
 EVOLUTIONARY ALGORITHMS TO FACE COMPUTER SYSTEMS
MANAGEMENT PROBLEMS

GALLARD R.H., ESQUIVEL S. C.

Proyecto UNSL-3384031

Departamento de Informática

Universidad Nacional de San Luis (UNSL)
Ejército de los Andes 950 - Local 106

5700 - San Luis, Argentina.
E-mail: { rgallard esquivel}@unsl.edu.ar

Phone: + 54 652 20823
Fax : +54 652 30224

Abstract

Evolutionary Algorithms (EAs) became a powerful tool for environments where an
optimization is needed or where an adaptive behaviour of a system is necessary.

Computer Systems have been evolving rapidly during the last five decades. Since the 70’s,
due to improvements in communication and computer hardware, an evolution of computer systems
based on networked workstations has been taking place. This advance triggered present distributed
systems. At each stage of this evolution, resource management was designer’s main concern.
Decisions on how to allocate a limited set of expensive resources and how to schedule arriving tasks
with diverse requirements were based on various heuristics, attempting optimization of, frequently
conflicting objectives, from the user and system perspectives.

This paper discusses feasible areas where EAs can be efficiently applied to solve resource
management problems in Computer systems, show two feasible implementations and introduces
last improvements to enhance EAs performance.

Keywords: Evolutionary algorithms, resource management, computer systems, task allocation.

1 The Research Group is supported by the Universidad Nacional de San Luis and the ANPCYT
(National Agency to Promote Science and Technology).

1. INTRODUCTION
Computer Systems have been evolving rapidly during the last five decades. Between the

50’s and 60’s the emphasis was put on centralized computer systems with increasing power.
Number crunching was the main goal for early scientific computing systems. Also, massive data
processing was perceived as a major task. Consequently, the technological improvements aimed at
the increase of secondary storage facilities. A development on operating systems resulted in a
change: from serial processing to batch systems and time sharing. Also a shift from
monoprogramming to multiprogramming and later from monoprocessing to multiprocessing were
the main changes observed at that time.

Since the 70’s, due to improvements (cost-wise and technological) in communication and
computer hardware, an evolution of computer systems based on networked workstations has been
taking place. This advance triggered present distributed systems. All these changes were possible
due to (1) improved hardware technology, from vacuum tubes and relays to VLSI, and (2) software
development, from absolute coding to programming environments and methodologies. At each
stage of this evolution, resource management was designer’s main concern. Decisions on how to
allocate a limited set of expensive resources and how to schedule arriving tasks with diverse
requirements were based on various heuristics, attempting optimization of, frequently conflicting
objectives, from user and system perspectives.

The inclusion of intelligence into computer systems was a long overdue project. When the
results of AI research became widely applicable, Blair et al. [1] and Nicol et al. [10] proposed a
holistic approach for operating systems. Their approach was based on insertion of an expert system
into the operating systems kernel to provide some degree of automatic decision making. These
papers encouraged us to experiment with a new approach to intelligent resource management in
computer systems: evolutionary algorithms, used as intelligent tools, instead of an expert or
knowledge based system.
Under this proposal the following questions arise:
 Are EAs applicable, as intelligent tools, to problems in Computer System Resource

Management?
 Can they compete with conventional approaches?
 Which are the most suitable problem sets?
 Dynamic or static problems?
As a consequence of these open questions the work deepened on the application field by analysing
the ability of new proposed enhanced variants of evolutionary algorithms to solve a selected set of
computer systems problems. The following sections discuss these aspects.

2. FEASIBLE APPLICATION OF EVOLUTIONARY ALGORITHMS TO RESOURCE
 MANAGEMENT IN COMPUTER SYSTEMS

As current trends in computer systems are oriented to multicomputer systems, our focus
aims at these environments. Since resource management in computer systems is a wide area for
research, it is first necessary to detect those areas where the application of evolutionary algorithms
could be feasible by providing a timely solution to a problem. We caracterized the suitable problem
sets as belonging to two main groups as follows:
a) Those that being static have a priori information on main system characteristics. Here EAs

provide a set of solutions off line. The following are some examples:
 Finding a shortest (or minimum cost) path between two nodes in a computer network.

