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ABSTRACT: Oil well l ogs are frequently used to determine the mineralogy and physical properties of
potential reservoir rocks, and the nature of the fluids they contain. Recently we reported an exploratory
use of neural network ensembles for modeling these records. We showed that ensembles are clearly
superior to linear multivariate regression as modeling technique, revealing an underlying nonlinear
functional dependency between the correlated variables. In this work we use kernel methods to develop
nonlinear local models relating Sonic logs (transit time of compressional waves) with other commonly
measured properties (Resistivity and Natural Formation Radioactivity Level or Gamma Ray log). The
kernel considered is conceptually simple and numerically robust, and allows to obtain the same
performance as neural networks ensembles on this task.
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1. INTRODUCTION

Well l ogs are records related to properties of the well bore or the formations surrounding it, measured
using special equipment. These logs are used to identify and correlate underground rocks, and to
determine the mineralogy and physical properties of potential reservoir rocks and the nature of the
fluids they contain. A well l og is recorded during a survey operation in which a sonde is lowered into
the well bore. The measurements made by the downhole instrument are of a physical nature (i.e.,
electrical, acoustical, nuclear, thermal, dimensional, etc.), pertaining to some part of the well bore
environment or the well bore itself. After a well has been investigated and completation is started it has
to be cased with steel pipes, which prevents from new log operations. In spite of this, the "open hole"
well -logging operations are usually not performed with all the measurement instruments available due
to budget limitations.

Formation and fluid properties measured at reservoirs can be divided into four classes:

1. Resistivity. Measured indirectly using electromagnetic induction, which works well provided the
formations are not too resistive (i.e., mud not too saline).

2. Natural Formation Radioactivity Level. In sediments this log mainly reflects clay content because
clay contains the radioisotopes of potassium, uranium, and thorium. Potassium feldspars, volcanic
ash, granite wash, and some salt deposits containing potassium (potash, for example) may also give
significant gamma-ray readings. Limestone, sandstone and other reservoir rocks usually have low
readings.

3. Radioactive Bombardment Response. Density log (measured indirectly using a gamma-ray source)
and Neutron log (which measures the slowdown of high-energy neutrons colli ding with atomic
nuclei from the rocks) are the most frequent.

4. Sonic Conductivity. Measured using the interval transit time (usually called Sonic), which is the
travel time of a compressional wave over a given distance (proportional to the reciprocal of the
compression wave velocity).

The last two properties are indirect measures of porosity, which is related to the organic content of the
reservoir. That is why a porosity indicator is always included in any log well operation, although more
than one related log is hardly measured (Density is the quantity most usually determined). The less-
frequently-recorded Sonic log is of utmost utili ty because, in addition to the porosity levels, it relates
well l ogs to seismic information (bi or tridimensional). It is then of great importance to estimate Sonic
logs from other more usual records.

Empirical relations among Sonic and other logs can be found in the literature. For example, Gardner[1]
developed a relation between Sonic and Density, and Faust[2] obtained a nonlinear approximation
between Sonic, Depth and Resistivity. These methods attempt to find models of general validity, not
dependent on the local properties of the well . However, the rough approximations involved usually lead
to linear correlation coeff icients between measured and predicted Sonic values as low as 0.2.

Recently[17] we explored the possibili ty of developing nonlinear local models relating Sonic logs with
other commonly measured quantities, such as Resistivity and Natural Formation Radioactivity Level
(Gamma Ray log). We used data from six wells belonging to a common basin, thus sharing geological
properties. We later included the depth of each register as a new input variable. This inclusion



improved performance by incorporating dependencies on other variables not directly measured,
although probably limiti ng the spatial validity of the developed models. In particular, to model the
Sonic log we used a recently developed algorithm for building neural networks ensembles[3]. Here we
approach the same problem using the Kernel-Adaline algorithm[11]. Both methods have shown
excellent performance when tested on other real and artificial regression problems. We also develop
linear regression models to be used as a basis for comparison.

