MULTIRECOMBINATED EVOLUTIONARY ALGORITHMS TO SOLVE
MULTIOBJECTIVE JOB SHOP SCHEDULING"

ESQUIVEL S. C., FERRERO S.W., GALLARD R.H.

Proyecto UNSL-338403'
Departamento de Informdtica
Universidad Nacional de San Luis (UNSL)
Ejército de los Andes 950 - Local 106
5700 - San Luis, Argentina.

E-mail: {esquivel, swf, rgallard}@unsl.edu.ar
Phone: + 54 652 20823
Fax : +54 652 30224

Abstract

Multiobjective optimization, also known as vector-valued criteria or multicriteria optimization,

have long been used in many application areas where a problem involves multiple objectives, often con-
flicting, to be met or optimized. Scheduling problems is one of such application areas whose importance
lays on its economical impact and its complexity.
The present paper proposes CPS-MCPC, a cooperative population search method with multiple cross-
overs per couple. The cooperative search CPS is implemented with individuals of a single population,
which are selected for recombination using alternatively each criterion. MCPC a multirecombination
approach is used to exploit good features of both selected parents. To test the potentials of the novel
method for building the Pareto front regular and non-regular objectives functions were chosen: the
makespan and the mean absolute deviation of job completion times from a common due date (an earli-
ness/tardiness related problem). The set of experiments conducted, used three basic representation
schemes and contrasted results of the proposed approach against conventional methods of recombina-
tion. Details of implementation and results are discussed.
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1 Introduction

In a multiobjective optimization problem, a solution has a number of objective values, one per
each optimizing criteria (attributes). As many of these criteria can be in conflict it is impossible to op-
timize any of the objective functions without degrading at least one of the remaining criteria. When m
objectives are involved, the search space can be seen as an m-dimensional space and therefore each
solution is an m-vector of attribute components. This leads to a decision making problem for choosing
a suitable solution (or set of solutions) according to higher level organization goals [24].

Vilfredo Pareto [26] established that there exists a partial ordering in the searching space of a
multiobjective problem. The Pareto criterion simply states that a solution is better than another one if it
is so good in all attributes, and better in at least one of these attributes. For instance, in a maximization

problem given two solutions x = (X75 % yeres Xpy) and y=( V1> Yoo Yn) s the Pareto criterion says that, x
dominates y iff x; 2 y; Vi and 3 jsuch that Xp>yj.

In the problem space some solutions will not be dominated by any other solution and they con-
form the Pareto front, also known as the acceptable set, the efficient points and the Pareto optimal set.
Knowledge of the Pareto front is of utmost importance when search is applied before decision making.
This information provides to the judgement of a human decision maker with the trade-offs to establish
interactions between different criteria, hence simplifying the decision process to choose an acceptable
range of solutions for a multicriteria problem. Implemented first by Schaffer [28], [29], Fourman [16]
and then by Kursawe, [21], [22] and others, cooperative population searches (CPS) with criterion se-
lection [19] was used to build the Pareto front in selected multicriteria problems. The central idea in
CPS, is to make a parallel single criterion search, where all members of the population of an evolution-
ary algorithm are involved in a cooperative search to build the Pareto front.

A job shop can be seen as a multi-operation model where jobs follow fixed routes, but not neces-
sarily the same for each job. Here there exist facilities, which produce goods according to specified
production plans under several domain-dependent constraints. Job Shop Scheduling (JSS) attempts to
provide optimal schedules. Common variables to optimize are total completion time (makespan), mean
flowtime, mean lateness, percentage of tardy jobs, etc. All of them are regular performance measures in
the sense that they are non-decreasing in completion times. When both earliness and tardiness are pe-
nalized [1] this gives rise to non-regular performance measures of current interest in just-in-time pro-
duction.

Due to their implicit parallel search, evolutionary algorithms (EAs) are suitably fitted to deal with
JSSP [35], [25] [14] as well as seeking solutions in multiobjective optimization [5], [7], [9], [11], [15],
[31], [33], [34].

The present work investigates the ability of the CPS-MCPC method, a cooperative population
search approach with multirecombination allowing multiple crossovers per couple, to find non-
dominated points and contrasts its performance against conventional recombination when building the
Pareto front under different representations.

2 The job shop scheduling problem

The job scheduling problem (JSSP) is related to the allocation of limited resources (machines) to
jobs over time. Complexity of scheduling problems [17] and their economical impact motivated exten-
sive research [2], [3], [4], [20], [30], [32]. This is a decision making process that has as a goal the opti-



mization of one or more objectives. The model considered here assumes that the system consists of a

number of different machines and only one job may execute on a machine at a time. All schedules and

jobs are non-preemptive. Jobs can have distinct priorities and all of them are available at production

initiating time. Each job visits all machines, only once, following a predetermined sequence of ma-

chines, called a route. Consequently, a job can be represented by a vector where its components are the

successive operations to be performed. These components are 2-tuples of the form (machine, duration),

specifying the machine where the job must be allocated and the time spent in that machine. An instance

of the JSSP is a matrix where the rows specify the jobs as above described. This matrix is called the

instance matrix for the specific JSSP. Figure 1 shows the instance matrix for a given JSSP, with three
jobs and two machines.

