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Abstract 
 

Evolutionary Algorithms (EAs) became a powerful tool for environments where an 
optimization is needed or where an adaptive behaviour of a system is necessary. 

Computer Systems have been evolving rapidly during the last five decades. Since the 70’s, 
due to improvements in communication and computer hardware, an evolution of computer systems 
based on networked workstations has been taking place. This advance triggered present distributed 
systems. At each stage of this evolution, resource management was designer’s main concern. 
Decisions on how to allocate a limited set of expensive resources and how to schedule arriving tasks 
with diverse requirements were based on various heuristics, attempting optimization of, frequently 
conflicting objectives, from the user and system perspectives. 

This paper discusses feasible areas where EAs can be efficiently applied to solve resource 
management problems in Computer systems, show two feasible implementations and introduces 
last improvements to enhance EAs performance. 
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1. INTRODUCTION 
Computer Systems have been evolving rapidly during the last five decades. Between the 

50’s  and 60’s the emphasis was put on centralized computer systems with increasing  power. 
Number crunching was the main goal for early scientific computing systems. Also, massive data 
processing was perceived as a major task. Consequently, the technological improvements aimed at 
the increase of secondary storage facilities. A development on operating systems resulted in a 
change: from serial processing to batch systems and time sharing. Also a shift from 
monoprogramming to multiprogramming and later from monoprocessing to multiprocessing were 
the main changes observed at that time. 

Since the 70’s, due to improvements (cost-wise and technological) in communication and 
computer hardware, an evolution of computer systems based on networked workstations has been 
taking place. This advance triggered present distributed systems. All these changes were possible 
due to (1) improved hardware technology, from vacuum tubes and relays to VLSI, and (2) software 
development, from absolute coding to programming environments and methodologies. At each 
stage of this evolution, resource management was designer’s main concern. Decisions on how to 
allocate a limited set of expensive resources and how to schedule arriving tasks with diverse 
requirements were based on various heuristics, attempting optimization of, frequently conflicting 
objectives, from user and system perspectives. 

The inclusion of intelligence into computer systems was a long overdue project. When  the 
results of AI research became widely applicable, Blair et al. [1] and Nicol et al. [10] proposed a 
holistic approach for operating systems. Their approach was based on insertion of an expert system 
into the operating systems kernel to provide some degree of automatic decision making. These 
papers encouraged us to experiment with a new approach to intelligent resource management in 
computer systems: evolutionary algorithms, used as intelligent tools, instead of an expert or 
knowledge based system. 
Under this proposal the following questions arise: 
 Are EAs applicable, as intelligent tools,  to problems in Computer System Resource 

Management? 
 Can they compete with conventional approaches? 
 Which are the most suitable problem sets?  
 Dynamic or static problems? 
As a consequence of these open questions the work deepened on the application field by analysing 
the ability of new proposed enhanced variants of evolutionary algorithms to solve a selected set of 
computer systems problems. The following sections discuss these aspects. 
 
2. FEASIBLE APPLICATION OF EVOLUTIONARY ALGORITHMS TO RESOURCE  
     MANAGEMENT IN COMPUTER SYSTEMS 
 

As current trends in computer systems are oriented to multicomputer systems, our focus 
aims at these environments. Since resource management in computer systems is a wide area for 
research, it is first necessary to detect those areas where the application of evolutionary algorithms 
could be feasible by providing a timely solution to a problem. We caracterized the suitable problem 
sets as belonging to two main groups as follows: 
a) Those that being static have a priori information on main system characteristics. Here EAs 

provide a set of solutions off line. The following are some examples: 
 Finding a shortest (or minimum cost) path between two nodes in a computer network. 

Existing connectivity and link costs are known in advance. 



 Finding a cluster allocation distribution with minimum communication cost to allocate 
parallel program components in a distributed  environment. The number of components, how 
they interact, which files they access, which  is the input/output data transfer volume and 
other features are statistically  known in advance. 

 Scheduling of parallel tasks in parallel supporting platforms. The associated task graph and 
the number of available processors are known  in advance. 

