A Framework for Multiagent Deliberation Based
on Dialectical Argumentation

A. G. Stankevicius G. R. Simari

Grupo de Investigacién en Inteligencia Artificial (GIIA)
Departamento de Ciencias de la Computacion

Universidad Nacional del Sur

Bahia Blanca - Buenos Aires - ARGENTINA
e-mail: {ags,grs}@cs.uns.edu.ar

Abstract

Simply put, a multiagent system can be seen as a collection of autonomous agents that
as a whole are able to accomplish goals beyond the reach of any of its members. Agent
interaction is widely acknowledged as the feature that provides this added potential. Since
many, if not all, of the attractive agent interactions can be recasted as deliberations, a
formalization for this process is being actively seek.

Deliberations among agents resembles a dialectical process like the one present in
many formalizations of defeasible argumentation. This paper exploits that resemblance
by defining a framework for multiagent deliberation based on a particular dialectical
process borrowed from a well-established system of defeasible argumentation.

Keywords: deliberation, defeasible argumentation, multiagent systems.

1 Introduction

Simply put, a multiagent system can be seen as a collection of autonomous agents that as a
whole are able to accomplish goals beyond the reach of any of its members. Agent interaction is
widely acknowledged as the feature that provides this added potential. This interaction comes
in several flavors—coordination, cooperation, and collaboration among others—but there is one
seemingly ubiquitous: deliberation. A group agents deliberate when they need to come to a
mutually accepted position about some issue. Since many if not all of the attractive agent
interactions can be recasted as deliberations, a formalization for this process is being actively
seek.

Since deliberations and negotiations share a common structure, successful approaches to
either one can generate similar results in the other. Considering this, the recent findings in the
field of negotiation can be used as a guide to tackle multiagent deliberation. The traditional
approach for modeling negotiation resort to game theory [12]. Even though several insightful
issues have been explored under this conception, it depends on the strong assumption that each
agent is aware of the complete pay-off matrix (i.e., they know their preferences and also the

preferences of their counterparts) before the negotiation begins. One might conelude that this
assumption restrains the applicability of game-theoretic based negotiation.

A new approach that has recently gained a lot of attention considers negotiation from the
point of view of defeasible argumentation [9, 8, 7]. We agree with this particular view; in fact,
we have argued in a previous work [16] that negotiations among agents resembles a dialectical
process like the one present in many formalizations of defeasible argumentation. This resem-
blance can also be cxploited in order to formalize multiagent deliberation. Consequently, this
paper defines a framework for multiagent deliberation based on a particular dialectical process
the dialectical analysis borrowed from the well-cstablished system of defeasible argumentation
defined in [6].

The remainder is structured as follows. Section 2 describes the proposed framework. Sec-
tion 3 analyzes the behavior of this framework with a toy example of deliberation. Finally.
section 4 gathers the conclusions obtained and outlines the future work.

2 The framework

This section defines the proposed framework for multiagent deliberation based on dialectical
argumentation. We begin by characterizing how agents represent their knowledge, and then we
discuss the different types of agents inhabiting the framework. Finally, we describe the dispute
protocol that underlics the actual deliberation.

2.1 Knowledge representation

Every agent must use the same coding for its knowledge. We would like to model the epistemic
state of the agents with logic programs an alternative alrcady explored in the literature with
satisfying results [10, 1]. Yet, conventional logic programming cannot deal with partial and
potentially contradictory information, a recurring situation when modeling real world agents.
Following the solution suggested in [2]. we adopt a representation for the agents’ knowledge
based on a defeasible logic program [4]. a formalism that by combining traditional logic pro-
gramming with defeasible argumentation avoids those shortcomings.t

Defeasible logic programming represents knowledge using strict and defeasible rules. Strict
rules capture certain information {e.g., Fred being a penguin allows us to conclude that Fred is
a bird), and defeasible rules capture tentative information (e.g., Tweety being a bird allows us
to conclude that Tweety usually flics). In this system, a literal is cither an atomic predicate p
or its negation ~p. Note that the symbol “~" denotes strong negation (also known as classical
negation), which should not be confused with the traditional negation in logic programming
(negation as failure).

