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ABSTRACT: Oil well logs are frequently used to determine the mineralogy and physicd properties of
potential reservoir rocks, and the nature of the fluids they contain. Recently we reported an exploratory
use of neural network ensembles for modeling these records. We showed that ensembles are dearly
superior to linea multivariate regresson as modeling technique, reveaing an undelying norlinear
functional dependency between the crrelated variables. In this work we use kernel methods to develop
norlinea locd models relating Sonic logs (transit time of compressonal waves) with ather commonly
measured properties (Resistivity and Natural Formation Radioactivity Level or Gamma Ray log). The
kernel considered is conceptually simple aad numerically robust, and allows to okltain the same
performance a neural networks ensembles on this task.
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1. INTRODUCTION

WEell logs are records related to properties of the well bore or the formations surroundng it, measured
using speda equipment. These logs are used to identify and correlate underground rocks, and to
determine the mineralogy and physicd properties of potential reservoir rocks and the nature of the
fluids they contain. A well log is recorded duing a survey operation in which a sonde is lowered into
the well bore. The measurements made by the downhde instrument are of a physical nature (i.e.,
eledrical, amusticd, nuclea, thermal, dmensional, etc.), pertaining to some part of the well bore
environment or the well bore itself. After awell has been investigated and completationis garted it has
to be caed with stedl pipes, which prevents from new log operations. In spite of this, the "open hde"
well-logging operations are usually not performed with all the measurement instruments avail able due
to budyet limitations.

Formation and fluid properties measured at reservoirs can be divided into four classes:

1. Resistivity. Measured indiredly using eledromagnetic induction, which works well provided the
formations are not too resistive (i.e., mud nd too saline).

2. Natural Formation Radioactivity Levd. In sediments this log mainly reflects clay content because
clay contains the radioisotopes of potassum, uranium, and thorium. Potassum feldspars, volcanic
ash, granite wash, and some salt deposits containing pdassum (potash, for example) may also give
significant gamma-ray readings. Limestone, sandstone and aher reservoir rocks usualy have low
readings.

3. Radioactive Bombardment Resporse. Density log (measured indiredly using a gamma-ray source)
and Neutron log (which measures the slowdown of high-energy neutrons colliding with atomic
nuclel from the rocks) are the most frequent.

4. Sonc Condutivity. Measured using the interval transit time (usually called Sonic), which is the
travel time of a wmpressonal wave over a given distance (proportional to the redproca of the
compresgon wave velocity).

The last two properties are indired measures of porosity, which is related to the organic content of the
reservoir. That iswhy a porosity indicaor is always included in any log well operation, although more
than ore related log is hardly measured (Density is the quantity most usually determined). The less
frequently-recorded Sonic log is of utmost utility because, in addition to the porosity levels, it relates
well 1 ogs to seismic information (bi or tridimensional). It is then of great importanceto estimate Sonic
logs from other more usual records.

Empiricd relations among Sonic and aher logs can be foundin the literature. For example, Gardner[1]
developed a relation between Sonic and Density, and Faust[2] obtained a norlinea approximation
between Sonic, Depth and Resistivity. These methods attempt to find models of general validity, na
dependent onthe local properties of the well. However, the rough approximations involved usually lead
to linea correlation coefficients between measured and predicted Sonic values aslow as0.2.

Recently[17] we explored the posshility of developing nonlinear loca models relating Sonic logs with
other commonly measured quantities, such as Resistivity and Natural Formation Radioadivity Level
(Gamma Ray log). We used data from six wells belonging to a ommon besin, thus sharing geologicd
properties. We later included the depth of each register as a new inpu variable. This inclusion



improved performance by incorporating dependencies on dher variables not diredly measured,
although probably limiting the spatial validity of the developed models. In particular, to model the
Sonic log we used arecently developed algorithm for building neural networks ensembleq3]. Here we
approadh the same problem using the Kernel-Adaline dgorithm[11]. Both methods have shown
excdlent performance when tested on other real and artificial regresson poblems. We dso develop
linea regresson models to be used as abasis for comparison.

