]ef4[1]7]

[2[3]8]s]ef4[1]7]

[2]3[8]5[6[4]1]7]

parent3 [3[7]2]4]8]1]6]5]

[31Z[2]4]8]1]6]5]

[3[7]2[&]8]1]6]5]

[3]7]2]4]8]1]6]5]

parent4 [1]5[2]7]6]3[8]4]

[1]s[2]7]6[3]8]4]

[1]s[2]7]6]3[8]4]

[1]5[2]7]6[3]8]4]

child [2[1[3[5[8] [| |

[2[1]3]s[8]7] | |

[2[1]3]s[8]7][4] |

[2]1[3]5[8[7]4]6]

Figure 4: USX on job based representation

Two types of ABX has been defined, namely: occurrence based (OB-ABX) and fitness based (FB-
ABX). This crossover uses the same mechanism for choosing the values to be inherited by the child
as occurrence based and fitness based scanning, the difference resides in the marker update
mechanism. Figure 5 shows OB-ABX procedure.

4. BREEDING TECHNIQUES BY MEANS OF THE STUD IDEA

Besides the possibility to introduce modifications in the scanning crossover procedure to work with
permutations, in [21] another way of multi-recombination is considered. In the process for creating
permutations, the PMX operator replaces the scanning method. From the parent population 7,
individuals are selected using proportional selection, the best one is called the stud for that group.
As PMX proceeds, two crossover points are determined in a random way, the stud is combined with
the rest of the parents selected using PMX considering those crossover points fixed. From that
multi-recombination, 2*(n, -1) offspring are obtained, but only the best one survive. The preceding
crossover process is repeated »; times determining other cut points each time. Finally »; offspring

are obtained from #, parents and n; crossovers, and the best one is selected to pass to the next
generation. The procedure is depicted in figure 6.

parent 1 [1[3]2]7]5]48]6] [1]3]2]7]5]4]8]6| |[1]3[2]7]5]4[8]|6] [1]3]2]7]5]4]8]6]

parent 2 [2[3]8]5]6]4[1]7]| [2]3]8]5]6]4[1]7] [2]3[8]5]6]4]1]7] [2]3]8]5]6]4]1]7]

parent 3 [3]7]2]4[8]1]6]5] [3]7]2]4[8]1[6]5] [3]7]2]4]8]1]6]5] [3]7]2]4]8]1]6]5]

parent 4 [1[5]2]7]6]3[8]4]| [1[5]2]7]6]3]8]4] [1]5]2]7]6]3[8]4] [1]5]2]7]6]3]8]4]

Chid ([[[[[[T Q[T TTIT] [fsfsf [[[[] [[3[sfel [[]]

parent 1 [1[3]2]7]5]4[8]6]| [1]3]2]7]5]4[8]6] [1]3]2]7]5]4]8]6] [1]3]2]7]5]4]8]6]

parent 2 [2]3[8]5]6]4]1]7] [2[3]8]5]6]4[1]7] [2]3]8]5]6|4]1]7] [2]3]8]5]6]4]1]7]

parent 3 [3[7]2]4[8]1[6]5] [3]7]2]4]8]1]6]5] [3[7]2]4][8]1]6]5] [3]7]2]4]8]1]6]5]

parent 4 [1]5]2]7]6]3[8]4] [1[5]2]7]6]3]8]4]| [1]5]2]7]6][3[8]4] [1]5][2]7]6]3]8]4]

child [1]3[8[6[4] [[| [1[3[8[6[4[s] [| [1]3[8[6[4[s[7] | [1]3]8]6[4]5[7]2]

Figure 5. OB-ABX example.

Procedure: MCMP with PMX and the STUD

Aux_child array[2*(n,-1)] //contain children generated by the crossover operator
Children array|n,| //contain the best child
=l

Select n, parents from P(#) and build mating pool
Sort mating pool /the best individual (stud) is in the first position
while j <n, do
begin
fori=2toi=n,do
PMX(mating pool[1], mating pool[i]) and form aux child
//in each recombination, the children which preserves the stud substring are generated
Evaluate aux_child

Sort aux _child /] the best child is in the first position
Children[j++]=aux_child[1];
end while

sort children
children|1] is inserted in P(t+1)
end procedure

Figure 6. Basic structure of the Evolutionary Algorithm
Including Multiplicity and Breeding.

