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Abstract

Allocation of the components (tasks) of a parallel program to processors in a multiprocessor or a
multicomputer system take full advantage of the computational power provided by the system.
Evolutionary approaches has been used in the past to implement efficiently this type of scheduling.
Those approaches showed their advantages when contrasted against conventional approaches and
different chromosome representations were proposed. Latest improvements in evolutionary
computation include multirecombinative variants allowing multiplicity of crossovers on the selected
couple of parents. Multiple crossovers per couple (MCPC) exploits good parents’ features in the
creation of offspring. Performance enhancements were clearly demonstrated in single and multicriteria
optimization under this approach.

This paper shows three algorithms to solve the problem of allocating a number of non-identical
related tasks in a multiprocessor or multicomputer system. The model assumes that the system consists
of a number of identical processors and only one task may execute on a processor at a time. All
schedules and tasks are non-preemptive. This involves the assignment of partially ordered tasks onto
the system architecture processing components. Two evolutionary algorithms using a direct
representation, are contrasted with the well-known Graham’s [12] list scheduling algorithm (LSA).
The first one makes use of the conventional single crossover per couple (SCPC) approach while the
second, following current trends in evolutionary computation, uses (MCPC) a multirecombinated
approach. Chromosome structure, genetic operators, experiments and results are discussed.

Key words: Parallel task allocation, Evolutionary algorithm, multirecombination, List Scheduling
Algorithm, Optimization.
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1. INTRODUCTION

A parallel program is a collection of tasks, some of which must be completed before than others
begin. The precedence relationships between tasks are commonly delineated in a directed acyclic graph
known as the fask graph. Nodes in the graph identify tasks and their duration and arcs represent the
precedence relationship. Factors, such as number of processors, number of tasks and task precedence
make harder to determine a good assignment. The problem to find an schedule on m > 2 processors of
equal capacity, that minimizes the whole processing time of independent tasks has been shown as
belonging to the NP-complete class [13].

In a deterministic model, the execution time for each task and the precedence relations between
them are known in advance. This information is depicted in a directed graph, usually known as the task
graph. In Fig. 4 we have six task graphs with the corresponding duration and their precedence
relations. A schedule is an allocation of tasks to processors which can be depicted by a Gantt chart, to
see Fig.1. In a Gantt chart, the initiation and ending times for each task running on the available
processors are indicated and the makespan (total execution time of the parallel program) of the
schedule can be easily derived. By simple observation of the Gantt chart the completion time of the
last task abandoning the system, called the makespan, the processors utilization, the speed up and other
performance measures can be easiy determined. Connected with the makespan, an optimal schedule is
one such that the total execution time is minimized. Other performance variables, such as individual
processor utilization or evenness of load distribution can be considered. As we can see some simple
scheduling problems can be solved to optimality in polynomial time while others can be
computationally intractable.

As we are interested in the scheduling of arbitrary tasks graphs onto a reasonable number of
processors we would be content with polynomial time scheduling algorithms that provide good
solutions even though optimal ones can not be guaranteed.

In the following sections we discuss conventional and evolutionary algorithms to solve this problem
on a set of selected instances.

2. THE LIST SCHEDULING ALGORITHM (LSA)

For a given list of tasks ordered by priority, it is possible to assign tasks to processors by always
assigning each available processor to the first unassigned task on the list whose predecessor tasks have
already finished execution.

Let be:

T={T},....,Tn} a set of tasks,

u: T— (0, o) a function which associates an execution time to each task,

<a partial order in 7 and

L a priority list of tasks in 7.

Each time a processors is idle, it immediately removes from L the first ready task; that is, an
unscheduled task whose ancestors under < have all completed execution. In the case that two or more
processors attempt to execute the same task, the one with lowest identifier succeed and the remaining
processors look for another adequate task. Using this heuristic, contrary to the intuition, some
anomalies can happen. For example, increasing the number of processors, decreasing the execution
times of one or more tasks, or eliminating some of the precedence constraints can actually increase the
makespan. We are seeking for heuristics which are free from these anomalies.



