

SUPPORT SYSTEM FOR PROCESS FLOW SCHEDULING

Juan Lerch, Enrique Salomone and Omar Chiotti

GIDSATD – UTN FRSF, Lavaisse 610, 3000 Santa Fe - Argentina
INGAR – CONICET, Avellaneda 3657, 3000 Santa Fe –Argentina

salomone@ceride.gov.ar, chiotti@ceride.com.ar

Abstract

Process flow scheduling is a concept that refers to the scheduling of flow shop process plants, whose
scheduling calculations are guided by the process structure. In a wide variety of high-volume process
industries, the process flow scheduling concept implies an integrated structure for planning and scheduling.

This integrated vision of the planning function and the very particular characteristics of the process
industry production environment challenge the application of the most traditional approaches to support
planning/scheduling activities. We are working with the aim of developing a conceptual system foundation to
support process flow scheduling.

We started from a grass roots study of the current process flow planning/scheduling practices and we
applied an object oriented analysis and design methodology to design a system to support process flow
scheduling. Essentially, the system supports a process flow scheduling model that can be used to instantiate
production resources of a particular industry, the plant structure and the products with their respective
production processes. In this way, the particular scheduling problem of a production order set will be
instantiated.

In this work we describe the process flow scheduling problem, a process flow scheduling support
system architecture, a general ontology of the process flow scheduling, an object oriented design of the
system and some implementation details.

Key Words: Scheduling, system, framework, process flow

1. Introduction

Process flow scheduling (PFS) is a concept that refers to the scheduling of flow shop process plants,
whose scheduling calculations are guided by the process structure (Taylor and Bolander, 1994). In a wide
variety of high-volume process industries, the process flow scheduling concept implies an integrated
structure for planning and scheduling.

This integrated vision of the planning function and the very particular characteristics of the process
industry production environment challenge the application of the most traditional approaches to support
planning/scheduling activities. Moreover, most of the currently available systems have been initially
developed for short-term scheduling of discrete manufacturing industries, and then extended to attempt a
universal application to other manufacturing environments (Allweyer et al., 1996).

The strategy of accommodating new requirements into the same conceptual foundation has produced
limited progress in trying to address needs of process industries. We are working in this direction with the
aim of developing such a conceptual system foundation to support process flow scheduling.

We started from a grass roots study of the current planning/scheduling practices of the process industry
and we applied a system analysis methodology to design a system to support PFS. Essentially, the system
supports a PFS meta-model that can be used to instantiate production resources of a particular process
industry, the plant structure and the products with their respective production processes. In this way, the
particular scheduling problem of a production order set will be instantiated.

Therefore, our objective has been to develop a conceptual system foundation to support PFS. In this
work we describe the PFS problem, the PFS support system architecture, a general ontology of the PFS, an
object oriented design of the system and some implementation details that we consider of interest.

2. The Process Flow Scheduling

Taylor and Bolander (1994) define a strategy to guide the PFS that is based on three principles: the
scheduling calculations are guided by the process structure; stages and clusters are scheduled using
processor-dominated scheduling or material dominated scheduling approaches; and process trains are
scheduled using reverse flow scheduling, forward flow scheduling or mixed-flow scheduling.

2.1 The scheduling calculations are guided by the process structure

In accordance to this principle, a classification procedure and terminology are needed to define process
structures. The terminology and classification used in this work are represented in Figure 1. The process
structure consists of process units, clusters, stages, and trains. A process unit performs a basic manufacturing
step. Process units are combined in clusters at each stage and stages are separated by storages. Separating
clusters and stages by storage allows for scheduling them as an independent entity. Stages are then organized
in trains. Usually, materials are not transferred from a train to another one, although there are exceptions that
should be taken into consideration.

The definitions used in our work are the following:
Storage: It is some kind of warehouse where products can be kept. These products may be either
intermediate (products that still require to be processed) or final. Storage may have a finite capacity or it con
be assumed infinite, in case that the storage capacity is not taken into account for the Scheduling.