5. EXPERIMENTS

Experiments consisted of varying parameters such as the number #; of crossover, the number #; of
parents, and also the process for creating offspring.

We have decided to test the application of two alternative ways to carry out MCMP to solve the
JSSP using permutations as chromosome representation. One of them consisted in the traditional
application of MCMP using two versions of scanning crossover (uniform and occurrence based)

together with other two versions of adjacency based crossover (uniform and occurrence based). And
the other way consisted in the incorporation of breeding techniques by means of the stud idea.

We have selected four instances of different complexity of JSSP [16] with known optimal
makespan to be optimized (table 1). We tested every n; crossover on »; parents versions for n; =
1,...4 and n; = 3,.., 5 by having 50 runs and calculating performance averages for each (n,n2)
possible combination. In all cases the best child from the »; created children were inserted in the
next generation. Exchange mutation, proportional selection and elitism to retain the best-valued
individual were used. We used in the EA a 65% crossover rate and 10% mutation rate (per
individual). The algorithms evolved for a minimum of 500 generations, after that a control of the
mean fitness population progress began: if this value remained within a determined range for 20
consecutive generations then the evolutionary process was stopped. The population size was fixed
at 100 individuals. All these values were determined as the best combination of probabilities after
many initial trials.

Instance Size Optimum
la01 10x5 666
la06 15x5 926
lal2 20x5 1039
lal5 20x5 1207

Table 1. Testing instances

The following relevant performance variables were chosen:

Ebest (Abs(opt val —best value)/opt val)100

It is the percentile error of the best found individual when compared with the known,
or estimated, optimum value opr val. It gives us a measure of how far the best
individual is from that opr val.

Epop (Abs(opt val- pop mean fitness)/opt val)100
It is the percentile error of the population mean fitness when compared with
opt val. It tells us how far the mean fitness is from that opt val.

#Generation | Number of generations the EAs evolves before the fulfilment of the stop criteria.

For each series and parameter setting average values for the minimum and mean values of the

performance variable were established. The following tables and figures summarize these results

showing a comparison of different EAs using MCMP and also applying different ideas of
multirecombination:

v' MEA-Stud: Multirecombined EA using breeding techniques by means of the stud idea.

v" MEA-XX: Multirecombined EA incorporating multiplicity feature in the traditional way, and using
different crossover methods: OS stands for occurrence based scanning crossover, US means
uniform scanning crossover, OA indicates occurrence adjacency based crossover and finally UA
denotes uniform adjacency based crossover.

6. RESULTS

Analysing average minimum FEbest (figure 7), the lowest values are obtained by MEA-US
independently of the analysed instance. For /a06, in particular, average minimum Ebest is equal to
0%; in this case the optimum value is reached in all the possible (n;, n;) combinations at least once.
The second best performer is MEA-Stud, which except for the /a/2 instance, shows smaller errors
than those obtained under MEA-UA, which is the third best performer. Considering the traditional

MCMP method and making a comparison among all different crossovers, MEA-UA presents good
results, but with an inferior quality than MEA-US. For most instances, MEA-US presents smaller
errors than MEA-OS; this observation is extensible to MEA-UA and MEA-OA. The two different
kinds of occurrence based crossover reach poor results, but making a comparison between them
occurrence adjacency based crossover shows in the majority of the instances smaller errors than its
pair. Same remarks can be done for mean Ebest (figure 7).
Observing average minimum Epop values exhibited by the different MEA approaches (figure 8),
MEA-Stud approach presents the best results. It is also noticeable a remarkable similarity between
Epop and Ebest values indicating that individuals in the final population are very close to the best
individual found so far.

