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ABSTRACT

A variety of optimization problems in fields such as production operations in manufacturing
industry, parallel and distributed systems, logistics and traffic can be summarized within the general
class of scheduling problems. A common feature of this problems is that they belong to the class of
NP-complete problems, which means that no deterministic algorithm is known yet for solving them
in polynomial time.

The major advantage of evolutionary techniques resides in their ability of providing good
solutions to extremely complex problems in reasonable time.
This work introduces MCMP-PRB to face the Job Shop Scheduling Problem (JSSP). Enhancements
include a multiplicity feature (MCMP) and a further hybridization with a conventional heuristic
know as the priority dispatching rule.

Keywords: evolutionary algorithms, chromosome representation, multiplicity, scheduling,
optimization.
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1. INTRODUCTION

Due to its complexity [12] and reflecting the industrial relevance of this application domain,
a variety of evolutionary schedulers based on genetic algorithms have been reported in the literature
in the past [1, 3, 10, 13, 14, 15, 16, 17, 20, 21]. In general, the task of scheduling is the allocation of
jobs over time when limited resources are available, where a number of objectives should be
optimized, and several constraints must be satisfied. A job shop can be seen as a multi-operation
model where jobs follow fixed routes, but not necessarily the same for each job. Here there exists a
facility that produces goods according to specified production plans under several domain-
dependent constraints. Job Shop Scheduling (JSS) attempts to provide optimal schedules. Common
variables to optimize are total completion time (makespan), machine idleness, lateness, earliness
and total weighted completion time. According to this variables different objectives can be devised.

The model considered here assumes that the system consists of m different machines and n
jobs. Only one job may execute on a machine at a time. All schedules and jobs are non-preemptive.
Jobs can have distinct priorities and all of them are available at production initiating time. Each job
visits all machines, only once, following a predetermined sequence of machines, called a route.
Consequently a job can be seen as composed by various steps, called operations. Our problem is to
find a schedule of minimum makespan.

An appropriate representation associated with a set of genetic operators is of utmost
importance when designing an evolutionary algorithm for the JSSP. In this way the individuals
created during the evolutionary process will produce feasible schedules.

In [2] a genetic algorithm with priority rule based representation is proposed. Here a
chromosome is encoded as a sequence of dispatching rules for job assignments and a schedule is
built with a priority dispatching heuristic based on the sequence of dispatching rules. The genetic
algorithms are used here to evolve those chromosomes improving the sequences of dispatching
rules.

One of the latter contributions in the theoretical field of Evolutionary Computation known
as the multiplicity feature is related to new proposed multi-recombination methods:

= MCPC: Multiple Crossovers per Couple which reinforces the exploitation of features of

previously found (good) solutions.

= MCMP: Multiple Crossovers on Multiple Parents [6,7,8,9] which provides a balance in

exploitation and exploration because the searching space is efficiently exploited (by the
multiple application of crossovers) and explored (by a greater number of samples provided
by multiple parents).

This novel approach was successfully applied to single and multicriteria optimization.
Recently it was also applied to JSSP with decoder representation [18]. It was shown that a greater
number of crossovers for a given number of parents provides better results.

This presentation discusses the use of multiple crossovers on multiple parents on a priority
rule based representation (MCMP-PRB), details of implementation and results are also shown.

2. PRIORITY DISPATCHING RULE HEURISTIC AND MCMP-PRB

Priority dispatching rule heuristics are frequently applied to solve scheduling problems due
to their ease of implementation and low time complexity. Giffler and Thompson’s algorithms can
be considered as the basis of priority rule based heuristics [12, 19]. The main problem is to
determine an effective priority rule. These heuristics are greedy ones in the sense that at each
iteration an operation is selected between the available ones and scheduled as soon as possible in
the respective machine. The choice of the next operation to be scheduled is done following a
priority function (rule). Several priority rules have been proposed for the job shop scheduling:



SPT, Shortest Processing Time, select an operation with the shortest processing time

LPT, Longest Processing Time, select an operation with the longest processing time

MWR, Most Work Remaining, select an operation for the job with the most total remaining

processing time

v' LWR, Least Work Remaining, select an operation for the job with the least total remaining
processing time

v' MOR, Most Operations Remaining, select an operation for the job with the greatest number of
operations remaining.