O, 0,

L1124 | 1,2

L1 (1,3) | (2,8

LIonlans

Fig. 1. An instance for a JSSP

2.1.Conflicting objectives

In this paper we selected f; as the makespan, and f, as the mean absolute deviation of job com-
pletion times from a common due date d, as the conflicting criteria to minimize. When minimizing
function f;, schedules tend to be shor-tened, usually implying high utilization of machines. When
minimizing function f, earliness and tardiness are penalized at the same rate for all jobs and schedules
are built so that d is in the middle of the job completion times, which usually derives in lower inventory
COsts.

Cheng, Gen, and Tsujimura [6] proposed a formulation for a better representation of precedence
constraints in a JSSP with n jobs and m machines, minimizing the makespan, as follows. Given:

*  Cjy and pj the completion time and the processing time of job j in machine k, respectively.
" a;x and x;y, binary indicator coefficients defined as follows:
1, if processing on machine s precedes that on
Aink = machine k for job i
0, otherwise
{ 1, if job i precedes job j on machine k
Xijk =

0, otherwise
* M alarge positive number.

Then the problem is formulated as shown below:

min  max ., {max ., {C,}} (1
S.t.

Cop—pPptMU-ay,)2C, 2)
Cp-Cyu+MU=x,)2p, 3)
Ay =0 orl “4)
X =0 orl &)

ijk

ii=lon , kth=l..m (6)



Operation precedence constraint (2) guarantees that the sequencing of operations for each job
corresponds to the prescribed order. Operation non-overlapping constraint (3) ensures that each ma-
chine can process only one job at a time. Consequently, under the same set of constraints for the JSSP
and given a due date d, common to all jobs, our multiobjective optimization problem can be formulated
as follows:

Minimize f, (o) and f,(o ) where sought solutions o are feasible schedules and

£1(0) = max .., {max e, (C )} (7
1 n

fz(a):;Z|Cj—d| 3)
j=1

In expression (8) C; stands for the completion time of the last operation of job j.

3 Representations and operators in evolutionary algorithms for the JSSP

It is a well-known problem in evolutionary computation the limitations a particular representation
(encoding) of solutions imposes on the genetic operators to be used. This issue is mainly addressed to
the creation of valid offspring avoiding the use of penalties or repair algorithms. In the following the
representations used to evaluate the multirecombinative approach, and the corresponding operators are
explained.

Priority list representation (PLR)

Under this representation associated with the instance matrix is a job priority list, which is used
by the schedule builder at the building stage of a schedule to solve conflicts between jobs requiring the
same resource. At each step, subjected to precedence and non-overlapping constraints, resources are
allocated to those job operations which are not in conflict. When conflicts on a requested resource arise
the allocation is done following the priority list. By using different priority lists different schedules can
be built. As a priority list is a permutation of jobs, a chromosome is represented as a permutation of
integer job identifiers.

Job-based representation (JBR)

Here also a chromosome consists of a list of n jobs. Following the sequence in the list, all opera-
tions of the first job are scheduled, then all the operations of the second job are considered, and so on,
until all jobs are scheduled. Each operation of the job being scheduled are allocated in the best avail-
able processing time for the machine the operation requires.

Operation-based representation (OBR)

Here a schedule is encoded in the chromosome as a sequence of operations. Due to the existence
of precedence constraints among operations of a particular job, the assignment of natural numbers to
identify operations and the use of a permutation representation can lead to unfeasible schedules. To
avoid this problem Gen, Tsujimura and Kubota [18] proposed a representation where each operation is
identified by the job number to whom it belongs and the order of occurrence in the sequence. For an n-
job m-machine problem a chromosome consists of n X m genes, where each gene have a job identifier
as the allele value and values are repeated exactly m times in the chromosome. For the JSSP corre-
sponding to the instance matrix of Fig. 1 and a given chromosome [3 2 1 2 1 3], allele values 1, 2 and
3 stand for jobs J;, J> and J3, respectively. Because each job has two operations these values appear
twice in the chromosome. The first occurrence of a ‘1’ refers to the first operation of job J;, which
should be allocated to machine 2, and the second occurrence refers to the second operation of job J;,
which should be allocated to machine 2.The same interpretation is given to other gene values.
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Fig. 2. Job operations and corresponding machines
for the matrix instance of Fig 1.