Definition 2.1 [Defeasible logic program| A defeasible logic program is a finite set of strict and
defeasible rules. A strict rule has the form “l « pq,...,p,.", n > 0, where [is a literal and each
p; 18 cither a literal or the symbol “not”™ of negation as failure followed by a literal. If n = 0,
we say that [is a fact, denoted “1.7. A defeasible rule has the form “Il — py,...,pp.", n = 0,
with the same considerations for I and the p; as hefore. If n = 0 we say that [is a presumption,
denoted “ — true.”. m

'for an in-deep discussion of this system we refer the interested reader to [14, 13, 6].

Since nonmonotonicity can be expressed using defeasible rules, we do not allow the use of
negation as failure in the representation of knowledge within agents. Moreover, in our frame-
work we assume that defeasible rules do not have an empty body. Even though presumptions
are particularly useful in knowledge representation (4|, the effect of allowing them in a multia-
gent scenario is unclear, and subject of further investigation.

Definition 2.2 [Knowledge Base] A knowledge base is a finite set KB of tuples {rule, Ay),
where rule 1s a rule either strict or defeasible, and Ag is the name of the agent believing it.
When needed, the set K3 can be divided in the disjoint sets Il of tuples containing strict rules
and A of tuples containing defeasible rules. 1]

We extend the notion of defeasible logic program with labels that allow the agent to model
not only its own knowledge but also knowledge about other agents. Each agent uses its knowl-
edge to build arguments. An argument represents a defeasible reason for an assertion.

Definition 2.3 [Argument] Let KB = II U A be the knowledge base of an agent Ag. and let
M4, (resp. Aug) be set of rules contained in the tuples of T (resp. A) labeled with Ag. An
argument A for a literal b is a subset of A 44, such that:

o there exists a defeasible derivation for h from I1,, U A,
e the set [I4, U .A is non-contradictory, and

e A is minimal with respect to set inclusion (i.e., there iz no A" C A such that A’ satisfies
the two previous conditions).

If Ais an argument for h, (A, k) is also called argument structure. We say that (A, h) is a
sub-argument of (A’ '} if and only if A C A" m

The set of justified literals constitutes the epistemic state of the agent. A literal h is said
to be justified only when it is supported by a justified {i.e., non-defeated) argument A. The
formal definition of defeat follows.

Definition 2.4 [Counter-argument] Let KB = I1 U A be the knowledge base of an agent Ag.
We say that (Ay, hy) counter-argues { Ay, ha} at the literal b with respect to KB, if and only if
there is a sub-argument (A, h) of {Ay, o) such that the set ILs, U {hy, k} is contradictory. W

Definition 2.5 [Defeat] Let K13 be the knowledge base of an agent Ag. An argument {4y, i)
defeats (As, ha) at the literal h with respect to KI3, if and ouly if there is a sub-argument {A, h}
of {Asz, hz) such that {4;, hy) counter-argues (As, ha) at h with respect to K3, and either:

o (A, hy) is strictly more specific® with respect to KB than {A, h) {proper defeat), or
o (A hy) is unrelated by specificity with respect to KB to {A, h) (blocking defeat)
m

In order to establish whether A is a non-defeated argument, counter-arguments that could
be defeaters for A are looked for. Since defeaters are also arguments, there may exist defeaters
for the defeaters, and so on, thus requiring a complete recursive analysis. This recursive analysis
is structured as a dialectical tree, whose formal definition follows.

?a notion introduced by Poole in [11], later extended for defeasible logic programming in [5].

Definition 2.6 [Dialectical tree] Let KB be the knowledge base of an agent Ag. A dialectical
tree for (A, h), denoted T,y 4y, is recursively defined as follows:

1. A single node labeled with an argument (A, ~) having no defeaters with respect to A3
is by itself the dialectical tree for (A, h).

2. Let {4y, ha),....{A,, hy) be all the defeaters with respect to KB for {A,). We construct
the dialectical tree for {4, h), ’T< A, by by labeling the root node with (A, k) and by making
this node the parent node of the roots of the dialectical trees for (Ay, ha). ..., (A, hy).

As shown in [15], the dialectical analysis can effortlessly be recasted into a dispute between

two opposing parties. We already mentioned that deliberations among agents resembles a
dialectical process: the dialectical analysis is this process.

2.2 Types of agents

There are two types of agents involved in this framework: regular agents and arbiters. To hegin
with, we discuss conditions that regular agents must satisty, and then we address the differences
between arbiters and regular agents.

