A COMPARISON OF TWO MULTIRECOMBINATED EVOLUTIONARY
ALGORITHMS FOR THE JOB SHOP SCHEDULING PROBLEM

Minetti G., Salto C., Alfonso H.

Proyecto UNLPAM-09/F009'
Departamento de Informatica - Facultad de Ingenieria
Universidad Nacional de La Pampa
Calle 110 esq. 9
(6360) General Pico — La Pampa — Rep. Argentina
e-mail: {minettig,saltoc,alfonsoh } @ing.unlpam.edu.ar
Phone: (02302)422780/422372, Ext. 6302

Gallard R.

Proyecto UNSL-338403>
Departamento de Informatica
Universidad Nacional de San Luis
Ejército de los Andes 950 - Local 106
(5700) - San Luis -Argentina
e-mail: rgallard @unsl.edu.ar
Phone: +54 2652 420823
Fax :+454 2652 430224

ABSTRACT

Over the past few years, a continually increasing number of research efforts have investigated
the application of evolutionary computation techniques for the solution of scheduling problems.
Scheduling problems can pose extremely complex combinatorial optimization problems, which
belong to the NP-hard family.

This work shows how an evolutionary approach using different chromosome representations
with multiplicity feature MCMP can efficiently solve the JSSP.
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1. INTRODUCTION

Scheduling is an economically very important yet computationally extremely difficult task. This
problem can be identified in several different application areas such as production planning, flexible
manufacturing systems, computer design, logistics, communications, and soon on. Scheduling
problems are prominent combinatorial optimization problems. The task of scheduling is the
allocation of jobs over time to limited resources, where a number of objectives should be optimized
and several constraints must be satisfied. A job is completed by a predefined sequence of
operations. The result of scheduling is a schedule showing the assignment of start times and
resources to each operation. The quality of a schedule is measured by means of an objective
function, which assigns a numerical value to a schedule. In our case the completion time of the last
job abandoning the system (makespan) is optimized. The determination of an optimal solution to a
scheduling problem belongs to the class of NP-hard problems, which means than no deterministic
algorithm is known yet for solving the problem in polynomial time. In recent years, several efforts
have been sought to investigate and exploit the application of evolutionary computation techniques
to various scheduling problems[4, 16, 3, 22]. The main difficulty encountered is that of specifying
an appropiarte representation of feasible schedules. The ways of representation can be direct or
indirect [1].

® [ndirect Representation: a transition from chromosome representation to a legal production

schedule has to be performed by a schedule builder prior to evaluation [18, 21, 1, 4].
®  Direct Representation: the schedule produced itself is used as a chromosome. Decoder
procedure is not necessary but specific genetic operators should be designed [17, 14].

In this work, two different representations are used which belong to the indirect group. They are
the decoders and priority rule based representations. Both are domain-independent indirect
representation, then they do not contain auxiliary information of the particular scheduling problem.

The application of the multiple crossovers on multiple parents [8, 9, 10, 11] MCMP have been
successfully applied in uni and multimodal optimization problems. Recently the applicability to
JSSP has been studied in [19].

The next section is devoted to an indirect representation description before mentioned. Later the
multiple crossovers on multiple parents feature is detailed. Finally the performed experiments and
their results are explained.

2. INDIRECT REPRESENTATIONS: DECODERS AND PRIORITY RULE BASED
REPRESENTATION

Under this approach the evolutionary algorithm performs a blind reproduction of encoded
solutions by applying the conventional operators. The domain knowledge remains separated within
the evaluation procedure to determine the fitness.

2.1. DECODERS

In JSSP a job based representation consists of a list of jobs and a schedule is built according to
the sequence of jobs. Here we deal with permutations, and if chromosomes are encoded as
permutations adequate genetic operators, such as partially-mapped crossover, order crossover and
cycle crossover should be used. Nevertheless, another way to face a problem involving
permutations is by the use of decoders. Here a chromosome is an n-vector where the i component
is an integer in the range 1..(n-i+1). The chromosome is interpreted as a strategy to extract items
from an ordered list L and build a permutation. For example if L = (1, 2, 3, 4) then table 1, indicates
the correspondence among chromosomes and permutations.



chromosome permutation
111111 123456
434111 436125
423211 425316

Table 1. Chromosome-permutation correspondence

A decoder is a mapping from the representation space into a feasible part of the solution space,
which includes mappings between representations that evolve and representation that constitute the
input for the evaluation function. This simplifies implementation and produces feasible offspring
under different conventional crossover methods, avoiding the use of penalties or repair actions.
Next sections introduce incest prevention, multiplicity of parents and crossovers, implementation
details and results.