Genetic operators

As PLR and JBR deal with permutations our experiments used order crossover (OX) and ex-
change mutation for both representations. In the case of OBR we propose a modified order crossover
(MOX). Here, to build a valid offspring a sub-sequence of one parent is inserted in the same position in
the offspring and the rest of allele values are copied from the second parent in the order they are ap-
pearing controlling the number of allele repetitions.

For example, consider a JSSP with n = m = 3. Given two parents and selecting from the first par-
ent a sub-sequence including genes from the 4" to the 7™ position :

parentl 32211231 3] parent2 12321331 2]

Once the selected sub-sequence from the first parent was inserted in the offspring the remaining
genes are extracted from the second parent, beginning from the position next to the last one in the sub-
sequence, in the order they appear. The process for creating an offspring is delineated below.

parent2 [123213312]

—> —>

Boldfaced genes in Parent2 are the ones to be inserted in the offspring.

[x xx 112 3x x] Sub-sequence from parentl is inserted.

[xxx 11231 2] The number of 1’s is completed.

[2xx 11231 2] The first ‘1’ of parent2 is skipped and the number of 2’s is completed.
[23x112312] Another ‘3’ is inserted.

[23311231 2] The number of 3’s is completed.

offspring [233112312]

For mutation a modified exchange mutation was implemented in order to ensure that the ex-
change effectively changes the allele values.

4 Multirecombination in multicriteria optimization (CPS-MCPC)

Conventional approaches to crossover, independently of the method being used, involve applying
the operator only once on the selected parents. In this paper such a procedure will be known as the Sin-
gle Crossover Per Couple (SCPC) approach.



In earlier works [12], [13], we devised a different approach: to allow multiple offspring per cou-
ple, as often happens in nature. In order to deeply explore the recombination possibilities of previously
found solutions, we decided to conduct several experiments in which more than one crossover opera-
tion for each mating pair was allowed.

The number of children per couple was fixed or granted as a maximum number and the process
of producing offspring was controlled, for each mating pair, in order not to exceed the population size.

The idea of multiple children per couple was tested on a set of well-known testing functions (De
Jong functions F;, F, and F; [8], Schaffer Fg [27] and other functions). A simple genetic algorithm, with
conventional operators and parameter values, was the basis of those initial experiments.

During the first studies of the MCPC approach it was observed that in many cases MCPC found
better results than SCPC and best quality results were obtained allowing between 2 and 4 crossovers
per couple. These effects were a consequence of a greater exploitation of the recombination of good,
previously found, solutions.

For multiobjective optimization initial experiments with CPS-MCPC were implemented execut-
ing exactly n; crossovers, providing 2 n; children per couple (2 < n; < 4). Basically this novel ap-
proach:

1) Maintains a single population of solutions which is separately ranked by each criterion.

2)  Uses ranking selection to select one parent per criterion.

3) Uses multiple crossovers per couple (MCPC), and the corresponding crossover and mutation
operators to generate multiple offspring.

4)  After each mating, for insertion in the next population, selects those offspring, which are classi-
fied so far, as globally non-dominated. If none fulfilling this condition exists then n; (half) of the
newly ge-nerated offspring are inserted, selecting first those that are non-dominated within the
new offspring subset and completing the n; insertions by random selection if necessary.

The last point above mentioned, implies to maintain the updated set of solutions found so far as
belonging to the Pareto front. Let us call it Py, This set is updated at the end of each generation cy-
cle. To build the new population, each time the new offspring are created by application of MCPC, we
apply the following procedure:

While the new population is created
do
By using ranking selection select one parent per
criterion,
Apply MCPC with the corresponding crossover to
obtain the set O of 2 n; offspring and mutate,
By consulting P;rens determine the subset O,,pnq Of
O that are globally nondominated,
If O,ona # P then insert O,y into the new population
else insert n; offspring selecting first those
that are non-dominated in O.
Complete n; insertions by random
selection if necessary.
od



The number n; of crossovers is a parameter of the EA. Essentially the proposed CPS-MCPC,

® Augments implicit parallel search by encouraging crossbreeding among “species”.

¢ Increases exploitation of good solutions previously found through multiple crossovers per couple.

¢ Favours for insertion in the next generation those solutions which are, at the present stage, non-
dominated (globally, at P,..,: level, or locally, at O subset level). If none is found then genetic di-
versity is favoured by random selection.

Consequently, it is expected a contribution of the method to speed the search and to find a larger
set size when seeking the Pareto optimal set.

5 Experiments

To evaluate the performance of the CPS-MCPC, the problem of minimizing f,(c)and f,(c), as

explained in 2.1 was used for experiments. Ten instances of two types, small and medium (size) from
the Lawrence’s benchmark set [23], with known optimal makespan were used. Small instances were of
10 jobs and 5 machines, identified as /aX with X=00,..,05, while medium instances were of 20 jobs and
10 machines identified as laY with Y=26,..,30.