Existing connectivity and link costs are known in advance.

 Finding a cluster allocation distribution with minimum communication cost to allocate
parallel program components in a distributed environment. The number of components, how
they interact, which files they access, which is the input/output data transfer volume and
other features are statistically known in advance.

 Scheduling of parallel tasks in parallel supporting platforms. The associated task graph and
the number of available processors are known in advance.

Even in the case of static problems when EAs are used, the dynamical behaviour of the system
can be faced through the set of alternative solutions provided.

b) Those that being dynamic or not having a priori information on main system features, are
related with computer system environments where the response is not subject to critical time
constraints. Here EAs provide a set of solutions on the fly. As examples of this kind of problems
we have:
 Dynamic scheduling of independent tasks arriving in unknown order to a parallel computer

system.
 Dynamic load balancing in distributed environments.
In these cases the EA is self-adapted to the system response and a sort of predictive ability is
inserted in the EA.

Consequently, various problems such as routing, cluster allocation, parallel task scheduling
and load balancing, were considered as suitable areas. All the applications showed clearly the
benefits of the evolutionary approach, which (when possible) was contrasted with conventional
approaches. Two of these problems, load balancing and cluster allocation, are discussed in some
details in the following sections.

3. ENHANCED EVOLUTIONARY ALGORITHMS FOR LOAD BALANCING

Load balancing algorithms attempt to improve systems performance through process migration.
Here we present a hybrid strategy for load balancing in distributed systems, which exploits the benefits
of evolutionary and predictive approaches [3]. In order to decrease the communication traffic in a local
area network typically generated by load balancing schemes, we sought for a reduction in the number
of requests done by an overloaded node. The predictive strategy applied to achieve this goal uses the
knowledge attained by each node, through its previous experience.

A set of processors interconnected by a Local Area Network (LAN) is a classical example of a
Distributed System. The model considered here consists of a set of homogeneous and independent
nodes: hardware and software are similar for each node and every node has its own processing
resources and information storage. In such a system, users from different sites create autonomous
processes which occasionally need synchronisation to share critical resources. The workload in a node
embodies a set of local and possibly external demands on all or some of its resources. This global
demand varies during the execution of processes and could lead the system to an imbalanced state
where some of the nodes are overloaded while others are underloaded or even idle.

Previous works [8], [3] showed how dynamic load balancing strategies based on
evolutionary algorithms achieved improved results when confronted with traditional load balancing
algorithms. In those cases the enhancements came as a result of decreasing the number of migration
requests from an overloaded node. Towards an improvement in performance related to a more
balanced use of resources, the proposed system uses, in a dynamic and automated way, an
evolutionary load balancing strategy. This section shows improved results achieved by applying a
predictive approach based on the knowledge gained by each node through the evolutionary process.
In this strategy the number of migration requests is notably reduced and, consequently, better mean
response times are obtained. The proposed strategy is:

 Dynamic. Decisions on processor allocation are made during execution
 Non-preemptive. Process migration is not allowed once the process has begun execution
 Decentralized. Each node has decision making capability.
As the model assumes independence of processes the goal of the strategy is to minimize the mean
time of processes in the system. This performance variable will be called mean response time.
Dynamic load balancing strategies are prone to instability, a problem that arises when processes
waste considerable extra time due to continuos process migration. In order to minimize this
overhead evolutionary algorithms are used expecting an adaptive behaviour of the strategy on
response to changes in the system. This way the requests are sent to those nodes more inclined to
accept them. Besides the classification given above load balancing strategies can be categorized as
sender-initiated, this means that the migration request is done by the overloaded node, or receiver-
initiated, where idle or underloaded nodes request for processes to be processed. We have
implemented a sender initiated strategy.

3.1. SYSTEM’S DESIGN

 The various components implementing the load balancing strategy in each node are sketched
in Fig. 1.