Process Unit: It is any equipment of the plant that is capable of carrying out a product transformation. A process
unit have a finite capacity, and it generally requires an storage origin (raw material) and an storage destiny.
Process units that belong to stage N receive materials from stage N-1 and provide materials to stage N+1
Clusters: They are sets of process units that share the same scheduling. Once the Cluster scheduling is defined, it
is possible to schedule each process unit inside the Cluster. That is, units inside the Cluster may be scheduled as if
they were a unique process unit. The smallest Cluster is the one that contains only one process unit.
Connections: A connection is the material link between a process unit and a storage, and its object is to transport
products from one to another.

}

} Stage 2

St
ag

e
1

St
ag

e
3

}

} } Train 1 Train 2

Figure 1: the process structure of an industrial plant

2.2 Stages and clusters are scheduled using process-dominated or material dominated approaches
This principle defines two alternatives to schedule stages and clusters: Stages and clusters can be scheduled

using process-dominated scheduling. This occurs when process units are scheduled before material scheduling;
Material dominated scheduling. This occurs when process units are scheduled after material scheduling.

Choosing the strategy to be used depends on the specific environment. Process-dominated scheduling is
convenient when production capacity is quite expensive, when the cluster is the bottleneck of production, or
when setup costs are high. On the other hand, material dominated scheduling is convenient in the case of
expensive materials, limited capacity, high setup costs, or when the cluster consists of a set of process units
that operate as a Job Shop.

2.3 Process trains are scheduled using reverse flow, forward flow or mixed-flow approaches

This principle defines three alternatives to schedule the process trains. Process trains may be scheduled
using reverse flow scheduling, forward flow scheduling, or mixed-flow scheduling. The first one consists
of starting from the last stage of the process up to the first ones after obtaining a Scheduling. The second one

Storage

Process Unit

Clústers

Pipes

consists of starting by the first stage up to the last one following the material flow. And the last one involves
mixed strategies since it consists of starting by an intermediate stage, scheduling a bottleneck process unit or
cluster or an expensive material and then performing a reverse flow scheduling for the previous stages and a
forward flow scheduling for the following stages.

In addition, another aspect that must be taken into account in PFS is that connections between storages
and process units are to be involved in the process. In some industries, this is an important characteristic,
since sometimes connections are shared by different process units and each of them needs the connection to
be exclusive so that it can provide the material produced in its storage. Therefore, connections must be
represented and dealt with as another resource to be scheduled.

3. The Support System Architecture

We have defined a system architecture to support the PFS. The aim has been to reuse modules of
typical scheduling systems. In this way, the architecture will have to allow us both to focus on the process
industries scheduling and to enable a support scheduling application development reusing components.

In Figure 2 we present a conceptual representation of an industrial production process scheduling
system. The system receives the customer orders and the information about both actual product stocks and
materials availability. Furthermore, the system has information about providers, products and production
policies. Based on this information, the production process scheduling system defines the required production
orders. Then, the system must obtain a good feasible schedule of the production order set.

The actual production state of the plant must be fed back to the scheduling system. This task is
delegated to the supervisory control module, whose function is to monitor the production process with the
purpose of detecting deviations between the proposed schedule and the real operation. These deviations are
analyzed to decide if a new schedule is required.

To execute the scheduling task, the system has a structure that supports the representation of all
components involved in a productive process, i.e.: plant topology, equipment items, actual orders set,
products, production processes, resources, and the lot concept, which is an important aspect in the process
industry. This representation structure defines the PFS module, which has three interfaces:
A configuration interface. By means of this interface a plant can be instantiated, i.e. its processing units,
storages, clusters, stages and trains, products and their processes.
A data interface. By means of this interface, the production orders can be input and information on the
current schedule can be obtained.
A control interface. This interface makes it possible to include parameters for the scheduling algorithm.

Figure 3 shows the architecture proposed for the scheduling system. It can be observed that the PFS
module, which is in charge of maintaining the problem representation logic, is just a module of the system.