The work is organized as follows. In Section 2 we describe the available data and the gplied
preprocessng. In Sedion 3we outline the ensemble method wsed in [17]. In Sedion 4we describe the
Kernel-Adaine. Then, in Section 5we show the results obtained and compare both norlinear methods
against the linea model. Finally, in Section 6 we draw some @nclusions and dscuss future lines of
work.

2. DATA DESCRIPTION AND PREPROCESSING

We work with data from six well s belonging to a mmmon basin located at the mid-west of Argentina.
Available logs are Resistivity, Gamma Ray and Sonic. We take the logarithm of the resistivity, instead
of the raw variable, because this enhances resolution d the readings in the low-resistivity range (asis a
common pradice in Geophysics). Measures were recorded from the top d the wells to some variable
final depth, adways nea 2000 meters, at intervals of approximately 0.15meters. All wells have certain
zones where reaords are known to be wrong, due to mud properties that ater readings, or to saturation
of the measuring instrument (for example, as mentioned above, mud too saline). Once these wrong
records have been eliminated, we perform a smoathing of the remaining data using a sliding window of
length 3 in order to filter high frequency measurement noise. As a final step, we rescale dl inpu
variables to auniform range. Figure 1 shows the final avail able data for one representative well[17].

3. NEURAL NETWORK ENSEMBLES

Ensemble tedhniques have been used recently in regresson/clasgfication tasks with considerable
success They are theoretically motivated on the bias/variance decompaosition o the generalization
error[4]. This procedure is based on the intuitive idea that by combining the outputs of severa
individual predictors one might improve on the performance of a single generic ong[5]. However, this
idea has been proved to be true only when the combined predictors are smultaneously accurate and
diverse enough, which requires an adequate trade-off between these two conflicting condtions. Some
attemptg[6] to achieve agoodcompromise between these properties include daboration d baggng[7],
bocsting[8] and stacking[9] techniques. Feadforward artificial neural networks (ANNS) provide a
natural framework for ensemble techniques. This is  because ANN is a very unstable learning
algorithm, i.e., small changes in training set and/or parameter selection can produce large changes in
prediction ouputs. This diversity of ANNs comes naturally from the inherent data and training process
randamness and also from the intrinsic norridentifiability of the model (many different but a priori
equally good locd minima of the eror surface). On the other hand, the @&ove mentioned trade-off
between the ensemble diversity and the accuracy of the individua members posses the problem of
generating a set of ANNs with bah reasonably good (individual) generalization capabiliti es and
distributed predictions for the test points. This problem has been considered in several recent worksin
theliterature[6,10.



In [17] we used an dternative way of generating an ANN ensemble, propased in [3], which leads to
ensemble members that are both accurate and dverse. The method essentialy amounts to the
sequential aggregation d individual predictors where, unlike in standard aggregation techniques which
combine individually optimized ANNS[10], the leaning process of a (potential) new member is
validated by the overall aggregate prediction performance That is, an ANN is incorporated to the
ensemble only when this improves the generalization capabiliti es of the previous-stage aggregate
predictor. Thisis accomplished by the foll owing procedure:

Step 1: Split the data set D at randam in a training set T; and a validation set V;; generate a
model f; by training a network on Ty until a minimum e, in the generalization error on Vi is
reated.

Step 2: Split the data set D at randam in new training and validation sets T, and V, respedively.
Produce amodel f, by training a network urtil the generdlization error on V, of the aggegate
predictor @, = % (f1+f) readies a minimum eq,(V2) < €1. In this gep the parameters in model f;
remain constant and the model f; is trained with the usual (quadratic) cost function onT,.

Step 3: If the previous dep canna be accomplished after a maximum Ng of training epochs,
disregard the aurrent training and validation sets and start again with step 2 wsing new randam
sets T, and V,. Repea this dep urtil either a second model f, which satisfies the required
condtions is found @ the number of attempts to find it reaches a maximum Na. In this last case
the dgorithm terminates.

Step 4: If amodel f, isfound,incorporate it to the ensemble and proceed again with steps 2 and 3
seeking for amodel f5 such that eq,(V3), the minimum generalization error on Vs of the aggregate

©3=(f1+fo+f3)/3, becomes small er than eq,(V2).

Step 5: Iterate the processuntil Na unsuccessul attempts to find anew model are performed. The
individual networks colleded upto this paint constitute the final ensemble.