3.USING EVOLUTIONARY ALGORITHMS TO PROVIDE NEAR-OPTIMAL SOLUTIONS

The task allocation problem has been investigated by many researchers [3], [7], [9], [10], [11], [14],
[15]. Several heuristics methods has been proposed, such as mincut-based heuristics, orthogonal
recursive bisection, simulated annealing, genetic algorithms and neural networks. From the
representation perspective many evolutionary computation approaches to the gemeral scheduling
problem exists. With respect to solution representation these methods can be roughly categorized as
indirect and direct representations [1]. In the case of indirect representation of solutions the algorithm
works on a population of encoded solutions. Because the representation does not directly provides a
schedule, a schedule builder is necessary to transform a chromosome into a schedule, validate and
evaluate it. The schedule builder guarantees the feasibility of a solution and its work depends on the
amount of information included in the representation. In direct representation [2], a complete and
feasible schedule is an individual of the evolving population. The only method that performs the search
is the evolutionary algorithm because the represented information comprises the whole search space.

We devised different evolutionary computation approaches to task scheduling. First we addressed
two different representation schemes: direct and indirect. Further work addresses the question of
attempting to improve performance by means of different recombination and mating approaches. This
is the subject of this contribution

3.1. DIRECT REPRESENTATION OF SOLUTIONS

Here we propose to use a schedule as a chromosome. Suppose we have two different schedules, (a) and
(b) (Fig. 1), represented by the following Gantt charts.
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Fig. 1. Feasible schedules represented by Gantt charts.

The precedence relation described in the associated task graph can be properly represented in the
corresponding precedence matrix A, where element a;; is set to 1 if task 7 precedes task j and it is set to
0 otherwise. A gene in the chromosome is the following four-tuple:

<task id, proc id, init time, end time >

where,
task id, identifies the task to be allocated.
proc id, identifies the processor where the task will be allocated.



init time, is the commencing time of the fask id in proc id.
end time, is the termination time of the fask id in proc id.

With this structure the list of the corresponding predecessors tasks is easily retrieved by entering the
column of 4 indexed by the fask id value. The corresponding chromosomes C, and C for schedules
(a) and (b) are:

C,: | 1,1,02 | 2,125 | 3223 | 4235 | 5158 | 6258 [ 7,189 | 81,910 |

Cp: | 1,1,02 [ 2125 | 3223 | 4157 | 5258 | 6,1,7,10 [ 7,1,10,11 [ 8,2,11,12 ]

Fig 2. Two chromosomes specifying schedules corresponding to Gantt charts of figure 1

The use of conventional crossovers such as one-point crossover should generate invalid offspring.
chromosomes. To avoid this problem repair algorithms attempt to build up a valid solution from an
invalid one. This approach is embedded in the knowledge-augmented crossover operator proposed by
Bruns. Here a collision occurs if an operation (task processing) inherited from one of the parents cannot
be scheduled in the specified time interval on the assigned processor. In this case the processor
assignment is unchanged and it is delayed into the future until the processor is available. We adopted
an ASAP crossover approach similar to the Brun’s proposal but modified because delays are avoided,
moving the assignment to the earliest possible time, by random selection of one available processor at
the ready time of the unassigned task. In this way no processor will remain idle if a task is available to
be executed and the precedence constraints are satisfied. The available processor is selected as to
minimize assignment changes in the second parent part of the offspring. In our example if we decide to
apply this operator after the fifth position this decision provides only one alternative and would give us
the following chromosomes and their corresponding schedules, which differs from their parents only in
the assignments of tasks 77and 7.

Cy: | 1,1,02 | 2,125 | 3223 | 4235 | 5158 | 6258 | 7,1,89 | 829,10 |

Cor 10,02 | 2,125 | 3223 | 4157 | 5258 | 6,1,7,10 | 7,1,10,11 | 8,1,11,12 ]
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Fig 3. Feasible offspring schedules for the model task graph (ASAP).

A similar operator was conceived for mutation. If the chromosome undergoes mutation then a search is
done, from left to right, until one gene is modified either by choosing an alternative free processor or



by moving the assignment to the earliest possible time. This would imply modifying subsequent genes
of the chromosome to create a valid offspring (valid mutation).