A scheduling system must interact with other systems to obtain external data, for example customer
orders. The manager module must input data and inform the PFS module about them. This module is also
responsible for providing information to the users' services. The users’ service is in charge of providing the
manager information in the format required by the end user (For example, html, xml, xsl, graphic, etc.), and
reflecting the user's commands in the PFS module.

The persistency module is in charge of keeping the PFS information in a persistent storage, since the
PFS module has been designed using Objects. The object oriented is the best technique for representing the
scheduling problem logic, since it implies quite complex relationships among items.

Stock

Materials

Supervisory
Control

SCHEDULING
Order

P F S

 Production Order

Product
Priority
Politics

Plant

Providers Due Date

Scheduling
Algorithm

Setup Interface

D
at

a
In

te
rf

ac
e

Control Interface

P F S Plant

Production Orders

Lots

Products

Schedule Parameters

Figure 2: conceptual representation of an industrial production process scheduling system

Figure 3: Architecture of the scheduling system

Scheduling resolution algorithms are designed to find the solution to the Scheduling problem. The
needed information can be found in the PFS module. Algorithms take this information, find partial or final
schedule and then use the PFS module as a solution repository.

This architecture makes it possible to isolate the problem representation from its solution. It also
enables the items belonging to a scheduling system to be developed in parallel. Persistence of data is also
isolated from the technology to be used. The main advantage of this strategy is that it allows us to
concentrate on the aspects related to the process industry, such as representing the problem by identifying the
involved items and then designing and test different solution algorithms for each case.

4. Process Flow Scheduling Ontology

Figure 4 shows a representation of the general ontology we have taken as a basis to design the PFS
module. The main items in this ontology (Smith, 1997) are:

Activities. They represent an action or a step that is necessary to produce a product. They need
resources to be executed. Resources are entities that allow or support the execution of activities.

On the other hand, we have products, whose function is to fulfil a demand. Products, demand and
resources impose constraints on the activities. These constraints set boundary marks on the activities' start,

External

Data

Manager
User

Service

Data Base P.F.S Algorithms

External

Data

Manager
User

Service

Data Base P.F.S Algorithms

end and length domains. In this framework, solving the Scheduling consists of finding values for the start,
end and length variables of an activity so as to meet the imposed constraints.

Figure 4: general scheduling ontology

It should be noted that we have expanded the constraint concept so that the “activity requires a
resource” relationship can be also modeled by means of constraints. The same happens with the “activity
produces a product” and “product satisfies demand” relationships.

The proposed ontology suggests using a model of entities that relate with one another by means of
constraints, which makes it possible to expand the model so as to use optimization techniques.

We have also expanded the general ontology to include items that are significant for the scheduling
problem. These items are the plant and its structure, the production process, the production order and
production lots concepts that affect both demand and the activities required to satisfy it.

5. PFS Support System Design

We have made a logic separation in the system design process. Since we have used an object-oriented
methodology (Booch, 1999), the used mechanism has been packages. Figure 5 shows the diagram of the
packages structure that has guided our design.

The five packages we have used are Constraints, Product, Plant, Scheduling and Iterators.
Plant package includes the items related to the production plant, i.e., storage, cluster, stages, trains,

connections, process units, and the plant itself.
Product package contains everything related to products, i.e., production process, production orders,

production lots and the product itself.
Scheduling package contains the activities and the scheduler, who is in charge of supplying an

interface for all the classes that participate of the solution-searching process.
Constraints package involves constraints among activities, activities and resources, and constraints

among processes, since we have expanded the constraint concept so as to be also able to model processes by
means of constraints.

Last, we have included iterators as a method to access to objects inside the PFS. Iterators are found in
the Iterators package and have been implemented through the iterator pattern (Gamma, 1995).

Activity Product

Restricción

Resource Demand

Requires Satisfies

Produces

Imposes

Imposes

Restricts

Activity Product

Restricción

Resource Demand

Requires Satisfies

Produces

Imposes

Imposes

Restricts

Figure 5: diagram of the packages structure

To sum up, we may say that this way of approaching design, starting from a general architecture, taking
the scheduling ontology as a basis, and again separating the design into packages, has enabled us to
concentrate our efforts on designing a particular aspect of the problem. In the following subsections, we will
present a detailed design and the main design decisions made of each component of the PFS module.