Even in the case of static problems when EAs are used, the dynamical behaviour of the system 
can be faced through the set of alternative solutions provided. 

b) Those that being dynamic or not having a priori information on main system features, are 
related with computer system environments where the response is not subject to critical time 
constraints. Here EAs provide a set of solutions on the fly. As examples of this kind of problems 
we have: 
 Dynamic scheduling of independent tasks arriving in unknown  order to a parallel computer 

system. 
 Dynamic load balancing in distributed environments. 
In these cases the EA is self-adapted to the system response and a sort of predictive ability is 
inserted in the EA. 

Consequently, various problems such as routing, cluster allocation, parallel task scheduling 
and load balancing, were considered as suitable areas. All the applications showed clearly the 
benefits of the evolutionary approach, which (when possible) was contrasted with conventional 
approaches. Two of these problems, load balancing and  cluster allocation, are discussed in some 
details in the following  sections. 
 
3. ENHANCED EVOLUTIONARY ALGORITHMS FOR LOAD BALANCING 
 

Load balancing algorithms attempt to improve systems performance through process migration. 
Here we present a hybrid strategy for load balancing in distributed systems, which exploits the benefits 
of evolutionary and  predictive approaches [3]. In order to decrease the communication traffic in a local 
area network typically generated by load balancing schemes, we sought for a reduction in  the number 
of requests done by an overloaded node. The predictive strategy applied to achieve this goal uses the 
knowledge attained by each node, through its previous experience. 

A set of processors interconnected by a Local Area Network (LAN) is a classical example of a 
Distributed System. The model considered here consists of a set of homogeneous and independent 
nodes: hardware and software are similar for each node and every node has its own processing 
resources and information storage. In such a system, users from different sites  create autonomous 
processes which occasionally need synchronisation to share critical resources. The workload in a node 
embodies a set of local and possibly external demands on all or some of its resources. This global 
demand varies during the execution of processes and could lead the system to an imbalanced state 
where some of the nodes are overloaded while others are underloaded or even idle. 

Previous works [8], [3] showed  how dynamic load balancing strategies based on 
evolutionary algorithms achieved improved results when confronted with traditional load balancing 
algorithms. In those cases the enhancements came as a result of decreasing the number of migration 
requests from an overloaded node. Towards an improvement in performance related to a more 
balanced use of resources, the proposed system uses, in a dynamic and automated way, an 
evolutionary load balancing strategy. This section shows improved results achieved by applying a 
predictive approach based on the knowledge gained by each node through the evolutionary process. 
In this strategy the number of migration requests is notably reduced and, consequently, better mean 
response times are obtained. The proposed strategy  is: 

 



 Dynamic. Decisions on processor allocation are made during execution 
 Non-preemptive. Process migration is not allowed once the process has begun execution 
 Decentralized.  Each node has decision making capability. 
As the model assumes independence of  processes the goal of the strategy is to minimize the mean 
time of processes in the system. This performance variable will be called mean response time. 
Dynamic load balancing strategies are prone to instability, a problem that arises when processes 
waste considerable extra time due to continuos process migration. In order to minimize this 
overhead evolutionary algorithms are used expecting an adaptive behaviour of the strategy on 
response to changes in the system. This way the requests are sent to those nodes more inclined to 
accept them. Besides the classification given above load balancing strategies can be categorized as  
sender-initiated, this means that the migration request is done by the overloaded node, or  receiver-
initiated, where idle or underloaded nodes request for processes to be processed. We have 
implemented a sender initiated strategy. 
 
3.1.  SYSTEM’S DESIGN  
 
 The various components implementing the load balancing strategy in each node are sketched 
in Fig. 1. 
 
 
 
 
 
  
 
 
 
 
 
 
INIT is executed only once at node bootstrapping, and it is in charge of activating the three central 
system modules which in turn manage local or external requests and load balancing. 
BALANCE_ MOD implements the load balancing strategy. In the simulated system, besides an 
evolutionary algorithm, it contains diverse load balancing algorithms for performance studies. 
REMOTE_REQ_ADM has two main tasks: 
• (1) To reply to migration requests from other nodes giving information about the local loading 

state (number of waiting processes, or ready queue length). Also, when an immigrated process 
finishes execution in the local node, it informs about this event to the (original) sending node. 