2.2. PRIORITY RULE BASED REPRESENTATION

In [5] a priority-rule-based genetic algorithm is proposed, where a chromosome is encoded as a
sequence of dispatching rules for job assignment and a schedule is built with a priority dispatching
heuristic based on the sequence of dispatching rules. The genetic algorithms are used here to evolve
those chromosomes improving the sequences of dispatching rules. Priority dispatching rules are
frequently applied heuristics for solving scheduling problems due to their ease of implementation
and low time complexity. Giffler and Thompson’s algorithms can be considered as the basis of
priority rule based heuristics [12, 19]. The main problem is to determine an effective priority rule.
In table 1 priority rules commonly used in practice are shown.

For an n job and m machine problem a chromosome is a string of nxm entries (p;, p2, ..., Pnm)-
Each entry, represents one of the prespecified rules. The entry in the i position indicates that a
conflict in the i iteration of the Giffler and Thompson algorithm should be resolved by using the
priority rule p;. Ties are broken by a random choice. More precisely, an operation from the conflict
set has to be selected by rule p;.

Let
PSS, = a partial schedule containing ¢ scheduled operations.
S = the set of schedulable operations at iteration #, corresponding to PS;.
O; = the earliest time at which operation i€ S; could be started.

1
O; = the earliest time at which operation ie S; could be completed.
G the set of conflicting operations in iteration z.

The procedure builder deduces a schedule from a given chromosome (p;, p2,. . ., Pum):

Procedure: builder (Deduce a schedule for Priority-Rule-Based Encoding)

1. Let?=1 and begin with PS; as the null partial schedule and let S; include all operations with no
predecessors.

2. Determine ¢*, = min ;cs; { ¢;}and the machine m" on which (b*t could be realized. If more
than one such machine exists, the tie is broken by a random choice.

3. Form a conflicting set C, which includes all operations i € S, with o; < ¢*, that require
machine m". Select one operation from C; by the priority rule p, and add this operation to PS;
as early as possible, thus creating a new partial schedule PS,, ;. If more than one operation exists
according to the priority rule p;, the tie is broken by a random choice.



4. Update PS,,; by removing the selected operation from S; and adding the direct successor of the
operation to S, Increment ¢ by one.
5. Return to step 2 until a complete schedule is generated.

RULE DESCRIPTION
SPT Shortest Processing Time Select an operation with the shortest processing time
LPT Longest Processing Time Select an operation with the longest processing time

.. Select an operation for the job with the most total

MWR Most Work Remaining L. peration 1 Job Wi
remaining processing time

LWR  Least Work Remaining Selegt an operatif)n for the job with the least total
remaining processing time

MOR  Most Operations Remaining Select an operatior.l f.or the job with the greatest number
of operations remaining

LOR  ILeast Operations Remaining Select an operatior} fpr the job with the smallest number
of operations remaining

EDD Earliest Due Date Select a job with the earliest due date

Select the first operation in the queue of jobs for the

FCSF  First come, first served .
same machines

RND  Random Select an operation at random

Table 2. Dispatch rules for a Job Shop

3. MULTIPLICITY OF CROSSOVERS AND PARENTS (MCMP)

One of the latest contributions in the theoretical field of Evolutionary Computation known as the
multiplicity feature is related to new proposed multirecombination methods:

v" MCPC: Multiple Crossovers per Couple which reinforces the exploitation of features of

previously found (good) solutions.

v MCMP: Multiple Crossovers on Multiple Parents [6,7,8,9] which provides a balance in
exploitation and exploration because the searching space is efficiently exploited (by the
multiple application of crossovers) and explored (by a greater number of samples provided
by multiple parents).