4. THE EVOLUTIONARY APPROACH

Previous evolutionary approaches to the parallel tasks scheduling problem considered conventional
recombination method known as single crossover per couple (SCPC) [8]. New trends in Evolutionary
Computation point to multirecombination. In earlier works [5], [6], we devised a different approach: to
allow multiple offspring per couple, as often happens in nature. In order to deeply explore the
recombination possibilities of previously found solutions, we decided to conduct several experiments in
which more than one crossover operation for each mating pair was allowed. The number of children
per couple was fixed or granted as a maximum number and the process of producing offspring was
controlled, for each mating pair, in order not to exceed the population size. The idea of multiple
children per couple was tested on a set of well-known testing functions (De Jong functions F;, F, and
Fs [4], Schaffer Fgs [17] and other functions). Best quality results were obtained allowing between 2 and
4 crossovers per couple. These effects were a consequence of a greater exploitation of the
recombination of good, previously found, solutions.

5. EXPERIMENTS AND RESULTS

Current experiments implemented evolutionary algorithms with direct representation of chromosomes,
randomized initial population of size fixed at 50 individuals. Twenty series of ten runs each were
performed on 10 testing cases, using elitism. ASAP crossover under SCPC and MCPC, and valid
mutation were used. In the case of MCPC, tests with 2, 3 and 4 crossovers were run and after the
multiple crossover operation the best created child was selected for insertion in the next generation.
The maximum number of generations was fixed at 100, but a stop criterion was used to accept
convergence when after 20 consecutive generations, mean population fitness values differing in € <
0.001 were obtained. Probabilities for crossover and mutation were fixed at conventional values of 0.65
and 0.001, respectively. The testing cases corresponded to:

Case 1: Task graph G1 (7 tasks and 3 processors)

Case 2: Task graph G2 (9 tasks and 3 processors)

Case 3: Task graph G2 (9 tasks and 4 processors)

Case 4: Task graph G3 (9 tasks and 3 processors, decreasing task’s duration)

Case S: Task graph G4 (9 tasks and 3 processors, eliminating precedence constraints)
Case 6: Task graph G5 (10 tasks and 2 processors)

Case 7: Randomly generated task graph G6 (13 tasks and 3 processors)

Case 8: Randomly generated task graph (25 tasks and 5 processors)

Case 9: Randomly generated task graph (50 tasks and 5 processors)

Case 10: Randomly generated task graph (25 tasks and 5 processors)

In figure 4 shows the task graphs associated with the first 6 cases. The task graphs associated with the
remaining cases are too complex to be inserted in this presentation but are available for any request.
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Opposite to other scheduling problems as Flow shop or Job shop, after an intensive search in the

literature we could find few benchmarks.

The first 6 cases were extracted from the literature [12], [16] and they have known optima. Cases 7 to

10 were generated by random assignment of relations and tasks duration. Their optimum values are

unknown. Nevertheless for these cases initial trials were run to determine the best quasi-optimal

solution under the whole set of contrasted heuristics. This value will be referred in what follows as an

estimated optimal value (the best known value assumed as optimal). Diverse performance variables

were considered to contrast the algorithms. To measure versatility of the algorithms we used:

Alt: Number of alternative solutions. It is the mean number of distinct alternative solutions found by
the algorithm in one run including optimum and non-optimum solutions.

Opt: Number of optimal solutions. It is the mean number of distinct optimum or quasi-optimum
solutions found by the algorithm in one run.

Topt: Total number of optima. It is the total number of distinct optimal solutions found by the
algorithm throughout all the runs.

To measure the guality of solutions provided by the algorithm we used:

Ebest = (Abs(opt val - best value)/opt val)100

It is the percentile error of the best found individual in one run when compared with the known, or
estimated, optimum value opt val. It gives us a measure of how far are we from that opt val.

ME : Mean Ebest. It is the mean value of Ebest, throughout all runs.

BE : Best Ebest. It is the best Ebest found throughout all runs.

Best M : It is the objective (makespan) value of the best found individual in one run.

MBM : Mean Best Makespan. It is the mean value of Best MS.

GBM : Global Best Makespan. It is the best makespan found throghout all runs (opt_val).