INIT is executed only once at node bootstrapping, and it is in charge of activating the three central
system modules which in turn manage local or external requests and load balancing.
BALANCE_ MOD implements the load balancing strategy. In the simulated system, besides an
evolutionary algorithm, it contains diverse load balancing algorithms for performance studies.
REMOTE_REQ_ADM has two main tasks:
• (1) To reply to migration requests from other nodes giving information about the local loading

state (number of waiting processes, or ready queue length). Also, when an immigrated process
finishes execution in the local node, it informs about this event to the (original) sending node.

• (2) To activate a child server process when a remote process from an overloaded node arrives
and the local node is idle or in a low loading condition (queue_length ≤ 2).

MIGRATED_PROC_SERV executes locally an immigrated process and, on completion, signals
(3) the event to REMOTE_REQ_ADM .
LOCAL_PROC_ADM is responsible, at local process creation time, for verifying the local node
load balancing state by comparing the current queue length to a prefixed threshold to determine
overloading. Depending on comparison results one of the following actions is undertaken:
• If queue_length ≤ threshold then the task is locally executed and a child process,

LOCAL_EXEC_SERV is activated (4).
• Otherwise, invokes (5) BALANCE_MOD, which indicates (6) if the new process can be

migrated and to which node. If a receiving node can be found then a REM_EXEC_SERV
process is created (7). On the contrary, local execution is accepted and it behaves as above

Fig. 1. Load Balancing Strategy Modules

Init

Balance _Mod

Remote_Req_Adm

Local_Proc_Adm

Migrated_Proc_Serv Local_Exec-Serv Rem_Exec_Serv
BUS

 (2) (3) (1) (4) (7)

 (6) (5)

 (8) (9)

LOCAL_EXEC_SERV is in charge of the local execution of a process.
REM_EXEC_SERV is responsible for migrating (8) the process (indicated by
LOCAL_PROC_ADM) to the receiving node (pointed by BALANCE_MOD). Finally, it blocks
itself waiting for a reply (9) to confirm the remote execution completion.

3.2. LOAD BALANCING STRATEGIES DESCRIPTION

 Two strategies are describe now.

Evol_St_1

When a local created task needs to be migrated, the strategy proceeds following three steps:

1) The local TASK_DISPATCHER (a system node component) sends a migration request to a
subset of network nodes asking about their willingness to accept a migrated task.

2) Target nodes, depending on their own load status, reply with an accepting (x) or rejecting (0)
message. Where 0 < x ≤ 2 indicates the queue_length of the replying node.

3) If more than one node sends an accepting message then the TASK_DISPATCHER chooses, for
migration, the node with fewer processes in its ready queue.

The strategy is implemented following an evolutionary approach. For this purpose, each node has
its own population on which the genetic operators of selection, crossover, mutation and elitism are
applied [6], [7]. Each chromosome in the population is coded as a binary vector [p1,....,pm],
representing the set of processors composing the network. The semantics for each possible value of
pi,
• If p

 is the following:
i = 1 then pi

• If p
 is a possible candidate to send the next migration request.

i = 0 then pi
When LOCAL_PROC_ADM determines that the local node is overloaded, it issues a migration
request to BALANCE_MOD and then remains ready for new requests. The module
BALANCE_MOD selects an individual from its population with a probability proportional to its
fitness and sends migration requests to the nodes indicated by the vector (chromosome), then it
blocks itself waiting for a response. This request is sent to each candidate node. When replies arrive
then: If more than one accepting reply appears, the module decides to migrate the task to the less
loaded node and in case of equal queue_length values a random selection is done. If none of them
accepts, then it asks to LOCAL_PROC_ADM for local execution. After asking for migration or
local execution, the BALANCE_MOD computes the fitness for each chromosome and creates a
new population from the old population. The genetic operators applied during this stage are elitism,
two point crossover and uniform mutation. The learning process is performed through the fitness
function which looks at the rewards given to each individual for determining their corresponding
fitness values. Rewards are proportional to the number of hits when requesting migration:

 is not a candidate.