Noticethat the dgorithm incorporates a new member to the ensemble only when it helps in improving
the aggregate generali zation performance on a particular validation set; in practice it was found wseful
to chedk that the performance on the whole data set D also improves or otherwise to stop the dgorithm.
This helps in reducing the computational time since for large values of Na the procedure will first
terminate by this ssoond condtion. On the other hand, this condtion seams to lea to fina ensembles
with nicer generali zation capabiliti es on the test set.

4. THE KERNEL-ADALINE ALGORITHM

The use of patential functions[13] al ows the generalization d linear-nature learning agorithms to non
linea problems. Such functions, cdled ‘kernels’, map the original data to a high dmensional space
(cdled linearisation spaa), in which it is posgble to apply linear techniques (either regresson a
clasgficdion). The idea has been exploited in the potential function algorithm[13] and also in the



Suppat Vedor Maching[14]. We use in this work the kernel-based generalized version d the Widrow
and Hoff’s Adaline dgorithm[11,13.

The Addineis given by
f(x)=wx+b wx0O0%b0O0O

where X isavedor of input data, w is a set of d weightsand b is a bias term. The Adaine dgorithm is
a member of a genera classknown as Perceptrons. Its objective is to adjust the weight vedor W, so
that the mean squared error between the model output f (X) andthe target valuet; is minimized onthe

training set {Xi ,ti}, I =1...L. The gradient descent solution produces the following adaptation rule:

W w+n (t- f(x))x
b b+nt-f(x))

where n isapasitive constant.

Theweights W can also be represented as an expansion onthe data samples[12],

L
W= Zai X,
1=

alowing the re-writing of the Adalinein its data dependent form[15,14:

L

f&)zZa&X[&)+b

Now, the (equivaent) update rule for the scdar multipliers a and the biasterm b is given by

a - a+n(t-f(x)
bb+nt-f(x))

The data dependent form of the Adaline dl ows us to introduce the nonlinear extension d the modd. If
we find a fixed mapping of the input data z, = ¢(x, ) which is rich enough to capture the underlying
functional form of the signal we want to learn, then the data could be transformed and fitted by alinear
combination d the Zs. Through the use of Mercer kernels it is passble to perform the mappings

implicitly because they represent inner products in some Hilbert spacg13]. Therefore, the data
dependent non-linear Adaline (K-Adaline) is given by

f(xj): Zai K(Xi,Xj)+b,

where



K(X,%)=9(X)D(X)

isthe inner product defined in ahigh dmensional li neaisation space Any patential function satisfying
Mercer's condtions may be used. In thiswork we use radia basis functions, given by

H‘P‘i _)_{J|2E

K()”(i,i(j):expﬁTE

where o isan asciated parameter providing a degree of freedom.
The pseudo-code of the Kernel-Adaline dgorithm is given below:

Step 1: Split thedataset D inatraining set T and avalidation set V
Step 2: Assgn ainitial vaueto the internal parameter o

Step 3: Choose a; =0 j=1...L,b=0 andn

Step 4: WHILE (stoppng criterion nd met)

FOR j=1..L
)+b

L
Calculate output of the K-Adaline: f(xj ): D o K(x, %,
1=1

Update correspondng multipliersand hias b); therule:

a—a+n(t-f(x)

bb+n(t-f(x))
END FOR

END WHILE

Step 5: Compute MSE on the Validation Set
Step 6: Assgn anew valueto o (for example, from agiven list) and GOTO 3

We ke the value of the internal parameter o that minimizes the eror onthe validation set.

5. RESULTS

Like in [17], we first developed models for al six wells using only (the logarithm of) Resistivity and
Gamma Ray as inpu regresson variables. For each well we fit a Kernel-Adaline model by randamly
splitti ng the crrrespondng records in two datasets. one of them, containing 67% of the data, is used to
fit the model and the remaining 33% is used to test its performance. We considered a maximum of 30
iterations as the stopping criterion, and the parameter n was <t to 0.1. Within these restrictions, we
found o = 0.07to be the optimum value.



For the sake of completenesswe remind the reader that in [17] we considered feedforward ANNS with
a single hidden layer as the ensemble members. After some preliminary exploration, we set the ANN
learning parameters and architedure & follows: alearning rate of 0.1,amomentum of 0.9,and 10 unts
in the hidden layer. The parameters for building the ensemble were set to Na=10 attempts and
Ne=10000epochs.