This novel approach was successfully applied to single and multicriteria optimization. Recently it
was also applied to JSSP with decoder representation [18]. It was shown that a greater number of
crossovers for a given number of parents provides better results.

In MCMP we extended the multiparent approach of Eiben [5]. Here he used, initially, three
scanning crossover (SX) methods, which essentially take genes from parents to contribute in building
the offspring. The SX general mechanism assigns a marker to each parent and to the offspring. The
offspring’s marker traverses all of its positions from left to right. At each step parent’s markers are
updated each time a gene is selected. The main characteristics of all gene-scanning procedures are



the update marker mechanisms and the way to choose a marked gene from the parents. Only one
offspring is generated. In our work we choose uniform scanning crossover (USX).This method is a
natural extension of uniform crossover. Consequently, each gene in the child is provided from any of
the corresponding genes in the parents with equal probability.

Multiple crossovers on multiple parents (MCMP), the method used here, allows multiple
recombination of multiple parents under any of the SX variants, expecting that exploitation and
exploration of the problem space be adequately balanced. MCMP provides a means to exploit good
features of more than two parents selected according to their fitness by repeatedly applying one of the
SX variants: a number n; of crossovers is applied on a number 7, of selected parents. From the n;
produced offspring a number 7n; of them are selected, according to some criterion, to be inserted in the
next generation.

4. EXPERIMENTAL TESTS

Two different genetic algorithms were devised using MCMP: one of them with priority rule
based representation (MCMP-PRB), and the other with decoders (MCMP-Dec). Both algorithms
were contrasted for a set of selected instances of the Job Shop Scheduling Problem (JSSP). A total
of 60 different experiments corresponding to different (n;, n;) combinations, USX and multi-
recombination methods were designed. For each instance a series of ten runs was performed. The
evolutionary algorithms used proportional selection for mating and elitism to retain the best valued
individual. The population size was fixed at 50 individuals. For insertion in the next generation the
best child was chosen (n; = 1). The number of crossover and parents were set: 1 < n; <4 and 3 <
ny < 5, respectively. For mutation a big-creep operator, replacing the gene value by another en the
permitted range was used. The maximum number of generations was fixed at 500 and probabilities
for crossover and mutation were fixed at 0.8 and 0.01, respectively. These values were determined
as the best combination of probabilities after many initial trials. For these experiments, except EDD,
all the rules listed in table 2 were used. Six instances [15], with known optimal makespan were
used. They were:

Instance Size Optimum
abz6 10x10 943
1a01 10x5 666
1a06 15 926
lal2 20x%5 1039
lal5 20x5 1207
ft10 10x10 930

Table 3. Instances

The following relevant performance variables were chosen:

Ebest = (Abs(opt_val - best value)/opt_val)100
It is the percentile error of the best found individual when compared with the known, or estimated,
optimum value opt_val. It gives us a measure of how far we are from that opt_val.

Epop = (Abs(opt_val- pop mean fitness)/opt_val)100
It is the percentile error of the population mean fitness when compared with opt_val. It tell us
how far the mean fitness is from that opt_val.



Gbest = 1t identify the generation where the best individual (remained by elitism) were found.

5. RESULTS

Figures 1 to 9 summarise the information on demonstrative instances abz6, la06 and lal2. The
used notation specifies in the horizontal edges the number of crossovers and parents, for example
(1,3) references to the combination of 1 crossover on 3 parents.
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Figure 1. Ebest values from both algorithms for the la06 instance
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Figure 2. Epop values from both algorithms for the la06 instance
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Figure 3. Gbest values from both algorithms for the /a06 instance



Figure 1 shows that all possible combinations (n;, n;) under MCMP-PRB reach the optimum at
least once. This situation is present in only some combinations of MCMP-Dec, but even so errors
are very small (the greater reaches 1%).

Analysing Epop (figure 2), we can see that there is a relation between the number of crossover
applied and the quality of obtained solutions. That is, lower population errors are obtained when the
number of crossover is incremented. When n; = 1, high peaks are observed in both algorithm
(29.00% in MCMP-Dec and 17.38% in MCMP-PBR). In MCMP-Dec, Epop varies in a range from
6% to 29.15% while for MCMP-PRB it ranges from 0.084% to 17.38%. In both algorithm, the final
population turn out to be more and more closer to the optimum as long as n; is incremented. This is
clearly indicated by the wave form of figure 2.