Reward = # of accepts / # of requests
Evol_St_2

 The predictive evolutionary strategy:

• profits from the knowledge the node has (subset of nodes prone to receive requests)
but

• for the sake of efficiency, selects each time no more than 50% of the candidates.
For deciding to which nodes to send a request to, predictions were done using the technique known
as Weighted Exponential Average [11]. This technique permits to predict a value on the basis of
values appeared during the whole elapsed time. In our case, values represent the acceptance hit ratio

for the processor’s previous requests. For an arbitrary processor, the simplest average to be used for
prediction of its response is given by:

 ∑
=

=+

n

i

inn PV
1

1
 1 , (1)

where:
V n+1
P

 : predicted processor’s response (accept or reject) for the next migration request.
i : is the effective processor response to the ith

In equation (1) an equal weight is given to each previously observed value. In our model, due to the
dynamic behaviour of the system, it is appropriate to give a larger weight to more recent history.

 request

Then using the weighted exponential average we have:
 1 0 ,)1(1 ≤≤−+=+ ααα nnn VPV (2)
In equation (2), when using any constant value for α, all observed values contribute to the predicted
value but those that are further in the past have lower weight. The parameter α permits to control
the relative weight to be given to recent or past history. If α is equal to 0 then recent history is
considered irrelevant (present conditions are transient), otherwise, if α is equal to 1 then recent
history is important and past history is obsolete. In the first step of the previous section, under this
new approach, BALANCE_MOD is not sending a request to each processor with its corresponding
bit set in the chromosome. Predictions are done to determine the best subset of processors (50% of
the candidates at most) for sending migration requests. To implement this policy for m processors,
it was only needed to add a m-entry table. Each entry storing the corresponding Vn value while Pn

 ,
the sample value, was obtained from the node response.

3.3. EXPERIMENTAL TESTS, SIMULATION SOFTWARE AND RESULTS

The distributed system implementing the strategy was simulated using a computer systems
modelling tool, PARASOL [9], which is oriented to modern distributed or parallel computer
systems. PARASOL consists of a set of libraries written in C which, besides typical facilities found
in other discrete simulation systems, offers a set of constructors to define system hardware and
network topology. PARASOL runs under UNIX-like operating systems.
The distributed system was simulated with the following parameters.
• Number of nodes: 10, 16 , 20, and 25.
• Each node execute concurrent processes under a round-robin discipline maintaining a ready

queue.
• Network topology: Ethernet.
• Process type: All of them are CPU intensive.
• Service time: fixed for all processes at 1 sec.
• Process size: fixed for all processes at 64 Kb.
• Transfer rate: 10 Mbits.
• Process arrivals follow a Poisson distribution of mean λ. In order to analyse diverse workload

levels different values for λ were used.
• The simulation is completed when 10,000 processes were executed in the network nodes.
For the evolutionary algorithm the following parameter settings were used.
• Population size in each node: 10 individuals.
• Crossover probability: 0.5
• Mutation probability : 0.005
These parameter values were determined after many experimental runs for tuning the evolutionary
algorithm. As mentioned earlier, LOCAL_PROC_ADM determines if an arriving task can be

locally processed based on its ready queue length. The loading state of a node was determined
according to the following criteria:
• queue_length > 4 ⇒ overloaded
• 3 ≤ queue_length ≤ 4 ⇒ medium load
• queue_length ≤ 2 ⇒ underloaded.
Experiments were carried out on three different scenarios, using 1/λ as mean interarrival time with
λ = 0.1, 0.2,, 0.9, 1. For Evol_St2 after various preliminary runs, α=0.5 and an initial predicted
valueV0
• Scenario 1: 40% of the nodes are receiving processes with equal arrival rate while in the

remaining nodes arrivals do not occur. This scheme allows simulation of a clearly imbalanced
situation.

=0 were used for all nodes. Both strategies are sender-initiated.

• Scenario 2: 40% of the nodes receive processes at a low rate (λ) while the remaining 60%
receives processes at a higher rate (2λ).