• (2) To activate a child server process when a remote process from an overloaded node arrives 
and the local node is idle or in a low loading condition (queue_length  ≤ 2). 

MIGRATED_PROC_SERV executes locally an immigrated process and, on completion,  signals 
(3) the event to REMOTE_REQ_ADM . 
LOCAL_PROC_ADM is responsible, at local process creation time, for verifying the local node 
load balancing state by comparing the current queue length to a prefixed threshold to determine 
overloading. Depending on comparison results one of the following actions is undertaken: 
• If queue_length ≤ threshold  then the task is locally executed and a child process, 

LOCAL_EXEC_SERV is activated (4). 
• Otherwise, invokes (5) BALANCE_MOD, which indicates (6) if the new process can be 

migrated and to which node. If a receiving node can be found then a REM_EXEC_SERV 
process is created (7). On the contrary, local execution is accepted and it behaves as above  

 

Fig. 1. Load Balancing Strategy Modules 
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LOCAL_EXEC_SERV is in charge of the local execution of a process.  
REM_EXEC_SERV is responsible for migrating (8) the process (indicated by 
LOCAL_PROC_ADM) to the receiving node (pointed by BALANCE_MOD). Finally, it blocks 
itself waiting for a reply (9) to confirm the remote execution completion. 
 
3.2. LOAD BALANCING STRATEGIES DESCRIPTION 
 
 Two strategies are describe now.  
 
Evol_St_1 

 
When a local created task needs to be migrated, the strategy proceeds following three steps: 

1) The local TASK_DISPATCHER (a system node component) sends a migration request to a 
subset of network nodes asking about their willingness to accept a migrated task. 

2) Target nodes, depending on their own load status,  reply with an accepting (x) or rejecting (0) 
message. Where  0 <  x  ≤ 2 indicates the queue_length of the replying node. 

3) If more than one node sends an accepting message then the TASK_DISPATCHER chooses, for 
migration, the node with fewer processes in its ready queue. 

The strategy is implemented following an evolutionary approach. For this purpose, each node has 
its own population on which the genetic operators of selection, crossover, mutation and elitism are 
applied [6], [7]. Each chromosome in the population is coded  as a binary vector [p1,....,pm], 
representing the set of processors composing the network. The semantics for each possible value of  
pi,
• If  p

 is the following: 
i = 1 then pi

• If  p
 is a possible candidate to send the next migration request. 

i = 0 then pi 
When LOCAL_PROC_ADM determines that the local node is overloaded, it issues a migration 
request to BALANCE_MOD and then remains ready for new requests. The module 
BALANCE_MOD selects  an individual from its population with a probability proportional to its 
fitness and sends migration requests to the nodes indicated by the vector (chromosome), then it 
blocks itself waiting for a response. This request is sent to each candidate node. When replies arrive 
then: If more than one accepting reply appears, the module decides to migrate the task to the less 
loaded node and in case of equal queue_length values a random selection is done. If none of them 
accepts, then it asks to LOCAL_PROC_ADM for local execution. After asking for migration or 
local execution, the BALANCE_MOD  computes the fitness for each chromosome and creates a 
new population from the old population. The genetic operators applied during this stage are elitism, 
two point crossover and uniform mutation. The learning process is performed through the fitness 
function which looks at the rewards  given to each individual for determining their corresponding 
fitness values. Rewards are proportional to the number of hits  when requesting migration: 

 is not a candidate. 

Reward =  # of accepts / # of requests 
Evol_St_2 
 
 The predictive evolutionary strategy: 

• profits from the knowledge the node has (subset of  nodes prone to receive requests) 
but 

• for the sake  of efficiency,  selects each time no more than 50% of the candidates. 
For deciding to which nodes to send a request to, predictions were done using the technique known 
as Weighted Exponential Average [11]. This technique permits to predict a value on the basis of 
values appeared during the whole elapsed time. In our case, values represent the acceptance hit ratio 



for the processor’s previous requests. For an arbitrary processor, the simplest average to be used for  
prediction of its response is given by: 

                                                     ∑
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where: 
V n+1 
P

 :  predicted processor’s response (accept or reject) for the next migration request. 
i      :   is the effective processor response to the  ith