MEA-Stud MEA-OS MEA-OA MEA-US MEA-UA
Av. Av. Av. Av. Av. Av. Av. Av. Av. Av.
Min Mean Min Mean Min Mean Min Mean Min Mean
Ebest Ebest Ebest Ebest Ebest Ebest Ebest Ebest Ebest Ebest
la0] 5.1051 5.7518 5.2052| 10.5703 5.1677 | 10.2085 5.1051 6.1659 5.1051 5.7895
la06 0.1260 1.0772 0.8909 5.0135 0.7289 4.7264 0.0000 0.9528 0.1890 1.2414
lal2 2.4703 4.1585 4.2028 8.2899 4.2509 7.7356 1.5800 3.3466 2.2859 4.2624
lal5 3.0931 4.7972 6.5175 9.6225 5.7995 9.4281 2.4234 4.3991 3.5556 5.7468
Average Minimum Ebest Average Mean Ebest
8 12
6 10
1 8
4 6
5 | i 4 1|
i : [
0 0
la01 la06 lal2 lal5 la01 la06 lal2 lal5
OMEA-Stud OMEA-OS OOMEA-OA COMEA-US OOMEA-UA
Figure 7: Average mean and minimum Ebest for all instances
MEA-Stud MEA-OS MEA-OA MEA-US MEA-UA
Av. Av. Av. Av. Av. Av. Av. Av. Av. Av.
Min Mean Min Mean Min Mean Min Mean Min Mean
Epop Epop Epop Epop Epop Epop Epop Epop Epop Epop
la01 5.1200 5.8046 5.5500| 11.8617 6.1142 | 11.6652 6.1218 8.0846 5.4727 6.9946
la06 0.1379 1.0933 1.6085 6.1217 1.6415 6.0438 1.5048 3.9177 1.9708 3.9773
lal2 2.5067 4.1672 4.8490 9.3459 4.8036 9.0742 4.003 7.3546 4.1433 7.5240
lal5 3.0974 4.8052 7.2537| 10.6986 6.3582 | 10.7622 4.6997 8.0839 6.2139 9.5971
Average Minimum Epop Average Mean Epop
8 12
6" 10
8
4] - 6
= 4
5 i
5 o
0 0

la01 la06

lal2 lal5

la01

la06 lal2

lal5

OMEA-Stud OMEA-OS OMEA-OA OMEA-US OMEA-UA

Figure 8: Average mean and minimum Epop for all instances

Figure 9 and table 2 shows ebest values obtained applying any of the different proposed MEA
approaches for each possible (n;, n;) combination (horizontal axe) for la06 instance. In table 2,
bold-faced ebest values indicate the lowest Ebest values for each MEA approach. MEA-US
achieves the optimum value in all possible combinations, this is concluded from an Ebest equal to
0%. Both MEA-Stud and MEA-UA reach in many opportunities the optimum value (8 and 7 times
respectively). Regarding both occurrence based crossovers, MEA-OS and MEA-OA, they present
higher ebest values, varying from 0% to 2.80% and 0% to 2.59%, respectively. Moreover, when the
crossover operation is applied once on the selected parents, in most cases worst results (highest
ebest values) are obtained than when this operation is repeated four times.

Ebest Epop
) | MEA- | MEA- | MEA- | MEA- | MEA- | MEA- | MEA- MEA- MEA- | MEA-
Stud 0S OA us UA Stud 0S OA us UA

(1,3) | 0.0000 | 1.2959 | 2.5918 | 0.0000 | 0.5400 | 1.7126 | 11.6742 | 11.5900 | 21.9544 | 24.1468

(2,3) | 0.1080 | 1.0799 | 0.9719 | 0.0000 | 0.0000] 0.6677 8.6366 8.3887 10.6515 | 9.8045

3.3 0.0000 | 1.2959 | 0.2160 | 0.0000 | 0.0000 | 1.0366 7.4076 7.6830 3.5345 1.7720

(4.3) | 0.0000 | 0.0000 | 0.7559 | 0.0000 | 0.0000) 0.8257 7.6705 7.6052 2.6518 1.7457

(1.4) | 0.0000 | 0.7559 | 0.8639 | 0.0000 | 0.4320] 0.7257 4.9330 4.6890 1.4989 1.9438

(2,4) | 0.5400 | 0.3240 | 1.1879 | 0.0000 | 0.0000 } 1.1015 4.2894 4.4104 0.3499 0.9114

(3.4) | 0.0000 | 0.3240 | 0.0000 | 0.0000 | 0.0000) 1.0626 3.8639 3.6048 1.0583 0.7883

(4,4) | 0.6479 | 0.6479 | 0.2160 | 0.0000 | 0.3240 § 0.8294 4.0518 3.7559 1.5551 0.9395

(1,5) | 0.0000 | 2.8078 | 1.1879 | 0.0000 | 0.0000] 1.6328 6.3737 5.3715 0.5032 1.9914