Regarding Gbest,( see fig. 3) MCMP-PRB founds the optimum in a lower number of generations
than MCMP-Dec. In MCMP-PRB, the maximum generation number to find the best value over all
instances does not exceed the minimum achieved by MCMP-Dec.
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Figure 4. Ebest values from both algorithms for the la/2 instance
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Figure 5. Epop values from both algorithms for the la/2 instance
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Figure 6. Gbest values from both algorithms for the la/2 instance



For instance lal2, figure 4 shows that MCMP-Dec never achieves the optimum (but best
individuals are very closed to it with a percentile error varying between 1.15 and 4.8 %) while
MCMP-PBR finds the optimum for every combination (n;, ny) at least once. When n; is augmented
(independently of n,) until 4, MCMP-Dec presents, in general, a clear Ebest decrement.

Regarding Epop, in the figure 5 MCMP-PRB presents a better performance at population level.
Again, as expected both methods have big errors when n; = 1 (27% for MCMP-Dec and 16.8% for
MCMP-PRB) and they decline as n; is incremented. Under MCMP-PRB, the individuals of the final
population are closer to the best found individual for each of the possible combinations (7,, ny).

In figure 6 it is shown that MCMP-PRB reaches the optimum in less generations than MCMP-
Dec. Values of Gbest for both algorithms are closer only when a single crossover is applied.
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Figure 7. Ebest values from both algorithms for the abz6 instance
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Figure 8. Epop values from both algorithms for the abz6 instance
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Figure 9. Gbest values from both algorithms for the abz6 instance



Figure 7 shows that the optimum is not found by both algorithms but while MCMP-Dec stays in
a local optimum for all (n;, n;) combinations (with Ebest equal to 1.0286%) MCPC-PBR Ebest
values are much lower. Under this later approach greater Ebest values do not exceed 7.2%. Best
values are found for n; between 2 and 4.

Again in figure 8 the same systematic behaviour is observed. Epop diminishes as long as n; is
incremeted. Larger Epop changes are produced when n; varies from one to two. From n; = 2, the
Epop values start to be more stable. For example, in MCMP-PRB and 3 parents, Epop values range
from 28.69% to 4.07%. As it happened with Ebest values, MCMP-PRB presents a notable better
behaviour than MCMP-Dec providing better Epop values.

In figure 9 it is shown that MCMP-Dec needs less number of generation to find the best
individual than MCMP-PRB. However, these solutions are not the same quality (see figure 7). This
suggest the convergence to local optima.

For the remaining instances results show the same characteristics. The exception is given for the
lal5 instance, because the optimum is found once by MCMP-PRB in (4,4) combination. Even
though MCMP-Dec finds good suboptimal solutions. The Gbest analysis indicates that the
generation needed to find the best value are similar for both algorithm.

6. CONCLUSIONES

This paper shows two evolutionary approaches to solve the JSSP. Both of them apply a novel
recombination method; the multirecombination of parents by replication of crossover operations.
They essentially differ in the indirect representation adopted. MCMP-PRB express the individual as
a string specifying dispatching rules which are applied when a conflict arises under the Giffler and
Thompson algorithm. The later is used in the evolutionary process to build feasible schedules and
evaluate solutions. MCMP-Dec represents an individual as a decoder and the algorithm is restricted
to search within the space of all permutations. Valid offspring are guaranteed for conventional
operators here and no repair algorithms neither penalty functions are longer necessary.

After a series of trials the analysis of results suggests that:

v" MCMP-PBR reaches the optimum for any (n;, n;) combination for [a06, la01, lal2 and lal5

instances.

v" When instance complexity increases it became harder for both algorithms to find the
optimum and this problem is stronger under MCMP-Dec where a tendency to stagnate the
search is detected.

v Both algorithms find near optimal solutions in less than 3 minutes running time in standard
workstations.

v In general, MCMP-PBR performs better than MCMP-Dec.

At the light of these results future work will be oriented to deep the application of MCMP-PBR
on different sets of JSS problems by using different parameter settings and self-adaptation of (n;,
n,) combinations.
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