After many initial trials best parameter settings were determined as follows. Number of crossover
per couple n; = 4. Probabilities for crossover and mutation were fixed at 0.7 and 0.05 respectively. Popu-
lation size fixed at 100 and 20 individuals, and maximum number of generations fixed at 1000 and
5000 for small and medium instances, respectively. To establish the raw potential of the method we use
neither insertion of ‘seeds’ (good individuals provided by other conventional heuristics) within the initial
randomized population nor any hybrid approach during the evolutionary process. Elitism was used to re-
tain the best individual found so far under each criterion. As optimal values of makespan were known for
each instance of the test suite, the common due date d to determine f, (¢ ) values was fixed at a value 40%

greater than the corresponding optimal makespan. Next section show comparative results of the proposed
CPS-MCPC and the conventional CPS method, applying a single crossover per couple, which from
now on will be called CPS-SCPC.

6 Results

All the above mentioned Lawrence’s in-
stances were tested for each representation and
corresponding genetic operators under CPS-MCPC 400
and CPS-SCPC. In general, from the representation ggg ]
point of view OBR outperformed both other cod- 250
ing techniques, and PLR was better than JBR. This fgg 1
behaviour shown in Fig. 3 for instance 1a04, was 100
expected because OBR is a more problem-specific 50
representation while PLR and JBR coding spaces
correspond to only a part of the whole solution Makespan
space. For the discussion of the compared per-
formance of both CPS methods we will show only
results for 1a02 and 1a30 as demonstrative instances  Fig. 3. Representation approaches: comparative performance
for each type, because the remaining instances for building the Pareto front under CPS-MCPC.
reveal similar findings

la04

Mean absolute deviation

1000

PLR &« JBR = OBR




Figures 4 to 6 show the Pareto fronts built
under both recombination methods with the three
chosen representations for small instance 1a02. In
Fig. 4 with PLR, 48 non-dominated solutions were
found under both recombination schemes. Also, the
quality of solutions is similar. In Fig. 5 with JBR,
15 and 19 non-dominated points were found under
CPS-SCPC and CPS-MCPC, respectively. The
multirecombination approach shows better quality
of results than the conventional single crossover
approach. Finally in Fig. 6 with OBR, 34 and 91
non-dominated points were found under CPS-SCPC
and CPS-MCPC, respectively. A better Pareto front
is achieved here also under CPS-MCPC.
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Fig. 6. Pareto fronts built under CPS-MCPC and CPS-SCPC
with operation-based representation, instance 1a02.

Figures 7 to 9 shows the Pareto fronts
obtained for big instances. All of them clearly
show better set of efficient points under CPS-
MCPC for any representation. These figures
show 23 and 58, 19 and 38, and 25 and 44
non-dominated solutions found under CPS-
SCPC and CPS-MCPC, respectively for the
corresponding coding techniques.
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Fig. 4. Pareto fronts built under CPS-MCPC and CPS-SCPC
with priority list representation, instance 1a02.
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Other important evidence arises when observing at the final population attained by either recom-
bination method. Fig. 10, shows a total of 321 points, where 125 of them are non-dominated and be-
long to the final P, Sets of the co-rresponding recombination methods.
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Fig. 10. Pareto fronts and final populations obtained under
CPS-MCPC and CPS-SCPC with operation-based



Under CPS-SCPC the final population show a higher diversity than under CPS-MCPC. Average
individuals in both populations have the following objective values,

(];1 (O cps —scrc )» B (O cps _scpe )) =(1073,138)
(.]?1 (GCPS—MCPC )’ ]?2 (GCPS -MCPC )) = (9229194)

This means that the final population under CPS-MCPC is nearer of a compromise (mean) solution.
7 Conclusions

This work reports experience on multiobjective optimization applied to the Job Shop Scheduling
problem using a co-operative population searches method with multirecombination. Experiments to
contrast multiple versus single recombination were performed using three basic representations for the
JSSP. Preliminary runs determined that varying the number n; of crossover from 2 to 4 better results
were found for higher values of n;. Consequently, exhaustive experiments were performed with n; = 4,
for the set of selected instances.

Independently of the coding technique adopted, in most cases CPS-MCPC gives an indication of
building better Pareto fronts. This was shown by the achievement of improved, more densely and
evenly distributed fronts. More-over the final population obtained under the novel approach is grouped
around compromise solutions. This fact shows that the alternative solutions provided by multirecombi-
nation attempt to balance the damage caused on the conflicting objectives of the multicriteria problem.

These preliminary results are promising and encourage us to deep forward investigation in mul-
tiobjective scheduling problems by using multirecombination with better representations for the JSSP. An
open remaining question is the optimal setting of the number n; of crossovers, which could be self-
adapted. Other variants such as multiplicity of parents and crossovers [10], [11] are under study to estab-
lish the abilities and possible limitations of this approach.
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