(2,5) | 0.0000 | 1.1879 | 0.0000 | 0.0000 | 0.5400] 1.5680 5.1965 5.6242 0.3672 1.3888

(3.5) | 0.0000 | 0.6479 | 0.2160 | 0.0000 | 0.4320] 1.4946 4.5983 4.9482 1.2052 1.5464

(4,5 | 0.2160 | 0.3240 | 0.5400 | 0.0000 | 0.0000 § 0.4622 4.7646 4.8553 1.6825 0.7495
Table 2: Ebest and epop values for each (#;, n;) combination /a06 instance

Ebest
3
,s MEA-Stud
) MEA-0S
15 MEA-OA
1 MEA-US
05 4— S W - MEA-UA
0 +=0=—= v L e B e
(13) (23) (3.3) (43) (14) 24 (B4 (44 (1,5 25) (3.5 (4.5)
Figure 9: Ebest values for /a06 instance
Epop
30
24 MEA-Stud
2 MEA-0S
15 MEA-OA
10 2 MEA-US
5 _— o MEA-UA
0 T T T —— T T T

(1.3) (23) (3.3) (43) (14) (24) B4) (44) (L5 (25 (3.5 (45

Figure 10: Epop values for la06 instance
From figure 10 and table 2 we can see a fair similarity between Epop curves corresponding to
MEA-OS and MEA-OA and between MEA-US and MEA-UA. MEA-Stud presents the smallest
epop value for n,=3, and as long as this value increases, Epop values for this approach compete
with Epop values of MEA-UA and MEA-US. The best epop values are present when #/ is equal to

4. Table 3 shows the number of generations the evolutionary algorithms needs to evolve until the
stop criteria holds. When a single crossover is applied, the algorithms need to evolve during a
greater number of generations and consequently the number of evaluations is huge, with the
exception of MEA-Stud. In contrast, analysing ebest values, the best solution found is very poor in
relation to the ones found applying more crossovers. When #; is greater than 1, in most cases the
number of generation the algorithms evolve is the same, varying in this case the evaluation number,
which increases as long as the number of parents and crossovers do.

(nyn) MEA-Stud MEA-OS MEA-OA MEA-US MEA-UA
(1,3) 520 867 3236 5000 528
(2.3) 520 520 520 3846 523
(3.3 520 521 520 590 526
(4.3) 520 521 520 531 521
(1.4) 520 2041 4128 4022 526
(2.4) 520 520 520 3795 524
(3.4) 520 520 520 593 523
4.4) 520 520 520 548 525
(1.5) 520 1204 3971 5000 531
(2.5) 521 525 524 3633 527
(3.5) 520 521 523 599 520
(4.5) 520 526 523 538 520

Table 3 : Number of evaluations and generations for 1a06 for each number of crossover

Ebest Epop
(m,n) | MEA- | MEA- | MEA- | MEA- | MEA- | MEA- | MEA- MEA- MEA- MEA-
Stud oS OA LIS UA Stud oS OA LIS UA

(1,3) | 3.7536 | 5.9673 | 3.8499 | 2.3099 | 4.6198 | 3.7536 | 13.7707 | 14.1261 | 25.4473 | 28.6735

(2,3) | 1.9249 | 4.1386 | 5.2936 | 1.8287 | 2.2137] 1.9494 | 11.5098 | 11.7512 | 18.5891 | 17.2475

(3,3) | 1.3474 | 43311 | 4.1386 | 1.0587 | 1.2512 | 1.7429 | 11.5591 11.3806 | 11.4223 | 6.7031

(4,3) | 2.4062 | 4.5236 | 4.8123 | 1.3474 | 1.2512] 2.4232 | 11.5535 | 10.3007 | 6.4110 4.2007

(1,4) | 2.6949 | 52936 | 3.5611 | 2.0212 | 4.4273] 2.6949 | 8.7854 8.2483 4.0115 6.2579

(2,4) | 3.0799 | 4.8123 | 4.6198 | 2.0212 | 1.8287] 3.0799 | 7.1530 7.5592 3.2339 4.2079

(3.4) | 3.2724 | 3.5611 | 4.1386 | 1.5399 | 1.1550 | 3.2724 | 7.5842 6.6679 2.7988 3.8152

(44) | 0.9625 | 1.5399 | 2.6949 | 1.3474 | 1.8287] 0.9625 6.9971 6.5448 3.4495 3.2512