In equation (1) an equal weight is given to each previously observed value. In our model, due to the 
dynamic behaviour of the system, it is appropriate to give a larger weight to more recent history. 

 request 

Then using the weighted exponential average we have: 
                                     1    0  ,)1(     1 ≤≤−+=+ ααα nnn VPV                            (2) 
In equation (2), when using any constant value for α, all observed values contribute to the predicted 
value but those that are further in the past have lower weight. The parameter α permits to control 
the relative weight to be given to recent or past history. If  α is equal to 0 then recent history is 
considered irrelevant (present conditions are transient), otherwise, if α is equal to 1 then recent 
history is important and past history is obsolete. In the first step of the previous section, under this 
new approach, BALANCE_MOD is not sending a request to each processor with its corresponding 
bit set in the chromosome. Predictions are done to determine the best subset of processors (50% of 
the candidates at most) for sending migration requests. To implement this policy for m processors,  
it was only needed to add a m-entry table. Each entry storing the corresponding Vn value while Pn

 

 , 
the sample value, was obtained from the node response. 

3.3. EXPERIMENTAL TESTS, SIMULATION SOFTWARE AND RESULTS 
 
The distributed system implementing the strategy was simulated using a computer systems 
modelling tool, PARASOL [9], which is oriented to modern distributed or parallel computer 
systems. PARASOL  consists of a set of libraries written in C which, besides typical facilities found 
in other discrete simulation systems, offers a set of  constructors to define system hardware and 
network topology. PARASOL  runs under UNIX-like operating systems. 
The distributed system was simulated with the following parameters. 
• Number of nodes: 10, 16 , 20, and 25. 
• Each node execute concurrent processes under a round-robin discipline maintaining a ready 

queue. 
• Network topology: Ethernet. 
• Process type: All of them are CPU intensive. 
• Service time: fixed for all processes at 1 sec. 
• Process size: fixed for all processes at 64 Kb. 
• Transfer rate: 10 Mbits. 
• Process arrivals follow a Poisson distribution of mean λ. In order to analyse diverse workload 

levels different values for λ were used. 
• The simulation is completed when 10,000 processes were executed  in the network nodes. 
For the evolutionary algorithm the following parameter settings were used. 
• Population size in each node: 10 individuals. 
• Crossover probability: 0.5 
• Mutation probability : 0.005 
These parameter values were determined after many experimental runs for tuning the evolutionary 
algorithm. As mentioned earlier, LOCAL_PROC_ADM  determines if an arriving task can be 



locally processed based on its ready queue length. The loading state of a node was determined 
according to the following criteria: 
• queue_length > 4  ⇒ overloaded 
• 3 ≤ queue_length ≤ 4 ⇒  medium load 
• queue_length ≤   2  ⇒  underloaded. 
Experiments were carried out on three different scenarios, using 1/λ as mean interarrival time with  
λ = 0.1, 0.2, ...., 0.9, 1. For Evol_St2 after various preliminary runs, α=0.5 and an initial predicted 
valueV0
• Scenario 1: 40% of the nodes are receiving processes with equal arrival rate while in the 

remaining nodes arrivals do not occur. This scheme allows simulation of a clearly imbalanced 
situation. 

=0 were used for all nodes. Both strategies are sender-initiated. 

• Scenario 2: 40% of the nodes receive processes at a low rate (λ) while the remaining 60% 
receives processes at a higher rate  (2λ). 

• Scenario 3:  Each node i  has its own arrival rate which  is established as a function of time  
λi