• Scenario 3: Each node i has its own arrival rate which is established as a function of time
λi

Scenario 1 attempted to reflect a real situation, which frequently occurs, where the workload is not
evenly distributed. Scenarios 2 and 3, are similar in the sense that arrivals occur in every node, but
scenario 3 differs reflecting time depending arrival rates as often occurs in a computer network.
Next we will describe simulation results under each considered scenario with different number of
nodes in the system. Figures 2 and 3 and table 1, clearly show that both strategies improve the mean
response time (MRT) but under Evol_St_2 the system behaves better. A similar behaviour was
observed for networks of 10, 16 and 25 nodes. For higher workload levels Evol_St_2 reduces MRT
values nearly to half of the corresponding values under Evol_St_1. For scenario 3, the same global
results analysed in scenario 2 are obtained. In all cases, Evol_St_2 obtains remarkable inferior
values for MTR while the number of requests is reduced in an amount ranging from 20% and 30%.
In the case of a network with 10 nodes it can be seen that, as expected, the number of failed
migrations (FM) increases, although this does not impair performance significantly. On the
contrary, corresponding MRT values resulted better than under Evol_St_1. It is worth noticing that,
for such a small network the chromosome size is 10 and by reducing to 50% the number of nodes
receiving requests a broadcast to at most 5 nodes will be done. Consequently, the number of failed
migrations increases. When the number of nodes is augmented, under Evol_St_2 the number of
failed migrations decreases and behaves similar to Evol_St1 on this respect. But concerning to the
number of requests the latter showed an increment while the former exhibited a considerable
reduction. A larger number of nodes helps the learning process in each node, because the
chromosome size augments. This fact provides a greater genetic diversity in the population making
the task easier for the evolutionary algorithm. Consequently, a chance for a better initial
chromosome also improves prediction ability.

(t).

0
5

10
15

0.5 0.6 0.7 0.8 0.9

Arrival Rate

M
R

T

Evol_Est_1 Evol_Est_2 No Bal.

0
5000

10000
15000

0.5 0.6 0.7 0.8 0.9

Arrival Rate

N
R

Evol_Est_1 Evol_Est_2

Fig. 2. Scenario 1, 20 nodes , Mean response time and Number of Requests.

0

5

10

0.5 0.6 0.7 0.8 0.9

Arrival Rate

M
R

T

Evol_Est_1 Evol_Est_2 No Bal.

0
5000

10000
15000

0.5 0.6 0.7 0.8 0.9

Arrival Rate

N
R

Evol_Est_1 Evol_Est_2

Number of
Nodes

Evol_Est_1 Evol_Est_2
MRT NR FM MRT NR FM

10 11.49 21877 10 4.13 9117 745
16 18.95 33847 2 5.40 13621 3
20 29.05 47071 0 9.92 20332 0
25 37.44 56029 0 13.03 24965 0

4. ENHANCED EVOLUTIONARY ALGORITHMS FOR THE CLUSTER ALLOCATION PROBLEM

 In a distributed system, users migrate to different machines, users invoke different programs
and users and programs need distinct data files to satisfy their expectations. The problem of
allocating a parallel program in a particular system can be seen as the allocation of the program
components in a set of available clusters such that traffic costs are minimized.

It is assumed that:
 A parallel program can be divided into M migrating modules.
 Each migrated module generates a number of output data blocks (transient or partial results) to

the node where it is residing. These blocks are to be transferred to the program residing cluster
when computation completes.

Table 1. Scenario 3 Mean response time, Number of Requests and Migrations Failed.

The model
Given a user initiated parallel program, which
during execution accesses to a set of files in a
distributed system, allocate the program parallel
tasks (modules) in order to minimize intercluster
traffic. Figure 4 shows the final allocation of
parallel tasks after the strategy was applied. The
parallel program, comprising ten tasks, was
residing in workstation Wp of cluster 5, initiation
took place from workstation Wi of cluster 1, ten
files were distributed throughout the system and
the parallel tasks, were allocated to nine available
clusters following the minimization criteria.

Fig. 4. A possible layout of parallel tasks within clusters.

Fig. 3. Scenario 2, 20 nodes , Mean response time and Number of Requests.

 K files, distributed throughout the system and involved in the computation, are accessed by the
modules.