(1,5) | 3.4649 | 4.1386 | 2.9836 | 2.1174 | 2.9836] 3.4649 | 9.6920 8.3619 4.0808 5.9288

(2,5) | 2.5024 | 3.6574 | 5.5823 | 0.6737 | 2.4062] 2.5024 8.4081 8.8316 2.8046 3.2262

(3,5) | 2.5024 | 4.5236 | 5.1011 | 1.2512 | 1.8287 | 2.5024 | 7.3975 7.4649 2.8393 3.3417

(4,5) 1.7324 | 3.9461 | 4.2348 | 1.4437 | 1.6362 | 1.7324 7.7401 7.6535 3.1665 3.4341
Table 4: Ebest values for each (n;, n;) combination in /al2 instance

Table 4 shows Ebest and Epop values obtained applying any of the different proposed MEA
approaches for each possible (#;, n;) combination for la/2 instance. In table 4, bold-faced Ebest
values indicate lower values for each MEA approach. In general, MEA-US achieves lower Ebest
values than the other approaches, MEA-US errors vary from 0.67% to 2.30% while for example
MEA-Stud errors vary from 0.96% till 3.75%. Moreover, when the crossover operation is applied
once on the selected parents, worst results (highest ebest values) than when this operation is
repeated four times are obtained in the majority of the cases. Comparing ebest and epop values for
MEA-Stud approach, we can see a strong similarity between them. This affinity gives us the idea
that all the individuals belonging to the final population have the same makespan, but not
necessarily the same permutation of jobs.

7. CONCLUSIONS

This contribution explained the behaviour of multirecombinative approaches (MCMP) used to solve
the JSSP for a set of instances of distinct complexity using a permutation representation. Due to this
particular representation, the conventional scanning crossover might produce infeasible offspring.
So it is necessary to introduce some modification to the general mechanism to be useful with that
kind of representation. Also a further combination of MCMP with breeding techniques by means of
the stud in the parent subpopulation was shown. For this last approach PMX and exchange mutation
were the genetic operators chosen. This two versions of evolutionary algorithm improved with
mutirecombinative features were contrasted against. After a long series of experiments we can
conclude that:

* MCMP-UX is the best performer followed by MCMP-Stud, the approach with breading
techniques, while MCMP-UA is the third best performer.

» In general, when 4 crossovers are applied better results than when a single crossover is applied
are obtained.

* The MCMP approach with breading techniques arrives to a final population which in many
cases is centred on the fittest individual, providing a set of alternative schedules, which can help
to deal with system dynamics.

Now looking only the scanning methods, we can conclude that when all the parents have the same

chance to be donors (independently of the update marker mechanism) better results are obtained

than when the gene values is selected according to the value occurrence.

The promising results on these instances encourage us to investigation. To improve results in larger
instances, further work will include self-adaptation of parameters such as (ny, n,) associations and
hybridization of global and local search.

8. REFERENCES

[1] Bruns, R. Scheduling, in Th. Bick, D. B. Fogel, and Z. Michalewicz, (editors), Handbook of
Evolutionary Computation , chapter F1.5, pages F1.5:1-F1.5:9. Oxford University Press, New York,
and Institute of Physics Publishing, Bristol, 1997.

[2] Davis, L., Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 1991.

[3] Davis, L., Applying adaptive algorithms to domoins. In proceeding of the International Joint
Conference on Artificial Intelligence, pp. 162-164, 1985.

[4] Eiben A.E., Raué P-E., and Ruttkay Zs., Genetic algorithms with multi-parent recombination. In
Davidor, H.-P. Schwefel, and R. Ménner, editors, Proceedings of the 3rd Conference on Parallel
Problem Solving from Nature, number 866 in LNCS, pages 78-87. Springer-Verlag, 1994.

[5] Eiben A.E., van Kemenade CHM, and Kok J.N., Orgy in the computer: multi-parent
reproduction in genetic algorithms, in Moran F., Moreno A., Merlo J.J., and Chacon P., editors,
Proceedings of the 3" European conference on Artificial Life, number 929 in LNAI, pages 934-945.
Springer Verlag, 1995.

[6] Eiben, A.E. and Bick Th. An empiraical investigation of multi-parent recombination operators
in evolution strategies, Evolutionary Computation, 5(3):347-365, 1997.