The work is organized as follows: In Section 2 we describe the available data and the applied
preprocessing. In Section 3 we outline the ensemble method used in [17]. In Section 4 we describe the
Kernel-Adaline. Then, in Section 5 we show the results obtained and compare both nonlinear methods
against the linear model. Finally, in Section 6 we draw some conclusions and discuss future lines of
work.

2. DATA DESCRIPTION AND PREPROCESSING

We work with data from six wells belonging to a common basin located at the mid-west of Argentina.
Available logs are Resistivity, Gamma Ray and Sonic. We take the logarithm of the resistivity, instead
of the raw variable, because this enhances resolution of the readings in the low-resistivity range (as is a
common practice in Geophysics). Measures were recorded from the top of the wells to some variable
final depth, always near 2000 meters, at intervals of approximately 0.15 meters. All wells have certain
zones where records are known to be wrong, due to mud properties that alter readings, or to saturation
of the measuring instrument (for example, as mentioned above, mud too saline). Once these wrong
records have been eliminated, we perform a smoothing of the remaining data using a sliding window of
length 3 in order to filter high frequency measurement noise. As a final step, we rescale all i nput
variables to a uniform range. Figure 1 shows the final available data for one representative well [17].

3. NEURAL NETWORK ENSEMBLES

Ensemble techniques have been used recently in regression/classification tasks with considerable
success. They are theoretically motivated on the bias/variance decomposition of the generalization
error[4]. This procedure is based on the intuitive idea that by combining the outputs of several
individual predictors one might improve on the performance of a single generic one[5]. However, this
idea has been proved to be true only when the combined predictors are simultaneously accurate and
diverse enough, which requires an adequate trade-off between these two conflicting conditions. Some
attempts[6] to achieve a good compromise between these properties include elaboration of bagging[7],
boosting[8] and stacking[9] techniques. Feedforward artificial neural networks (ANNs) provide a
natural framework for ensemble techniques. This is so because ANN is a very unstable learning
algorithm, i.e., small changes in training set and/or parameter selection can produce large changes in
prediction outputs. This diversity of ANNs comes naturally from the inherent data and training process
randomness, and also from the intrinsic non-identifiabili ty of the model (many different but a priori
equally good local minima of the error surface). On the other hand, the above mentioned trade-off
between the ensemble diversity and the accuracy of the individual members posses the problem of
generating a set of ANNs with both reasonably good (individual) generalization capabiliti es and
distributed predictions for the test points. This problem has been considered in several recent works in
the literature[6,10].



In [17] we used an alternative way of generating an ANN ensemble, proposed in [3], which leads to
ensemble members that are both accurate and diverse. The method essentially amounts to the
sequential aggregation of individual predictors where, unlike in standard aggregation techniques which
combine individually optimized ANNs[10], the learning process of a (potential) new member is
validated by the overall  aggregate prediction performance. That is, an ANN is incorporated to the
ensemble only when this improves the generalization capabiliti es of the previous-stage aggregate
predictor. This is accomplished by the following procedure:

Step 1: Split the data set D at random in a training set T1 and a validation set V1; generate a
model f1 by training a network on T1 until a minimum e1 in the generalization error on V1 is
reached.

Step 2: Split the data set D at random in new training and validation sets T2 and V2 respectively.
Produce a model f2 by training a network until the generalization error on V2 of the aggregate
predictor Φ2 = ½ (f1+f2) reaches a minimum eΦ2

(V2) < e1. In this step the parameters in model f1
remain constant and the model f2 is trained with the usual (quadratic) cost function on T2.

Step 3: If the previous step cannot be accomplished after a maximum NE of training epochs,
disregard the current training and validation sets and start again with step 2 using new random
sets T2 and V2. Repeat this step until either a second model f2 which satisfies the required
conditions is found or the number of attempts to find it reaches a maximum NA. In this last case
the algorithm terminates.