 The current system state provides N available clusters.
Then we need the following data structures to hold information associated with each parallel program:
• M: Modules. A scalar describing the number of modules comprising the program.
• CB: Code Blocks (including executing environment). An M-vector indicating the length of the

code in blocks for each parallel module to be transferred from the program file residing cluster to
each executing cluster.

• MODB: Module Output Data Blocks. An M-vector specifying the number of output data blocks
produced by each parallel module to be transferred to the program file residing cluster. MODBi

• PODB: Program Output Data Blocks. A scalar specifying the number of output data blocks,
corresponding to global results, to be transferred from the program residing cluster to the initiating
cluster.

indicates the number of output data blocks (partial results) produced by module i during
computation.

• RWDB: Read/Write Data Blocks. A KxM matrix specifying the number of data blocks accessed in
a given file by each parallel module during computation. RWDBi,j

• IMC: Inter Module Communication. An MxM matrix indicating the intermodule communication;
measured in data blocks transferred. IMC

 indicates the number of
read/write accesses of module j on file i.

i,j

• FD: File Distribution. A KxN matrix indicating the file distribution throughout the clusters. FD

 specifies the number of data blocks transferred from
module i to module j during execution.

i,j =
1 indicates that file i is stored in any of the nodes of cluster j. FDi,j

• MSP: Maximum SPeed. An NxN matrix specifying the maximum transfer speed between clusters.
MSP

 = 0 indicates that file i is not
stored in any of the nodes of cluster j.

i,j

Our objective function is the Total Intercluster Traffic Cost (TITC). If C

 indicates the maximum transfer speed between cluster i and cluster j, following some of the
interconnections allowed by network topology.

A= {cA1,..., cAN

 C

} is the set of
available clusters in the network, our goal is to find an execution cluster distribution

D = <exec1, ..., execM> where execi ∈ CA
to allocate each parallel module in such a way that execution leads to a minimization of intercluster
traffic according to the parallel module individual profiles, the current allocation of the program file
and the current allocation of involved data files. Our objective function deals with the following partial
costs:

, 1 ≤ i ≤ M

• Initiating Cost (IC): Includes the cost to handle the user’s request to run the program, plus
migration of parallel tasks to available clusters.

• Intermodule Communication Cost (IMCC): Includes the cost of transfering messages and/or data
between modules.

• File Access Cost (FAC): Which includes read/write accesses from modules to data files.
• Output Cost (OC): Includes the cost to transfer results from execution clusters to the initiating

cluster.
 TITC = IC + IMCC + FAC + OC

4.1. THE EVOLUTIONARY APPROACH

Given M modules and N available clusters all possible allocations must be searched and
corresponding costs calculated. The size of the problem space is |NM|, a difficult problem depending
on N and M. To contrast results and as a first approach we decided to experiment with three

optimization algorithms: Branch and Bound, Hillclimbing, Simulated Annealing and Evolutionary
Algorithms.The algorithms were applied on six different scenarios with diverse number of modules,
clusters and files each (see table 2), and ten series of twenty runs, with diverse values for the
corresponding input parameters were accomplished.

Parameter Scenario
1 2 3 4 5 6

of modules 15 20 15 15 20 15
of clusters 6 10 30 5 10 30
of files 5 5 5 10 10 10

Branch and Bound could be tested only for problem sizes of at most 1010

Values in table 3 represent the best values found using different parameter settings and each entry in
the table accommodates the solution value (TITC) and the time (t) consumed to get it, expressed in
seconds (on a SUN Sparc 10). Detailed information can be seen in [2].

 in reasonable time,
providing optimal solutions. For greater problem sizes the running time increased exponentially or
the program run out of memory. After founding a suitable chromosome representation the MGA
outperformed Hillclimbing and Simulated Annealing in quality of results and speed of convergence.