5.1 Production Plant

Figure 6 shows the classes structure corresponding to the main items of a processing plant. It presents the
Plant class, which is made up of a set of trains in Train class. These trains are constituted by a set of stages in
Stage class, each of which has n equipment items in EquipmentItem class.

Plant: It is the main container. It contains a list of process types in ProcessType, trains in Train and
equipment items in EquipmentItem and the methods to add these items.

TransicionObj

*

TransitionMap

Resource Stage

EquipmentItem

Train

1..*

Plant

*

ProcessType

*

*

1

1..*

Figure 6: class structure of a process plant

EquipmentItem: It is a piece of equipment of the plant, for example mixers, tanks, etc. Their main
characteristics are: (1) They have a production rate that states the processing speed of the equipment, and (2)
a holding capacity that refers to the amount of material that a piece of equipment may contain. The latter is a
typical characteristic of batch equipment and tanks or warehouses.

TransitionMap: Transitions occur when a piece of equipment finishes an activity and begins a
different one. These transitions may be of different types (cleaning, dead times, setup). The function of the
TransitionMap class together with the TransitionObj class is to behave as a matrix, whose files and
columns are the type of activity that was being carried out and the type of activity to be performed
respectively. It brings back the cost or the associated time.

Plant Scheduling

Iterator
Product

 Constraint

Pfs

5.2 Production Resources
A resource in Resource class has a main characteristic or responsibility. It consists of keeping a record of

its state in each time interval. To achieve this goal, a TimeTable class has been defined, whose function is to
bring back and store, for a certain time interval, a resource state. The diagram in Figure 7 shows how this
operation is performed.

Resource TimeTable
1 1

 TimeTableObj
*

Activity resourceState

1
Figure 7: TimeTable class

It can be observed that a resource in Resource class has an associated time table in TimeTable class,
which is an ordered list of time table objects in TimeTableObj class. The latter is constituted by a resource
state in ResourceState class, which represents the state of a resource. The association to the Activity class
refers to the activity that incorporates the state to the resource.

The diagram in Figure 8 shows the classes hierarchy for resources in Resource class. Two types of
resources are mainly distinguished: EquipmentItem class and Material class. At the same time, an
equipment item may be: a process unit in ProcessUnit class, a storage in Storage class or connections in
Pipes class or in Filter class.

ProcessUnit

Resource

PipesFilter
**

Material

Storage

0..10..1

Alternative Cluster

EquipmentItem

Figure 8: Class hierarchy for resources

 The Material class makes it possible to record the inventory levels of a material or product. When the
Material class is used as a resource, it is suggested that the changes of a given material quantity as time goes
by is wanted to know. On the contrary, when an equipment item is used, the equipment availability along
time is wanted to observe.

A process unit in ProcessUnit class is a piece of equipment that is capable of performing some process
over a product. Generally, process units take material from a storage, they process it and keep it in another
storage. Storage in Storage class is any kind of warehouse for either intermediate or final products.

Pipe and Filter classes collaborate between them to model connections among equipment item and
storages. A pipe in Pipe class represents a connection between an equipment item and another one. A filter in
Filter class is a node that allows linking connections and represents a shared part between connections.

A cluster in Cluster class is a set of equipment items, which may be considered as a sole equipment for
the scheduling. There are activities that can be alternatively executed by two or more equipment items. The
equipment item assignation is realized during the scheduling. In this case, an alternative object can be
instantiated in Alternative class, which is composed of these two or more equipment items; and then, to
specify that the activity requires one of these alternatives (equipment items) in Alternative class.