v' LOR, Least Operations Remaining, select an operation for the job with the smallest number of

operations remaining

EDD, Earliest Due Date, select a job with the earliest due date

FCSF, First Come First Served, select the first operation in the queue of jobs for the same

machines

v' RND, Random, select an operation at random

AN

AN

Dorndorf and Pesch [2], proposed an evolutionary algorithms for the job-shop scheduling
problem. That algorithm uses the priority-rule-based representation, and the well-known Giffler
and Thompson algorithm was incorporated into the evolutionary algorithm. Here, the evolutionary
algorithm is used to evolve a sequence of priority dispatching rules and the Giffler and Thompson
algorithm is used to deduce a schedule from the encoding of priority dispatching rules.

For an n job and m machine problem a chromosome is a string of nxm entries (p;, pa, ...,
pnm)- Each entry represents one of the prespecified rules. The entry in the i" position indicates that
a conflict in the i™ iteration of the Giffler and Thompson algorithm should be resolved using the
priority rule p;. Ties are broken by a random choice.

Let

PSs, = a partial schedule containing ¢ scheduled operations.

S; = the set of schedulable operations at iteration ¢, corresponding to PS,.
O; = the earliest time at which operation ie S; could be started.

Oi = the earliest time at which operation i€ S; could be completed.

o = the set of conflicting operations in iteration z.

The procedure builder deduces a schedule for each chromosome (p;, p2,...., Pum):

Procedure: builder (Deduce a schedule for Priority-Rule-Based Encoding)

1. Lett=1 and begin with PS; as the null partial schedule and let S; include all operations with no
predecessors.

2. Determine ¢)*l = min ;cs; { ¢;}and the machine m" on which q)*t could be realized. If more
than one such machine exists, the tie is broken by a random choice.

3. Form a conflicting set C, which includes all operations i € S, with o; < ¢*, that require
machine m". Select one operation from C; by the priority rule p; and add this operation to PS;
as early as possible, thus creating a new partial schedule PS,, ;. If more than one operation exists
according to the priority rule p,, the tie is broken by a random choice.

4. Update PS,,; by removing the selected operation from S; and adding the direct successor of the
operation to S, Increment ¢ by one.

5. Return to step 2 until a complete schedule is generated.




Figure 1 depicts the structure of the proposed algorithm.

Procedure: MCMP-PRB
begin

k< 0O;

initialize P(k);

builder(P(k)); //generate a schedule and assign a fitness value

while not (termination condition) do
recombine using MCMP on P(k) and mutate to produce C(k);
builder(C(k)); // generate a schedule and assign a fitness value
select P(k+1) from P(k) and C(k);
k—k+1;

end

end

Figure 1. Evolutionary Algorithm with the builder procedure.

where builder(P(k)) is the procedure to deduce a schedule for Priority-Rule-Based Encoding.
To clarify an example of a three-job three-machine problem is presented in the table 1.

Processing Time Machine Sequence
Operations Operations

Job 1 2 3 Job 1 2 3
j ] 1 5 3 ] bi niy nip ms
j2 4 6 1 ] 2 mj ms mp
j 3 3 2 3 ] 3 nip nj ms

Table 1. Example of Three-Job Three-Machine Problem

Assume the following rules: SPT, LPT, MWR and LWR. Consider the following
chromosome [2 1334411 3], where 1 stands for rule SPT, 2 for rule LPT, 3 for rule MWR and 4
for LWR. The operations are indicated by 0;,, (Where j indicates the job, o indicates the operation

of job j, and m indicates the machine to perform this operation). At the initial step, we have

St ={o11,011,0312 }
¢, =min {1,4,3}=1
m* =1

Ci ={om,o0um}

Now operations 0;1; and 017 compete for machine m,;. Because the first gene in the given
chromosome is 2 (which means LPT priority rule), operation 221 is scheduled on machine m;. After

updating the data, we have

S2 ={ 011,003,032 }
¢, =min {5, 10,3} =3
m* =2

G ={ o312}



Operation 0313 is scheduled on m,. After updating the data, we have

S3 ={ on1,0203, 03 }
¢, =min {5,10,9} =5
m*=1

Cs ={on1,031}

Operations o1;; y 031 compete for machine m;. Because the third gene in the given
chromosome is 3 (which means MWR priority rule), operation o111 is scheduled on machine m;.
These steps are repeated until a complete sechedule is deduced from the given chromosome.