Scenario 1 attempted to reflect a real situation, which frequently occurs, where the workload is not 
evenly distributed. Scenarios 2 and 3, are similar in the sense that arrivals occur in every node, but 
scenario 3 differs reflecting time depending arrival rates as often occurs in a computer network. 
Next we will describe simulation results under each considered scenario with different number of 
nodes in the system. Figures 2 and 3 and table 1, clearly show that both strategies improve the mean 
response time (MRT) but under Evol_St_2 the system behaves better. A similar behaviour was 
observed for networks of 10, 16 and 25 nodes. For higher workload levels Evol_St_2 reduces MRT 
values nearly to half of the corresponding values under Evol_St_1. For scenario 3, the same global 
results analysed in scenario 2 are obtained. In all cases, Evol_St_2 obtains remarkable inferior 
values for MTR while the number of requests is reduced in an amount ranging from 20% and 30%. 
In the case of a network with 10 nodes it can be seen that, as expected, the number of failed 
migrations (FM) increases, although this does not impair performance significantly. On the 
contrary, corresponding MRT values resulted better than under Evol_St_1. It is worth noticing that, 
for such a small network the chromosome size is 10 and by reducing to 50% the number of nodes 
receiving requests a broadcast to at most 5 nodes will be done. Consequently, the number of failed 
migrations increases.  When the number of nodes is augmented, under Evol_St_2 the number of  
failed migrations decreases and behaves similar to Evol_St1 on this respect. But concerning to the 
number of requests the latter showed an increment  while the former exhibited a considerable 
reduction. A larger number of nodes helps the learning process in each node, because the 
chromosome size augments. This fact provides a greater genetic diversity in the population making 
the task easier for the evolutionary algorithm. Consequently, a chance for a better initial 
chromosome also improves prediction ability. 
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Fig. 2. Scenario 1, 20 nodes , Mean response time and Number of Requests. 
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Number of 
Nodes 

Evol_Est_1 Evol_Est_2 
MRT NR FM MRT NR FM 

10 11.49 21877 10 4.13 9117 745 
16 18.95 33847 2 5.40 13621 3 
20 29.05 47071 0 9.92 20332 0 
25 37.44 56029 0 13.03 24965 0 

 
 
4. ENHANCED EVOLUTIONARY  ALGORITHMS  FOR THE CLUSTER ALLOCATION PROBLEM  
 
 In a distributed system, users migrate to different machines, users invoke different programs 
and users and programs need distinct data files to satisfy their expectations. The problem of 
allocating a parallel program in a particular system can be seen as the  allocation of the program 
components in a set of available clusters such that traffic costs are minimized. 

 
 
It is  assumed that: 
 A parallel program can be divided into M migrating modules. 
 Each migrated module generates a number of output data blocks (transient or partial results) to 

the node where it is residing. These blocks are to be transferred to the program residing cluster 
when computation completes. 

Table 1. Scenario 3 Mean response time, Number of Requests and Migrations Failed. 
 

 

The model 
Given a user initiated parallel program, which 
during execution accesses to a set of files in a 
distributed system, allocate the program parallel 
tasks (modules) in order to minimize intercluster 
traffic. Figure 4 shows the final allocation of 
parallel tasks after the strategy was applied. The 
parallel program, comprising ten tasks, was 
residing in workstation Wp  of cluster 5, initiation 
took place from  workstation Wi of cluster 1, ten 
files were distributed throughout the system and 
the parallel tasks, were allocated to nine available 
clusters following the minimization criteria. 

Fig. 4. A possible layout of parallel tasks within clusters. 
 

Fig. 3. Scenario 2, 20 nodes , Mean response time and Number of Requests. 



 K files, distributed throughout the system and involved in the computation, are accessed by the 
modules. 

 The current system state provides N available clusters. 
Then we need the following data structures to hold information associated with each parallel program: 
• M: Modules. A scalar describing the number of modules comprising the program. 
• CB: Code Blocks (including executing environment). An  M-vector indicating the length of the 

code in blocks for each parallel module to be transferred from the program file residing cluster to 
each executing cluster. 

• MODB: Module Output Data Blocks. An M-vector specifying the number of output data blocks 
produced by each parallel module to be transferred to the program file residing cluster. MODBi

• PODB: Program Output Data Blocks. A scalar specifying the number of output data blocks, 
corresponding to global results, to be transferred from the program residing cluster to the initiating 
cluster. 

 
indicates the number of output data blocks (partial results) produced by module i during 
computation. 