5.3 Production Process

A process in Process class is a set of stages required to obtain a product. A process is related to other
processes by means of constraints between processes in ProcessConstraint class. These constraints belong
to following types: “process P1 must start after process P2 ends”, “process P1 involves processes P2 and
P3”. In this case, a processes hierarchy is achieved

EquipmentItem

ProccessResourceConstraint

ProcessMaterialConstraint

ProccessEquipmentConstraint

Product

Resource

Process

11

**

ProcessConstraint

11

**

Material

Figure 9: Production process class diagram

The diagram in Figure 9 shows the classes for production processes. Processes in Process class require
resources in Resource class, which implies constraints in ProcessResourceConstraint class. These
constraints belong to types: “process P1 requires equipment E1”, “process P1 consumes material M1”,
“process P1 produces material M2”.
Consume and produce type constraints have two parameters: the base, which indicates in which units
(volume, mass) it is measured, and the factor, which indicates the proportion of a resource produced or
consumed by the process.

ActivityResourceConstr
aint

Resourc
e

ActivityConstrai
nt

Product

Activity
1..*1..*

Order
**

Lot

1..*1..*

1..*1..*

Figure 10: production orders class diagram

5.4 Production Orders
More closely related to the Scheduling, there are production orders. The diagram in Figure 10 shows the classes

for production orders. A production order in Order class is divided into n lots in lot class. Each lot consists of a set of
activities in Activity class that are associated to resources in Resource class by means of constraints in
ActivityResourceConstraint class. As in the process definition, activities are associated to other activities by means of
the constraints among activities in ActivityConstraint class.

The association between lots in Lot class and stages of a plant train in Stage class (Figure 6) should be
highlighted. Although it is not shown in the diagram, this association occurs because a resource is a
equipment item of the plant and these equipment items belong to a particular stage of a train in the plant.

5.5 Order Instantiation Process

The figure 11 shows the process of instantiating orders based on the production process associated to a
product. This is a complex process that requires particular techniques to define size and amount of production
lots in Lot class for an ordered quantity in Order class of the product in Product class.

The idea is to instantiate the activities of a lot in Activity class according to the process information, as
well as constraints among activities in ActivityConstraint class and constraints between activities and
resources in ActivityResourceConstraint class.

In other words, the information required for instantiating activities is contained in the process
definition, the resource characteristics and the plant distribution (stages, trains). The way in which this
process should be performed is defined by the lot algorithms. Although it is easy to carry out a heuristic that
creates an activity for each process, it is also desirable to define different algorithms that will depend on the
particular problem.

ActivityResourceConstraint

ProccessResourceConst ra in t

Lot

ActivityC onstraint

Order

1..*1..*

Activity
1..*1..*

Product

**

Resource

Process
11

**

ProcessCons traint

11

Figure 11: order instantiation process

ActivityEquipmentConstraint

ActivityResourceConstraintActivityConstraint

Material

ActividadMaterialConstraint

Scheduler

ResourceActivity

EquipmentItem

Lot

1..*1..*

Stage

1..*1..*

Order

1..*1..*

Train

**

Product
**

Plant
1..*1..*

Constraint

Figure 12: scheduling process class diagram

One of the characteristics of our design is that the relationships among the items involved in the
scheduling problem make it possible to solve not only the scheduling itself, but also the lot sizing problem,
which is also a typical and important problem in the process industry.

ActivityConstrainIter
ator

ConstraintItera
tor

EquipmentItera
tor

Iterator
I

ListIterat
or

Lis
t

StageIterat
or

TrainIterat
or

ResourceItera
tor

ActivityIterat
or

lotIterat
or

OrderIterat
or

ProductIterat
or

ProccessItera
tor

PlantIterat
or

VarConstraintIter
ator

VariableIterat
or

Figure 13: PFS iterators

5.6 Scheduling
The scheduling problem implies a complex relationship among all classes previously defined. To reduce
complexity, we use the design pattern Farcade (Gamma, 1995). The resulting class diagram is shown in
Figure 12. We have defined the Scheduler class, which provides a unified interface to a set of interfaces of
the subsystem. In this way, the Scheduler class is a higher-level interface that makes the subsystem easier to
use, since it minimizes communication and dependence among subsystems. That is, the Scheduler class can

act as an interface so that external objects can access to instances of the classes that compose a scheduler in
Scheduler class. This infers the convenience of using the iterator technique because when an iterator is to be
created, it may require the scheduler’s first component and successively the following ones. In this way, it
makes it possible to easily expand the access points to the PFS objects. Figure 13 shows the different iterators
we have defined following the design pattern Iterator (Gamma, 1995).