Alt Opt Topt
Case LSA | SCPC | MCPC | LSA | SCPC | MCPC | LSA | SCPC | MCPC
1 1 20.9 20.5 1 20.9 20.5 1 194 181
2 | 5.5 3.3 | 1.1 2.1 | 11 21
3 1 5.3 5.9 - 5.3 5.9 - 53 59
4 1 3.1 4.4 - 2.9 4.2 - 29 76
5 1 3.2 2.8 - 1.2 1.4 - 12 14
6 1 8.3 5.8 - 0.1 0.4 - 1 4
7 1 9.9 7.2 - 0 0.1 - 0 1
8 1 19.6 20.4 - 0 0.1 - 0 1
9 1 30.1 20.0 1 0 0 1 0 0
10 1 30.7 13.6 - 0.1 0 - 1 0
Average 1 13.66 | 10.39 0.3 3.16 3.47 0.3 30.1 35.7

Table 1. Versatility of evolutionary approaches versus LSA

Regarding versatility, average results in table 1 shows that as expected SCPC provides a greater
number of alternative solutions (Alt) due to its intrinsic genetic diversity. Regarding the mean number
of optimal solutions found in a run (Opt) MCPC provides a slight superior average behaviour than
SCPC, and also found a greater number of distinct optimal solutions in the whole experiment (Topt).

Regarding quality of results table 2 shows that MCPC outperforms SCPC in each considered
performance variable (ME, BE, MBM, GBM) and the average global best makespan throughout all
instances of the problem (136.1) is the nearest to the average optimal value (132.6) provided by any of
the contrasted heuristics. In only one case LSA outperformed the evolutionary approaches, but



providing only one solution. These facts indicate that the multirecombinated evolutionary algorithm is
a good alternative to find good quality of results.

ME BE MBM GBM Opt

Case SCPC | MCPC | SCPC | MCPC | SCPC | MCPC | LSA | SCPC | MCPC | Value
1 0.0 0.0 0.0 0.0 9 9 9 9 9 9
2 2.5 3.33 0.0 0.0 12.3 12.4 12 12 12 12
3 0.0 0.0 0.0 0.0 12 12 13 12 12 12
4 0.0 0.0 0.0 0.0 10 10 15 10 10 10
5 2.5 4.16 0.0 0.0 12.3 12.5 16 12 12 12
6 8.06 | 451 0.0 0.0 335 324 38 31 31 31
7 9.66 | 9.33 | 6.66 0.0 329 | 328 33 32 30 30
8 10.55 | 11.61 | 647 0.0 |341.6 | 3449 | 375 329 309 309
9 8.27 | 6.81 4.06 | 5.07 6399 | 631.3 | 591 615 621 591
10 13.7 | 8.80 0.0 1.61 | 352.5 | 3373 | 412 310 315 310

Average 5.52 4.85 1.72 0.67 | 145.6 | 143.46 | 151.4 | 137.2 | 136.1 132.6

Table 2. Evolutionary approaches versus LSA. Quality of solutions provided.

A more detailed analysis on each run detected about the versatile that in most of the cases alternative
solutions do not include, or include a low percentage, of non-optimal alternative solutions. That means
that the final population is composed of many replicas of the optimal solutions due to a loss of
diversity. This fact stagnates the search and further improvements are difficult to obtain. To avoid this
behaviour it would be necessary to continue experimentation with different parameter settings.

6. CONCLUSIONS

The allocation of a number of parallel tasks in parallel supporting environments, multiprocessors or
multicomputers, is a difficult and important issue in computer systems. In this paper we approached
allocation attempting to minimize makespan. Other performance variables such as individual processor
utilization or evenness of load distribution can be considered. As we are interested in scheduling of
arbitrary tasks graphs onto a reasonable number of processors, in many cases we would be content with
polynomial time scheduling algorithms that provide good solutions even though optimal ones can not
be guaranteed. The list scheduling algorithm (LSA) satisfies this requirement.

Two variants of evolutionary algorithms were undertaken SCPC and MCPC with direct
representation, to contrast their behaviour with the LSA. Under this representation the above described
ASAP crossover approach showed its effectiveness. Preliminary results on the selected test suite lead to
the following conclusions. Evolutionary algorithms are versatile: supplying not a single, but a set of
optimal solutions, providing fault tolerance when system dynamics must be considered. Moreover, they
are free of the LSA anomalies. Regarding quality of results evolutionary algorithms provide in most
cases better results and show a better average behaviour. When we compare their performance it is
clear that those approaches including multirecombination behave better than the conventional ones.
The algorithm does not guarantee finding optimal solutions for any arbitrary task graph, but show a
better approach to the problem and the possibility of improvements through enhanced evolutionary
algorithms. Further research is necessary to investigate potentials and limitations of evolutionary
approaches to the parallel task scheduling problem.
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