• RWDB: Read/Write Data Blocks. A KxM matrix specifying the number of data blocks accessed in 
a given file by each parallel module during computation. RWDBi,j

• IMC: Inter Module Communication. An MxM matrix indicating the intermodule communication; 
measured in data blocks transferred. IMC

 indicates the number of 
read/write accesses of module j on file i. 

i,j

• FD: File Distribution. A KxN matrix indicating the file distribution throughout the clusters. FD

 specifies the number of data blocks transferred from 
module i to module j during execution. 

i,j = 
1 indicates that file i is stored in any of the nodes of cluster j. FDi,j

• MSP: Maximum SPeed. An NxN matrix specifying the maximum transfer speed between clusters. 
MSP

 = 0 indicates that file i is not 
stored in any of the nodes of cluster j. 

i,j

Our objective function is the Total Intercluster Traffic Cost (TITC). If C

 indicates the maximum transfer speed between cluster i and cluster j, following some of the 
interconnections allowed by network topology.  

A= {cA1,..., cAN

  C

} is the set of 
available clusters in the network, our goal is to find an execution cluster distribution  

D = <exec1, ..., execM> where execi ∈ CA
to allocate each parallel module in such a way that execution leads to a minimization of intercluster 
traffic according to the parallel module individual profiles, the current allocation of the program file 
and the current allocation of involved data files. Our objective function deals with the following partial 
costs: 

, 1 ≤ i ≤ M  

• Initiating Cost (IC): Includes the cost to handle the user’s request to run the program, plus 
migration of parallel tasks to available clusters. 

• Intermodule Communication Cost (IMCC): Includes the cost of transfering messages and/or data 
between modules. 

• File Access Cost (FAC): Which includes read/write accesses from modules to data files. 
• Output Cost (OC): Includes the cost to transfer results from execution clusters to the initiating 

cluster. 
    TITC = IC + IMCC + FAC + OC 
 
4.1. THE EVOLUTIONARY APPROACH 
 
Given M modules and N available clusters all possible allocations must be searched and 
corresponding costs calculated. The size of the problem space is |NM|, a difficult problem depending 
on N and M. To contrast results and as a first approach we decided to experiment with three 



optimization algorithms: Branch and Bound, Hillclimbing, Simulated Annealing and Evolutionary 
Algorithms.The algorithms were applied on six different scenarios with diverse number of modules, 
clusters and files each (see table 2), and ten series of twenty runs, with diverse values for the 
corresponding input parameters were accomplished. 
 

Parameter Scenario 
1 2 3 4 5 6 

# of modules 15 20 15 15 20 15 
# of clusters 6 10 30 5 10 30 
# of files 5 5 5 10 10 10 

 
 
Branch and Bound could be tested only for problem sizes of at most 1010

Values in table 3 represent the best values found using different parameter settings and each entry in 
the table accommodates the solution value (TITC) and the time (t) consumed to get it, expressed in 
seconds (on a SUN Sparc 10). Detailed information can be seen in [2]. 

 in reasonable time, 
providing optimal solutions. For greater problem sizes the running time increased exponentially or 
the program run out of memory. After founding a suitable chromosome representation the MGA 
outperformed Hillclimbing and Simulated Annealing in quality of results and speed of convergence. 

 
 

Scenario 
Technique 

HC SA GA 
TITC t TITC t TITC t 

1 13.35 7 16.23 5 11.72 5 
2 10.11 12 11.05 5 9.72 4 
3 16.41 4 16.49 5 12.18 8 
4 7.24 3 9.38 2 6.75 1 
5 10.12 12 10.59 6 10.04 4 
6 7.22 11 9.41 9 7.22 8 

 
 
4.2. USING THE MULTIPLICITY FEATURE 
 

Following new trends in evolutionary computation [4], [5], another set of experiments using 
multirecombinative approaches were performed: 
 MCPC-FPCS. Multiple crossovers per couple with fitness proportional couple selection. 
 MCMP. Multiple crossovers on multiple parents, inserting the best offspring in the new 

population. Parameters of this method are n1 (number of parents) and n2

 MCMP_R. A variant of the method indicated above, inserting a random selected offspring in the 
new population. 

 (number of 
crossovers). 

A particular benchmark case with known optimum was chosen for experimentation. Here we 
discuss the case of 10 modules, 9 clusters and 10 files. Ten series of twenty runs, with diverse 
values for the corresponding input parameters were accomplished. Different setting of parameters, 
such as crossover and mutation probabilities, population size and maximum number of generations, 
were used. The following relevant performance variables were chosen: 
Ebest = (Abs(opt_val - best value)/opt_val)100 
It is the percentile error of the best found individual when compared with the known, or  estimated, 
optimum value opt_val. It gives us a measure of how far are we from that opt_val.  
Epop = (Abs(opt_val- pop mean fitness)/opt_val)100 

Table 2.Different scenarios for the cluster allocation problem  

Table 3. TITC values and corresponding running time  under each optimizing algorithm.  