6. Implementation details

The PFS system can be implemented by using the class libraries provided by Ilog Solver and Ilog
Scheduler(Le Pape, 1994), which allow to use optimization techniques and code reuse. This strategy consists
of assigning the responsibility of instantiating Ilog objects to each PFS class, with the aim of using the
functions already defined in these objects. In this way, the Ilog class functions are increased with the aim of
including the PFS characteristics. The elemental attributes of the PFS classes can be defined as instances of
the class type provided by Ilog. For example, The capacity of a storage can be defined as an instance of the
IlcIntVar class. Storage capacity is assigned a domain [Min, Max] and the ability of returning to a previous
state, which is appropriate for the optimization algorithms. This implementation strategy must be used with
the remaining PFS classes, specially with the constraints, since it is a highly proved technology of Ilog.

Under this strategy, the PFS system can be considered as a three-layer system, as it is schematically
represented in Figure 14. The first layer is Ilog, which is the less abstract level. The second layer is defined
by PFS, which is based on the Ilog layer to provide a more abstraction level oriented to support the
representation of flow process scheduling problems. The third layer is composed by algorithms, which use
the PFS functions to obtain a schedule. Finally, the PFS’s clients, for example, the manager defined in the
architecture presented in Section 3, uses the algorithms and PFS’s functions.

Finally, we can say that by combining the knowledge about the domain provided by PFS with the optimization
capabilities of a proved solver, an appropriate framework for process flow scheduling can be obtained.

Client (Ej: Manager)

 Algorithms

Pfs

iLog Solver + Scheduler

Figure 14: schematic representation a PFS framework

7. Conclusions

The complexity of the flow process scheduling problem has been met using the design pattern Farcade.
It provides a simple default view of the scheduler system that is good enough for most clients. It shields
clients from scheduler components, thereby reducing the number of objects that clients deal with and making
the scheduler system easier to use.

The system architecture defined to support the flow process scheduling problem, separates the problem
representation from the problem solution representation, and also allows to develop the elements common to
the scheduling system. Data persistency is also freed from the technology to be used. The main advantage of
this strategy is that it allows to focus on the flow process aspects, so as to identify the participating elements
to represent the problem, to design solution models and to test them.

What has been previously described allows us to consider the designed PFS system as an object
oriented framework for process flow scheduling. In this framework the problem representation remains
notably separated from the solution techniques. Using PFS system a particular industry can be instantiated;
and also, PFS system can be used to test solving algorithms that combines both optimization and heuristics
techniques.

Reference

Allweyer, Th.; P. Loos; A. W. Scheer, A.-W., Requirements and New Concepts for Production Planning and
Scheduling in the Process Industries. In Fransoo, J. C.; Rutten, W. G. M. (eds.): Proceedings of the
Second International Conference on Computer Integrated Manufacturing in the Process Industries, pp. 4-
17, Eindhoven, (1996)

Booch, G., J. Rumbauch and I Jacobson, The Unified Modeling Language User Guide, A. Wesley, (1999)
Gamma E., R.Helm, R.Johnson, and J.Vlissides, Design Patterns: Elements of Reusabel Object-Oriented

Software, Addison-Wesley, 1995.
Le Pape, C., Implementation of Resource Constraints in ILOG SCHEDULE: A Library for the Development

of Constraint-Based Scheduling Systems. Intelligent Systems Engineering, 3(2):55-66, (1994)
Taylor, S.G. and S. Bolander, Process Flow scheduling, A scheduling systems framework for flow

manufacturing, Library of Congress, (1994)
Smith, S.F. and M.A. Becker, An ontology for Constructing Scheduling Systems, AAAI Symposium on Ontological

Engineering, Standfor, CA, March (1997).