To compare the results we mmputed the Normalized Mean Square Error (NMSE), defined as the MSE
divided the data variance, and also the linear Correlation Coefficient (CC) between predicted and
observed values. Results for the test sets are shown in Table 1. In all 6 cases, bah ANN ensembles and
K-Adaline perform better than multivariate linear regresson in prediction error (NMSE) as well as in
the linea correlation (CC). These results suggest the presence of norlinear dependencies in the data,
which can be modeled by the nontlinear methods. When comparing the two nonlinear methods no
statisticaly significant differences can be found, athough K-Adaine shows a (very small)
improvement over the ANN ensembles.

We dso developed new models including the depth at which each register has been taken as a third
inpu variable. We performed the same splitti ng of the data in training and test sets, and used the same
values for al parameters involved to allow a dired comparison ketween models (o = 0.04was the
optimum value in this case). The results obtained for the test sets are shown in Table 2. Again, in all 6
cases both norlinear methods are better than linea regresson. Furthermore, when comparing the 2-
and 3variables wttings it becomes apparent that, irrespedive of the method sed, the inclusion o
Depth as an inpu variable improves performance Thisisa dea indication that Resistivity and Gamma
Ray cannat fully explain Sonic variabili ty by themselves. Like in the 2-variables case, when comparing
the nonlinea methods we can seethat K-Adalineis dightly better than ANN ensembles.

5. CONCLUSIONS

In thiswork we gplied the K-Adaline dgorithm to develop locd empiricd models for Sonic logsin al
wells, using different inpu variables as regresors. We compared the results of linear multivariate
regressons and ANN ensembles (obtained in [17]) with those of K-Adaline models for the prediction
of Sonic logs from two commonly measured properties, namely Resistivity and Gamma Ray. The non
linea methods proved to be dearly superior, showing an undlying noninea functional dependency
between these variables. This result remained true after the inclusion d Depth as a new inpu variable.
In this case bath linea and nonlinear methods improved their performances, which is a dea
indication that Resistivity and Gamma Ray canna fully explain Sonic variabili ty by themselves.

We stress that, in spite of its smplicity, the K-Adaline dgorithm showed a small improvement in
performance over ANN ensembles in bah the 2- and 3regresson variables problems. This is very
encouraging and in future works we plan to use other poatential functions that might improve the
algorithm performance Furthermore, we will explore the spatial extent of the generadization
cgpabiliti es of the developed models. In particular, we would like to establish whether the inclusion o
Depth as an inpu regresson variable severely limits the goplicability of the correspopndng models to
other well s, as suggested in the Introduction.
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oil Wl Linear Regression ANN Ensemble KA (RBF)
NMSE CcC NMSE CcC NMSE CcC
1 0,62 0,62 0,51 0,70 0,50 0,71
2 0,56 0,66 0,55 0,70 0,49 0,72
3 0,68 0,57 0,37 0,79 0,37 0,80
4 0,43 0,76 0,26 0,86 0,28 0,86
5 0,42 0,77 0,24 0,87 0,25 0,87
6 0,56 0,66 0,25 0,87 0,23 0,88
Average 0,54 0,67 0,36 0,80 0,35 0,81

Table 1: Normalized Mean Square Error (NMSE), and linear Correlation Coefficient (CC) in the
2- inpu variables regresson setting.

oil Wl Linear Regression ANN Ensemble KA (RBF)
NMSE CC NMSE CC NMSE CC
1 0,51 0,70 0,19 0,90 0,20 0,89
2 0,31 0,83 0,17 0,91 0,16 0,92
3 0,41 0,77 0,16 0,92 0,15 0,92
4 0,22 0,88 0,11 0,94 0,09 0,95
5 0,27 0,85 0,14 0,93 0,17 0,93
6 0,52 0,70 0,18 0,91 0,14 0,93
Average 0,37 0,79 0,16 0,92 0,15 0,92

Table 2: Same & Table 1 for the 3-inpu variables regresgon setting.
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Figure 1. From top to bdtom: Sonic dependence with Depth,
Resistivity, in arbitrary units.
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