Step 4: If a model f2 is found, incorporate it to the ensemble and proceed again with steps 2 and 3
seeking for a model f3 such that eΦ3

(V3), the minimum generalization error on V3 of the aggregate

Φ3=(f1+f2+f3)/3, becomes smaller than eΦ2
(V2).

Step 5: Iterate the process until NA unsuccessful attempts to find a new model are performed. The
individual networks collected up to this point constitute the final ensemble.

Notice that the algorithm incorporates a new member to the ensemble only when it helps in improving
the aggregate generalization performance on a particular validation set; in practice it was found useful
to check that the performance on the whole data set D also improves or otherwise to stop the algorithm.
This helps in reducing the computational time since for large values of NA the procedure will first
terminate by this second condition. On the other hand, this condition seems to lead to final ensembles
with nicer generalization capabiliti es on the test set.

4. THE KERNEL-ADALINE ALGORITHM

The use of potential functions[13] allows the generalization of linear-nature learning algorithms to non-
linear problems. Such functions, called ‘kernels’ , map the original data to a high dimensional space
(called linearisation space), in which it is possible to apply linear techniques (either regression or
classification). The idea has been exploited in the potential function algorithm[13] and also in the



Support Vector Machine[14]. We use in this work the kernel-based generalized version of the Widrow
and Hoff’s Adaline algorithm[11,12].

The Adaline is given by
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where η  is a positive constant.

The weights w
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 can also be represented as an expansion on the data samples[12],

allowing the re-writing of the Adaline in its data dependent form[15,16]:
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Now, the (equivalent) update rule for the scalar multipliers α  and the bias term b is given by
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The data dependent form of the Adaline allows us to introduce the non-linear extension of the model. If
we find a fixed mapping of the input data ( )jj xz
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ϕ=  which is rich enough to capture the underlying

functional form of the signal we want to learn, then the data could be transformed and fitted by a linear
combination of the z's. Through the use of Mercer kernels it is possible to perform the mappings
implicitly because they represent inner products in some Hilbert space[13]. Therefore, the data
dependent non-linear Adaline (K-Adaline) is given by
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is the inner product defined in a high dimensional li nearisation space. Any potential function satisfying
Mercer's conditions may be used. In this work we use radial basis functions, given by
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where σ  is an associated parameter providing a degree of freedom.

The pseudo-code of the Kernel-Adaline algorithm is given below:

Step 1: Split the data set D in a training set T and a validation set V
Step 2: Assign a initial value to the internal parameter σ
Step 3: Choose ηα and0,10 === bLjj

	

Step 4: WHILE (stopping criterion not met)

  FOR  j = 1...L

Calculate output of the K-Adaline: ( ) bxxKxf j
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Update corresponding multipliers and bias by the rule:
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  END FOR

END WHILE

Step 5: Compute MSE on the Validation Set
Step 6: Assign a new value to σ (for example, from a given list) and GOTO 3

We keep the value of the internal parameterσ that minimizes the error on the validation set.

5. RESULTS

Like in [17], we first developed models for all six wells using only (the logarithm of) Resistivity and
Gamma Ray as input regression variables. For each well we fit a Kernel-Adaline model by randomly
splitti ng the corrresponding records in two datasets: one of them, containing 67% of the data, is used to
fit the model and the remaining 33% is used to test its performance. We considered a maximum of 30
iterations as the stopping criterion, and the parameter η was set to 0.1. Within these restrictions, we
found 07.0=σ to be the optimum value.



For the sake of completeness we remind the reader that in [17] we considered feedforward ANNs with
a single hidden layer as the ensemble members. After some preliminary exploration, we set the ANN
learning parameters and architecture as follows: a learning rate of 0.1, a momentum of 0.9, and 10 units
in the hidden layer. The parameters for building the ensemble were set to NA=10 attempts and
NE=10000 epochs.