Although we are not assuming any particular architecture for the agents, a certain behavior
is required in our framework to successfully engage other agents. Since knowledge representa-
tion has been fixed, every agent must have an information repository capable of holding the
defeasible logic program that characterizes its epistemic state. Naturally, they must also have
a suitable inference engine. The inference engine defined for defeasible logic programming [4] is
appropriate making the minor adjustments needed to avoid mixing knowledge corresponding
to different agents.

Every agent must be aware of the existence of its counterparts by maintaining all the
information required to locate and access any of them. Moreover, it is assumed that they
understand the following set of performatives:

ask(A,B,C): Agent A ask B whether it believes in €. As a consequence, agent B uses the
performative tell to inform agent A about the current status (according to its KB} of

€ .

tell(A,B,C,D): Agent A tells B that its state regarding €' is D). This performative usually
comes as a response to an ask. There are three possible states D for the literal C:
e If the literal is believed, then D = yes.
e If the literal is not believed, then D = no.
e If the literal is neither believed nor disbelieved, then D = 7.
why(A,B,C): Agent A asks B why C' should be believed. If A still believes in (', agent A

answers with a because providing one of the arguments justifying €. Otherwise, agent
A answers with a tell letting agent B know its current opinion over C.

because(A,B,C,D): Agent A hands over to B an argument C' justifyving D. Naturally, this
performatives makes sense only over believed literals. It usually comes as a response to a
why, but it is also used throughout deliberations.

engage(A,B,C,D): Agent A lets B know that it wants to deliberate about C' arbitrated by D.
Ag a consequence, agent B decides whether it is willine to deliberate (answering with an
l k (] o (=)
accept) or not (answering with a reject).

accept(4,B,C,D): Agent A agrees to deliberate with B about € arbitrated by D. At this
stage, agents A and B begin to deliberate according to the dispute protocol defined later
in section 2.3.

reject(4,B,C,D): Agent A refuses to deliberate with B about C arbitrated by D. Agent B
may retry another engage modifying the subject or the arbiter previously proposed.

Additionally, the agents may implement other performatives or even a full agent comnmunication
language such as KQML [3] or FIPA.

Finally, arbiters ensure that deliberations among regular agents obey the guidelines estab-
lished by the framework. They have the structure of a regular agent with the addition of an
argument pool. Since the argument pool is only used in deliberations, its role iz described in
the sequel along with the dispute protocol.

2.3 Deliberation protocol

Given the relevance of deliberation in multiagent systems. several protocols that characterize
the deliberation process have been proposed [12, 8, 9]. Still, the protocol is only a part of this
process: there are actions to be performed before and after the deliberation itsclf.

Thercfore, we decompose a deliberation in the following steps:

1. An agent decides that it needs to deliberate about a certain matter with another agent.

2. The agent engages the chosen counterpart. It contacts the other agent through an engage.
If the agent gets an accept, the deliberation is ready to begin. Otherwise, the agent can
cither change the subject, propose another arbiter, or give up the deliberation attempt.

3. The actual deliberation takes place. In this step, the deliberation is performed according
to the dispute protocol defined below.

4. The outcome of the deliberation is accounted.

Notice how arbiters are summoned before the beginning of the actual deliberation. Even
though we endorse conceiving coordination and cooperation as a by-products of deliberation
among many agents, we restrict our analysis to disputes between pairs of agents. The extension
to the general case is under development.

The term “deliberation” has been used with diverse meanings in the literature. In our
framework, we understand it to be the process that allows an agent to persuade another agent
about some matter: an agent prevailing in a deliberation can influence the epistemnic state of
its counterpart. Briefly stated, deliberations in this framework are strictly over claims (i.e.,
literals), and can take place involving only two regular agents: a proponent backing the claim,
and an opponent usually rejecting it.

Definition 2.7 [Deliberation] Let Ag; and Ags be regular agents. and let & be a literal believed
by Ag;. Then, agent Ag; can deliberate with Agy over A arbitrated by an arbiter Ar if and
only if:

e agent Ags accepts the terms of the deliberation, and
e the strict knowledge of both agents is consistent (i.e., ILag, Ullag, I L).