Scenario
Technique

HC SA GA
TITC t TITC t TITC t

1 13.35 7 16.23 5 11.72 5
2 10.11 12 11.05 5 9.72 4
3 16.41 4 16.49 5 12.18 8
4 7.24 3 9.38 2 6.75 1
5 10.12 12 10.59 6 10.04 4
6 7.22 11 9.41 9 7.22 8

4.2. USING THE MULTIPLICITY FEATURE

Following new trends in evolutionary computation [4], [5], another set of experiments using
multirecombinative approaches were performed:
 MCPC-FPCS. Multiple crossovers per couple with fitness proportional couple selection.
 MCMP. Multiple crossovers on multiple parents, inserting the best offspring in the new

population. Parameters of this method are n1 (number of parents) and n2

 MCMP_R. A variant of the method indicated above, inserting a random selected offspring in the
new population.

 (number of
crossovers).

A particular benchmark case with known optimum was chosen for experimentation. Here we
discuss the case of 10 modules, 9 clusters and 10 files. Ten series of twenty runs, with diverse
values for the corresponding input parameters were accomplished. Different setting of parameters,
such as crossover and mutation probabilities, population size and maximum number of generations,
were used. The following relevant performance variables were chosen:
Ebest = (Abs(opt_val - best value)/opt_val)100
It is the percentile error of the best found individual when compared with the known, or estimated,
optimum value opt_val. It gives us a measure of how far are we from that opt_val.
Epop = (Abs(opt_val- pop mean fitness)/opt_val)100

Table 2.Different scenarios for the cluster allocation problem

Table 3. TITC values and corresponding running time under each optimizing algorithm.

It is the percentile error of the population mean fitness when compared with opt_val. It tell us how far
the mean fitness is from that opt_val.
Gbest: Identifies the generation where the best value (retained by elitism) was found.

For this set of experiments, mean values of the performance variables Ebest, Epop, Gbest (as
above defined), and absolute error values ε were obtained.

Method
n

1 n ε

2
Mean

Ebest
Mean
Epop

Mean
Gbest zero < 0.01 < 0.1 < 0.2 ≥ 0.2

MGA - - 5.8 25.8 75.8 90.6 9.4 1.908219 9.969379 44.61904
MCMP-B 3 3 33.3 86.7 100.0 100.0 0.0 0.151398 0.151398 6.666667
MCMP-R 3 3 11.1 32.2 84.4 97.8 2.2 1.168116 14.90672 45.65000
MCMP-B 6 3 31.1 93.3 100.0 100.0 0.0 0.082201 0.084306 5.857143
MCMP-R 6 3 8.9 36.1 94.4 96.7 3.3 0.949496 14.76170 41.75000
MCMP-B 8 3 30.0 93.3 100.0 100.0 0.0 0.080126 0.081913 5.222222
MCMP-R 8 3 8.9 33.3 89.4 95.0 5.0 1.092489 14.63671 41.25000
MCMP-B 4 6 51.1 94.4 100.0 100.0 0.0 0.063877 0.063877 4.804348
MCMP-R 4 6 10.0 32.2 88.9 96.7 3.3 1.060883 15.01473 37.94444

These results indicate that:
 Evolutionary algorithms always ensure finding near-optimal solutions and in varying percentage

of cases they find optimal solutions.
 Worst results correspond to MGA, with 5.8% of optimal solutions and 90.6% of near-optimal

solutions with an absolute error level of less than 0.2 .
 Best results are found under MCMP-B (for n1 = 4, n2

 Both MCMPs variants outperform MGA.

 = 6) with 51.1% of optimal solutions,
94.4% of near-optimal solutions, with an absolute error level of less than 0.01. More detailed
analysis revealed that all solutions have an absolute error level of less than 0.03.

 Mean values of Ebest and Epop show again the effect of clustering the population around the
optimum under MCMP-B for any (n1, n2

 When observing mean Gbest values, it is clear that the optimum is found in earlier generations
when MCMP-B is applied.

) association.