To compare the results we computed the Normalized Mean Square Error (NMSE), defined as the MSE
divided the data variance, and also the linear Correlation Coeff icient (CC) between predicted and
observed values. Results for the test sets are shown in Table 1. In all 6 cases, both ANN ensembles and
K-Adaline perform better than multivariate linear regression in prediction error (NMSE) as well as in
the linear correlation (CC). These results suggest the presence of nonlinear dependencies in the data,
which can be modeled by the non-linear methods. When comparing the two non-linear methods no
statistically significant differences can be found, although K-Adaline shows a (very small )
improvement over the ANN ensembles.

We also developed new models including the depth at which each register has been taken as a third
input variable. We performed the same splitti ng of the data in training and test sets, and used the same
values for all parameters involved to allow a direct comparison between models ( 04.0=σ was the
optimum value in this case).  The results obtained for the test sets are shown in Table 2. Again, in all 6
cases both non-linear methods are better than linear regression. Furthermore, when comparing the 2-
and 3-variables settings it becomes apparent that, irrespective of the method used, the inclusion of
Depth as an input variable improves performance. This is a clear indication that Resistivity and Gamma
Ray cannot fully explain Sonic variabili ty by themselves. Like in the 2-variables case, when comparing
the non-linear methods we can see that K-Adaline is slightly better than ANN ensembles.

5. CONCLUSIONS

In this work we applied the K-Adaline algorithm to develop local empirical models for Sonic logs in oil
wells, using different input variables as regressors. We compared the results of linear multivariate
regressions and ANN ensembles (obtained in [17]) with those of K-Adaline models for the prediction
of Sonic logs from two commonly measured properties, namely Resistivity and Gamma Ray. The non-
linear methods proved to be clearly superior, showing an underlying nonlinear functional dependency
between these variables. This result remained true after the inclusion of Depth as a new input variable.
In this case both linear and non-linear methods improved their performances, which is a clear
indication that Resistivity and Gamma Ray cannot fully explain Sonic variabili ty by themselves.

We stress that, in spite of its simplicity, the K-Adaline algorithm showed a small improvement in
performance over ANN ensembles in both the 2- and 3-regression variables problems. This is very
encouraging and in future works we plan to use other potential functions that might improve the
algorithm performance. Furthermore, we will explore the spatial extent of the generalization
capabiliti es of the developed models. In particular, we would like to establish whether the inclusion of
Depth as an input regression variable severely limits the applicabili ty of the correspopnding models to
other wells, as suggested in the Introduction.
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Linear Regression ANN Ensemble KA (RBF)
Oil Well

NMSE CC NMSE CC NMSE CC

1 0,62 0,62 0,51 0,70 0,50 0,71

2 0,56 0,66 0,55 0,70 0,49 0,72

3 0,68 0,57 0,37 0,79 0,37 0,80

4 0,43 0,76 0,26 0,86 0,28 0,86

5 0,42 0,77 0,24 0,87 0,25 0,87

6 0,56 0,66 0,25 0,87 0,23 0,88

Average 0,54 0,67 0,36 0,80 0,35 0,81

Table 1: Normalized Mean Square Error (NMSE), and linear Correlation Coefficient (CC) in the

2- input variables regression setting.

Linear Regression ANN Ensemble KA (RBF)
Oil Well

NMSE CC NMSE CC NMSE CC

1 0,51 0,70 0,19 0,90 0,20 0,89

2 0,31 0,83 0,17 0,91 0,16 0,92

3 0,41 0,77 0,16 0,92 0,15 0,92

4 0,22 0,88 0,11 0,94 0,09 0,95

5 0,27 0,85 0,14 0,93 0,17 0,93

6 0,52 0,70 0,18 0,91 0,14 0,93

Average 0,37 0,79 0,16 0,92 0,15 0,92

Table 2: Same as Table 1 for the 3-input variables regression setting.



Figure 1: From top to bottom: Sonic dependence with Depth, Gamma Ray and Logarithm of
Resistivity, in arbitrary units.
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