The consistency precondition in a deliberation averts those disputes that cannot be settled
in any way (i.e., the conflict can be traced back to the strict knowledge). Unfortunately, once
may arguc that this precondition is too restrictive since it prevents agents from deliberating
about any issue once a conflict arises between the strict part of their knowledge. As a future
work, we expect to refine this precondition into a less restrictive one.

Definition 2.8 [Dispute] Let Agy and Ags be two regular agents, and let Ar be an arbiter.
Suppose that Ag; proposed Ag- to deliberate over a claim & arbitrated by Ar, and that Ags
accepted the proposal. Then, a dispute between agents Ag; and Ag, over h arbitrated by Ar
follows this scheme:

1. The proponent {agent Ag) initiates the discussion providing the arbiter {agent Ar) with
a justified arsument (justified according to its K3} supporting h. The performative
because is uscd to convey this initial argument to the arbiter. The turn goes to the
opponent (agent, Ago).

2. The opponent (agent Ags) either relinquish its turn or rebuts (according to its K13} an
argument, previously posed by its counterpart. In the former, the turn goes back to the
proponent, {(agent Ag). In the latter, the rebutting argument, is sent to the arbiter through
a because, passing the turn to the proponent.

3. The proponent (agent Ag;) must rebut (according to its KB) an argument previously
posed by its counterpart. If it can, the performative because provides the arbiter with
the rebutting argument, and the turn goes back to the opponent {agent Ags). In any
other case, the dispute is over.

As usual, the proponent bears the burden of the proof. Before taking into account the
possible outcomes of a deliberation, let us delve into the bookkeeping performed by the arbiter
amidst the dispute. The arbiter begins by checking whether the deliberation may proceed.
In order to gnarantee the consistency precondition, both the proponent and the opponent
declare to the arbiter their current strict knowledge, and the arbiter stores it in its KB, Once
deliberating, the arbiter must verify the validity of cvery move made by the contenders. To
this purpose, the conditions on arguments arc checked {sce definition 2.3), and the rebutting
argurnents are verified with respect to the corresponding KB.

The arbiter also keeps track of every argument structure introduced throughout the dispute
using its argument pool. This argument pool is organized as follows.

Definition 2.9 [Argument pool] An argument pool is a set of sequences composed by pairs
({A, h), Ag), where each pair contains an argument structure and the name of the agent that
introduced this argument structure. i

As the discussion progress, the argument pool stores the (partial) argumentation lines being
developed in the deliberation. Finally, in order to avoid the so-called fallacious argumentation
(13, 6] the arbiter iupose some extra restriction on the argument structures that are allowed
to be introduced on a given stage of the dispute.

Definition 2.10 [Acceptable move] Let (B, k) be an argument structure of the proponent
(agent Agy), and let (C, ') be an argument structure of the opponent (agent Ags). In this set-
ting, the proponent can move (B, k) to rebut (C, &'} if and only if the pool of arguments contains
at least one sequence with [((Ay. hy), Agr), ((Aa, ha), Aga). ..o ((An,), Agr), ((C 1), Aga)] as

its prefix, and also the following conditions are met:
e (B,h) rchuts (C, h') according to the knowledge base of Ag,.
e [((Ai;), Ag), (Ao ha), Ago)s ..o ((Auy Bnd, Agn), ((CL 1), Aga), (B,), Agn)] does not ap-

pear as prefix of any sequence already present in the argument pool,

o in [((A1. k1), Agr), ({(As, ha), Aga)y ..o ({AL By, Agn), ((CL R, Ago), ({B, Ry, Agy)|, all the

arguments introduced by the same agent are non-contradictory, and

e the argument (B, h) is not a sub-argument of the arguments posed by agent Ag, in the

sequence [((Ar, by, Agi), ((Az, ha), Aga), - o ((An, ey Age), (G R), Ago)l.

If these conditions are met, the argument pool is updated by adding the pair ({B.h). Ag)
to the sequence [({Ay, h), Agr). ({Aa, ho). Aga)d. .., ({As. By), Aga). ((C, R, Ags)] denoting that
(C, 1"y has been rebutted by (B,h). The case where Ag; is the opponent and Ags iz the
proponent is defined in a like manner. m

Once the dispute is over, the proponent wins if every sequence in the argument pool has an
odd length (7.e., all the argumentation lines successfully sustained the attacks). In contrast, the
opponent wins if there exists a sequence in the argument pool with an even length. Notice that
a clever agent can gain some additional insights into the beliet structure of its counterpart by
keeping track of the moves made throughout the discussion. Finally, the outcome of deliberation
depends upon which agent prevailed in it.