3. MULTIPLICITY OF CROSSOVERS AND PARENTS (MCMP)

In his multiparent approach Eiben [5] used, initially, three scanning crossover (SX) methods,
which essentially take genes from parents to contribute in building the offspring. The SX general
mechanism assigns a marker to each parent and to the offspring. The offspring’s marker traverses all of
its positions from left to right. At each step parent’s markers are updated each time a gene is selected.
The main characteristics of all gene-scanning procedures are the update marker mechanisms and the
way to choose a marked gene from the parents. Only one offspring is generated. In our work we
choose uniform scanning crossover (USX). This method is a natural extension of uniform crossover.
Consequently, each gene in the child is provided from any of the corresponding genes in the parents
with equal probability.

Multiple crossovers on multiple parents (MCMP), the method used here, allows multiple
recombination of multiple parents under any of the SX variants, expecting that exploitation and
exploration of the problem space be adequately balanced. MCMP provides a means to exploit good
features of more than two parents selected according to their fitness by repeatedly applying one of the
SX variants: a number n; of crossovers is applied on a number 7, of selected parents. From the n;
produced offspring a number 7n; of them are selected, according to some criterion, to be inserted in the
next generation.

4. EXPERIMENTS AND RESULTS

An EA with rule based representation and MCMP was applied on a set of selected JSSP
instances. For each instance a series of ten runs was performed. Experiments corresponded to
different (n;, ny) combinations, SX and multi-recombination methods. The evolutionary algorithms
used proportional selection for mating. Elitism to retain the best valued individual was
implemented. Population size was fixed at 50 individuals. For insertion in the next generation the
best child was chosen (n3 = 1). Number of crossovers and parents were set to: 1 <n; <4 and 3 <n;
< 7, respectively. For mutation a big-creep operator, replacing the gene value by another in the
permitted range was used. The maximum number of generations was fixed at 500 and probabilities
for crossover and mutation were fixed at 0.8 and 0.01, respectively. These values were determined
as the best combination of probabilities after many initial trials. For those experiments the following
priority rules were used: SPT, LPT, MWR, LWR, MOR, LOR, FCSF and RND. Seven instances
[14], with known optimal makespan were used. They were:



Instance Size Optimum
abz6 10x10 943
la0l 10x5 666
la06 15x5 926
lal2 20x%x5 1039
lal5 20x5 1207
ft06 6x6 5
ft10 10x10 930

Tabla 2: Instances
The following relevant performance variables were chosen:

Ebest = (Abs(opt_val - best value)/opt_val)100
It is the percentile error of the best found individual when compared with the known, or
estimated, optimum value opt_val. It gives us a measure of how far we are from that opt_val.

Epop = (Abs(opt_val- pop mean fitness)/opt_val)100
It is the percentile error of the average individual (population mean fitness) when compared
with opt_val. Tt tell us how far the mean fitness is from that opt_val.

Tables 3, 4, 5, and 6 show in detail results for the [la06 instance.

0.00000000{ 0.00000000{ 0.00000000] 0.00000000{ 0.00000000
0.00000000{ 0.00000000{ 0.00000000] 0.00000000{ 0.00000000
0.00000000{ 0.00000000{ 0.00000000] 0.00000000{ 0.00000000
4 Cross | 0.00000000] 0.00000000{ 0.00000000] 0.00000000( 0.00000000

Table 3. Ebest values for each (n;, n,) combination

1 Cross | 0.032397408| 0.05399568| 0.00000000] 0.00000000] 0.00000000
0.00000000| 0.00000000| 0.00000000{ 0.00000000| 0.00000000
0.00000000[ 0.00000000[ 0.00000000{ 0.00000000] 0.00000000
4 Cross | 0.00000000[ 0.00000000{ 0.00000000| 0.00000000[ 0.00000000

Table 4. Mean Ebest values for each (n;, n;) combination.