5. CONCLUSIONS

In this proposal we have demonstrated that evolutionary algorithms are efficient applicable tools for
management of resources in computer systems, and have provided experimental evidence of this
claim through diverse applications in the field, two of them are described here. For the cluster
allocation problem, evolutionary algorithms were used to provide also, not a single optimal solution
but a set of timely near optimal solutions. For the load balancing problem, mean response time
improved when a good load balancing strategy was applied. And it was shown that when an
evolutionary approach is used, results better than those obtained with traditional algorithms can be
expected. Searching for a traffic reduction in the system the evolutionary strategy was enriched by
incorporating a prediction function to the load balancing module. Hence, by using the knowledge
gathered by each node, the number of nodes to be consulted when overload occurred was drastically
reduced. The experimental results obtained through simulation gave a clear indication about the
efficiency of the proposed hybrid strategy. Finally, it was shown that when appropriately designed
they outperform conventional approximative approaches in those problems where strict time
constraints are not the main issue. As they are population-based algorithms, when optimal solutions
are sought a set of near-optimal solutions in the final population provide fault tolerance to possible
changes in system configuration as in the cluster allocation problem. As they are adaptive, they can

Table 3. Absolute error and mean values of the performance variables under each evolutionary approach

give appropriate response to changes in system environment and improved through hybridization as
in the load balancing problem.
6. ACKNOWLEDGEMENTS

We acknowledge the cooperation of the project group for providing new ideas and constructive

criticisms. Also to the Universidad Nacional de San Luis and the ANPCYT from which we receive
continuous support.

7. BIBLIOGRAPHY

[1]. Blair G. S., Mariani J. A., Nicol J. R. and Shepherd D. - A Knowledge-based Operating System -

The Computer Journal, Vol 30, No 3, 1987.
[2]. Esquivel S., Leguizamón G., Gallard R., - A Quasi-Optimal Cluster Allocation Strategy for

Parallel Execution in Distributed Systems Using Genetic Algorithms, ACM Press, Operating
Systems Review, USA, Vol. 29, Nr. 2, pp 82-96, April 1995.

[3]. Esquivel S., Leguizamón G., Gallard R., - A Hybrid Strategy for Load Balancing in
Distributed Systems Environments- Presentado y publicado en Proceedings of the Fourth IEEE
International Conference on Evolutionary Computation (ICEC'97), pp. 127-132, ISBN 0-
7803-3949-5, Indianapolis, USA, April 1997.

[4]. Esquivel S., Leiva A., Gallard R., - Multiple crossover per couple in genetic algorithms. Proc.
of the 4th

[5]. Esquivel S., Leiva H.,.Gallard R., Multiple Crossovers Between Multiple Parents To Improve
Search In Evolutionary Algorithms. Proceedings of the 1999 Congress on Evolutionary
Computation (IEEE). Washington DC, pp 1589-1594.

 IEEE International Conf. on Evolutionary Computation (ICEC'97), pp 103-106,
Indianapolis, USA, April 1997.

[6]. Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-
Wesley, Reading, MA, 1989.

[7]. Michalewicz Z. - Genetic Algorithms + Data Structures = Evolutions Programs -Springer-
Verlag, third, revised edition, 1996.

[8]. Munetono M., Takai Y. y Sato Y. - A Gemetic Approach to Dynamic Load Balancing in a
Distributed Computer System- , 1st IEEE CEC, Junio 1994, Vol. I, pags. 419 - 421.

[9]. Neilson J., - Parasol User’s Manual- , School Of Computer Science, Carleton
University, Canada.

[10]. Nicol J. R., Blair G. S. and Walpole J. - Operating Systems Design: Towards a Holistic
Approach? - ACM Press, Operating System Review, Vol. 21, No 1, Jan. 1987.

[11]. Stallings William - Operating Systems, MacMillan Publishing Company, New York, 1992.

	Phone: + 54 652 20823
	Abstract
	1. Introduction
	3.1. System’s design
	Local_Proc_Adm
	3.2. load balancing strategies description
	Reward = # of accepts / # of requests
	Evol_St_2

	3.3. Experimental tests, simulation software and results
	The model
	4.1. The evolutionary approach
	4.2. Using the multiplicity feature

	Table 2.Different scenarios for the cluster allocation problem
	Table 3. TITC values and corresponding running time under each optimizing algorithm.
	Table 3. Absolute error and mean values of the performance variables under each evolutionary approach
	6. Acknowledgements
	7. Bibliography