Definition 2.11 [Deliberation outcome] Let Ag) and Ags be two regular agents that recently
finished a deliberation over a certain claim A. Suppose that agent Agy prevailed in the dispute.
The possible outcomes of this deliberation are:

e If Agy was the proponent, its KB can remain unchanged. In contrast, Ags is now com-
mitted to believe A (it has been persnaded to), and must update its K73 accordingly. In

other words, if Ags receives an ask about A after the deliberation, it is now compelled to
answer positively.

o If Agy was the opponent, neither Ag; nor Ag, need to update their knowledge bascs.

We alrcady stressed that a deliberation encompasses more tasks than the blindly compliance
of some protocol. Taking account of the deliberation outcome can be particularly challenging.
Suppose that an agent Ag;—who believes in h—engages agent Ag, —who believes in ~i—in
a deliberation over h, and that Ag, manages to prevail in it. According to our definition, Ag.

is now comitted to belicve in A, but it certainly cannot helieve in A and ~h at the same
time! Even though the actual mechanism implementing this behavior is independent from our
framework, we believe that the outcome of a deliberation should be treated as a perception of
the agent, pretending that the agent loosing the discussion was persuaded by its counterpart to
“see” the truth of the claim deliberated over. Naturally, this makes sense only in the context
of agents that already have some mechanism for perception.

3 A toy example

This section presents a toy example that explores two scenarios where different outcomes are
attained starting from the same situation (recall that the outcome of a deliberation is asym-
metric by definition). In this example, agents Ag; and Ag. arc going to argue whether certain
car is expensive or not.

Prior to the actual deliberation we need to establish what is believed by cach agent. Suppose
that both agents agree on the following defeasible rules,?

~expensive(X) — beetle(X). expensive(X) — new-beetle(X).

saying that beetles—a widely known Volkswagen model—are usually inexpensive, and that the
recently introduced new-heetle is typically quite expensive (at least when compared against its
clder brother). Besides, they agree that crashed cars are usually not expensive:

~expensive(X) — crashed(X).

Since new-beetles share a lot of features with its predecessor (big doors, beetle-like shape,
same manufacturer, etc.), both agents accept the following strict rule saying that new-beetles
are a subclass of traditional beetles:

beetle(X) «— new-beetle(X).

Finally, suppose that both agents know that some car they refer to as ¢ is a new-beetle, a
situation modeled by the following fact:

new-beetle(c).

To make it more interesting, suppose that only agent Ag, knows that this particular car is
crashed.
crashed(c).

Sumnming up, the knowledge bases of agent Ag; and Agy, are composed of the following
information:

HAgl AAgl

beetle(X) — new-beetle(X). ~expensive(X} — beetle(X).
new-beetle(c). expensive(X) — new-beetle(X).
crashed(c). ~expensive(X) — crashed(X).
11 Ago it Aga

beetle(X) «+— new-beetle(X). ~expensive(X} — beetle(X).
new-beetle(c). expensive(X) — new-beetle(X).

~expensive(X) —< crashed(X).

3a rule containing variables stands for all its ground instances.

According to this information, the following arguments regarding whether ¢ is expensive
can be built:

e (A, ~expensive(c)). where A; = {~expensive(X) — beetle(X).}
e (A, expensive(c)), where Ay = {expensive(X) — new-beetle(X).}
e (A, ~expensive(c)), where Ay = {~expensive(X) —< crashed(X).}

Note that agent Ag; can build all the three arguments, but agent Age can only build A, and
Aa. Moreover, Agy helieves in ~expensive(c) since Aj is strictly more specific than A, but Ag,
believes the opposite since Ay is strictly more specific than A;.