[7] Esquivel S., Leiva A., Gallard R., Multiple Crossover per Couple in Genetic Algorithms, in
Proceedings of the 4™ IEEE International Conference on Evolutionary Computation (ICEC'97),
pages 103-106, Indianapolis, USA, April 1997.

[8] Esquivel S., Leiva A., Gallard R., Couple Fitness Based Selection with Multiple Crossover per
Couple in Genetic Algorithms, in Proceedings of the International Symposium on Engineering of

Intelligent Systems (EIS’98), La Laguna, Tenerife, Spain Vol. 1, pages 235-241, ed. E.Alpaydin.
Publishesd by ICSC Academic Press, Canada/Switzerland, February 1998.

[9] Esquivel, S., Leiva, A. And Gallard, R., Multiple Crossovers between Multiple Parents to
Improve Search in Evolutionary Algorithms, en Proceedings of the 1999 Congress on Evolutionary
Computation (IEEE), vol. 2, pages 1589-1594, Washington DC., 1999.

[10] Esquivel, S., Leiva, A. and Gallard, R., Multiplicity in Genetic Algorithms to Face
Multicriteria Optimization, en Proceedings of the 1999 Congress on Evolutionary Computation,
IEEE Service Center, pages 85-90, Washington, D.C., 1999.

[11] Gen, M. y Cheng, R., Genetic Algorithms and Engineering Design, Wiley-Interscience
Publication John Wiley & Sons, Inc, 1997.

[12] Goldberg, D. y Lingle, R., Alleles, Loci and the Traveling Salesman Problem, en Grefenstette,
J. (editor), Proceedings of the First International Conference on Genetic Algorithms, Lawrence
Erlbaum Associates, pages 154-159, Hillsdale, NJ, 1985.

[13] Goldberg, D.E., Genetic Algorithms in Search Optimization and Machine Learning, Addison
Wesley, 1989.

[14] Husbands, P., Genetic algorithms for Scheduling, AISB Quarterly, No. 89, 1994.

[15] Kobayashi, S., Ono, L. And Yamamura, M., An efficient genetic algorithm for job shop
schedulin problems, Proc. Of the 6" Conf. On Genetic Algorithms (ICGA'95), pp. 506-5011, 1995.
[16] Lawrence, S., Resource Constrained Project Scheduling: an Experimental Investigation of
Heuristic Scheduling Techniques, (Supplement), Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1984.

[17] Minetti G., Salto, C., Alfonso, H., and Gallard, R., A Comparison of two Multirecombinated
Evolutionary Algorithms for the Job Shop Scheduling Problem, in Proceedings VI Congreso
Argentino de Ciencias de la Computacion, CACIC 2000 Universidad Nacional de la Patagonia San
Juan Bosco, 2000.

[18] Oliver .M., Smith D.J., Holland J.R.C. A Study of Permutation Crossover Operators on the
Travelling Salesman Problem , Proceedings of the 2™ Int. Conf. On Genetic Algorithms, pp. 224-
230, 1987.

[19] Salto, C., Alfonso, H., and Gallard, R., Multiplicity and Incest Prevention in Evolutionary
Algorithms to Deal with de Job Shop Problem, in Proceedings of the Second ICSC Symposium on
Engineering of Intelligent Systems, University of Paisley, Scotland, pag, 451-457, 2000.

[20] Salto, C., Minetti G., Alfonso, H., and Gallard, R., A Hybrid Evolutionary Algorithm:
Multirecombination with Priority Rule Base Representation for the Job Shop Scheduling Problem,
in Proceedings VI Congreso Argentino de Ciencias de la Computacion, CACIC 2000, Universidad
Nacional de la Patagonia San Juan Bosco, pp. 1365-1376, 2000.

[21] Salto, C., Alfonso, H., and Gallard, R., Breeding in multirecombinated evolutionary algorithms
with permutation based representation for the job shop scheduling problem, Proceedings of 4t
International ICSC Symposium on soft Computing and Intelligent Systems for Industry
(SOCO/ISFI2001), pp. 130, 2001.

[22] Salto, C., Alfonso, H., and Gallard, R., Performance Evaluation of Evolutionary Algorithms
under Different Representations when Solving the JSS problem, Proceedings of 5™ World Multi-
Conference on Systemics, Cybernetics and Informatics (SCI 2001), pp. 424-428, 2001.