In table 3 we can observe that the optimum value was found in every case. Moreover, table 4
shows that except for n; = 1 and n; between 3 and 4, all runs found the minimum makespan. Even
in these worst cases mean percentile error values are very low. This fact demonstrates that for this
instance the algorithm has high performance.



Cross | 13.79490062( 14.88442626| 17.38191379| 15.12938239| 14.76233867

Cross | 5.35742506 5.87388303| 5.66669343| 5.15224994| 5.56340243
Cross | 0.92650531 0.83226955| 0.45707971| 0.64432496| 0.55061516
Cross | 0.17751455| 0.08467163| 0.08467163| 0.17751455| 0.08467163

Table 5. Epop values for each (n;, n,) combination.

1 Cross | 16.67952857| 17.9265597| 18.20755521| 18.05584662| 17.31246756
6.95102552| 6.81043389| 7.15795444| 7.63706185 8.39825058
3.41570357| 2.96842072| 1.79691919| 2.54193253| 4.36856278
4 Cross | 0.60771615] 0.83697745| 0.85830443| 0.61189655 0.74552255

Table 6. Mean Epop values for each (n;, n,) combination.

Tables 5 and 6 show a regular behaviour when the multiplicity feature is applied. Observe
that when we pass from the application of a single crossover to multiple crossovers Epop is
drastically reduced, indicating that the final population is concentrated around the best found
individual. This effect is incremented as long as n; is augmented independently of the n, value. A
similar behaviour was detected on instances la0l, la02 and ft06 were every (n;, n;) combination
have found the optimal value in at least one opportunity. In particular for la06 and lal2 when 2 < n;
< 4, always the best value is obtained independently of the number of parents used. Figure 2
summarizes minimum, mean and maximum FEbest values for each instance. Here, this behaviour is
confirmed for instances la0l, la06, lal2 and ft06, while for the remaining instances the optimal
value is not reached.

Ebest
20

15
10
5
0 T —4 1

abz6 1a01 1a06 la12 la15 ft06  ft10

|+Min ~—i— Average —— Max |

Figure 2. Minimum, Average and Maximum Mean Ebest values for each instance of the JSSP.

Figues 3 to 8 summarize Ebest and Epop mean values for different n; values through all
instances.
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Figure 7. Average Mean Epop for different n; values

In figures 3, 4 and 5 it can be in general observed that percentile error of the best found
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Figure 4. Average Mean Ebest for different n; values
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Figure 6. Minimum Mean Epop for different n; values
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Figure 8. Maximum Mean Epop for different n; values

individuals decrease as long as the number n; of crossovers is increased.

Figures 6, 7 and 8 indicate a similar behaviour in all instances; a reduction of the percentile
error of the average individual in the final population as long as the number n; of crossovers is
increased. It also can be seen an abrupt decay in this error when we pass from 1 to 2 crossovers and
then the reduction persists gradually when n; is augmented. It worth to remark that for n; = 1 Epop
ranges within very high values, from 17% to 42%. For instances la01, la02 and ft06 the individuals
in the final population are centred around the optimum differing by a negligible value (see figures 3

and 6).
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Figure 9. Minimum Mean Ebest for different n, values  Figure 10. Minimum Mean Epop for different n, values

From figures 9 and 10 average minimum values of Ebest and Epop suggest that better
performance is achieved when 3 <n, < 5.

5. CONCLUSIONS

This contribution introduces MCMP-PRB a hybrid multirecombinative evolutionary
algorithm using both multiple crossovers on multiple parents and priority dispatching rules, a
conventional heuristic, to solve the JSSP. By means of the rule based representation MCMP can be
applied creating valid offspring after each recombination operation. Repair algorithms or penalty
functions are no more needed, as under other evolutionary approaches. The novel approach was
tested on a set of instances of varied complexity. After this preliminary experiments we can
conclude that MCMP-PRB provide optimal solutions on most of them. It is remarkable also the fact
that the composition of the final population guarantees the supply of many near optimal solutions
which can help facing changes in system dynamics. As a consequence of this promising results
future work is addressed to improve the algorithm by self-adaptation to automatically apply the
suitable (n;, n,) combination on each step of the evolutionary process.
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