It is the percentile error of the population mean fitness when compared with opt_val. It tell us how far 
the mean fitness is from that opt_val. 
Gbest: Identifies the generation where the best value (retained by elitism) was found. 

For this set of experiments, mean values of the performance variables Ebest, Epop, Gbest (as 
above defined), and absolute error values ε were obtained. 
 

Method  
n

 
1 n ε 

2 
Mean 

Ebest 
Mean  
Epop 

Mean 
Gbest zero < 0.01 < 0.1 < 0.2 ≥ 0.2 

MGA - - 5.8 25.8 75.8 90.6 9.4 1.908219 9.969379 44.61904 
MCMP-B 3 3 33.3 86.7 100.0 100.0 0.0 0.151398 0.151398 6.666667 
MCMP-R 3 3 11.1 32.2 84.4 97.8 2.2 1.168116 14.90672 45.65000 
MCMP-B 6 3 31.1 93.3 100.0 100.0 0.0 0.082201 0.084306 5.857143 
MCMP-R 6 3 8.9 36.1 94.4 96.7 3.3 0.949496 14.76170 41.75000 
MCMP-B 8 3 30.0 93.3 100.0 100.0 0.0 0.080126 0.081913 5.222222 
MCMP-R 8 3 8.9 33.3 89.4 95.0 5.0 1.092489 14.63671 41.25000 
MCMP-B 4 6 51.1 94.4 100.0 100.0 0.0 0.063877 0.063877 4.804348 
MCMP-R 4 6 10.0 32.2 88.9 96.7 3.3 1.060883 15.01473 37.94444 

 
 
 
These results indicate that: 
 Evolutionary algorithms always ensure finding near-optimal solutions and in varying percentage 

of cases they find optimal solutions. 
 Worst results correspond to MGA, with 5.8% of optimal solutions and 90.6% of near-optimal 

solutions with an absolute error level of less than 0.2 . 
 Best results are found under MCMP-B (for n1 = 4, n2

 Both MCMPs variants outperform MGA. 

 = 6) with 51.1% of optimal solutions, 
94.4% of near-optimal solutions, with an absolute error level of less than 0.01. More detailed 
analysis revealed that all solutions have an absolute error level of less than 0.03. 

 Mean values of Ebest and Epop show again the effect of clustering the population around the 
optimum under MCMP-B for any (n1, n2

 When observing mean Gbest values, it is clear that the optimum is found in earlier generations 
when MCMP-B is applied. 

) association. 

 
5. CONCLUSIONS 
 
In this proposal we have demonstrated that evolutionary algorithms are efficient applicable tools for 
management of resources in computer systems, and have provided experimental evidence of this 
claim through diverse applications in the field, two of them are described here. For the cluster 
allocation problem, evolutionary algorithms were used to provide also, not a single optimal solution 
but a set of timely near optimal solutions. For the load balancing problem, mean response time 
improved when a good load balancing strategy was applied. And it was shown  that when an 
evolutionary approach is used, results better than those obtained with traditional algorithms can be 
expected. Searching for a traffic reduction in the system the evolutionary strategy was enriched by 
incorporating a prediction function to the load balancing module. Hence, by using the knowledge 
gathered by each node, the number of nodes to be consulted when overload occurred was drastically 
reduced. The experimental results obtained through simulation gave a clear indication about the 
efficiency of the proposed hybrid strategy. Finally, it was shown that when  appropriately designed 
they outperform conventional approximative  approaches in those  problems where strict time 
constraints are not the main issue. As they are population-based algorithms,  when optimal solutions 
are sought a set of near-optimal solutions in the final population  provide fault tolerance to possible 
changes in system configuration as in the cluster allocation problem. As they are adaptive, they can 

Table 3. Absolute error and mean values of the performance variables  under each evolutionary approach  



give appropriate response to changes in system environment and improved through hybridization as 
in the load balancing problem. 
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