There are two scenarios to congider. In the first place, let us assume that Agy wants to
engage Ags in a deliberation about ~expensive(c) arbitrated by Ar, and that Ag, is willing to
accept. The deliberation might proceed as follows (where exp stands for expensive):

Agi Ags
1.- engage(Ag, Ags, ~exp{c), Ar)
2 accept(Agy, Agr, ~exp(c), Ar)
3. because(Ag, Ar, A, ~exp(c)
4.~ because(Ags, Ar, Aj, exp(c))

5- Dbecause{Ag;, Ar, A;, ~exp(c))

At this stage, the deliberation is over since the opponent cannot make new moves, and the
proponent was able to successtfully defend every line of argumentation. The argument pool kept
by the arbiter traversed the following states:

Pooly = Pooly = {}

Pooly = {[{A;, ~expensive(c))]}

Pooly = {[{A;, ~expensive(c)}, (As, expensive(c)}]}

Pools = {[{ A, ~expensive(c)), (A, expensive(c)}, (As, ~expensive(c)}|}
Therefore, the proponent prevailed in the deliberation. According to definition 2.11, agent Ags
must update its KB in order to believe in ~expensive{c).

For the second scenario, let us assume the complementary situation where Ags, wants to

engage Ag; in a deliberation about expensive(c) arbitrated by Ar, and that Ag, is willing to

accept. In this case, the deliberation might proceed as follows:

Agn Ago
1.- engage (Ags, Agy, exp(c), Ar)
2.- accept(Ag;, Ags, exp(c), Ar)
S because (Agy, Ar, Az, exp(c)

4.- because(Ag,, Ar, Aj, ~exp(c))

At this stage, the deliberation is over since the proponent cannot make any move. However,
note that the argument pool still contains an open argumentation line defeating the claim being
disputed.

Pool; = Pooly = {}
Pooly = {[{A:, expensive(c))|}
Pooly = {[{As, expensive(c)), {As, ~exp(c))]}

Therefore, the opponent prevailed in the deliberation. Notice that the proponent, albeit
loosing the deliberation, does not need to change its KB to believe in ~expensive(c).

4 Conclusions

In this paper we have defined a framework that allows agents to deliberate, based on the
resemblance between a dialectical analysis and the actual discussion underlving deliberations.
From our viewpoint, agents deliberate when they need to persuade other agents about some
matter. Although this framework is currently restricted to deliberations between pairs of agents,
the extension to an arbitrary number is being pursed since we firmly believe that the advanced
interactions among agents—coordination, cooperation, and collaboration among others—are in
fact byv-products of deliberation.

Recall that a deliberation in this setting can proceed only if certain preconditions are ful-
filled. Among those requirement, the consistency precondition stating that the strict knowledge
of agents willing to deliberate should be conflict free seems too restrictive. As a future work,
we plan to explore new refinements of this precondition to make it less restrictive.

We have also suggested that the deliberation process encompasses more than just a protocol
outlining the exchange of information. In consequence, four stages have been identified. To our
surprise, formalizing the final stage where the outcome of the deliberation is taken into account
scems more difficult than characterizing the actual dispute. We have sketched a tentative
approach for this final stage: to consider the outcome of the deliberation as a new perception
observed by the agent.

Finally, we have pointed out that an agent in this framework can gain insights into the belief
structure of another agent engaged in a deliberation by examining the moves made throughout
the dispute. This situation deserve further analysis since it models an interesting aspect present
in the traditional deliberations among human beings.

References

[1] BArAL, C., AND GELFOND, M. Logic Programming and Knowledge Representation.
Journal of Logic Programming 12 (1993), 1 80.

[2] CaPoBIANCO, M., AND CHESNEVAR, C. [. Using Logics Programs to Model an Agent’s
Epistemic State. In Proceedings of the Tth Workshop on Aspectos Tecricos de la Inteligencia
Artificial (ATIA), 2nd Workshop of Investigadores en Ciencias de la Computacién {WICC)
(La Plata, Argentina, May 2000), Universidad Nacional de La Plata.

[3] FinIN, T., LABROU, Y., AND MAYFIELD, J. KQML as an Agent Communication Lan-
guage. In Soffware Agents, J. Bradshaw, Ed. MIT Press, 1997.

[4] Garcia, A. J. La Programacion en Logica Rebatible: su definicion tedrica y computa-
cional. Master’s thesis, Departamento de Ciencias de la Computacién, Universidad Na-
cional del Sur, Bahfa Blanca, Argentina, June 1997.

[5] Garcfa, A. J., anD SiMaRrI, G. R. El criterio de especificidad en la programacion
en légica rebatible. In Proceedings of the III Workshop sobre Aspectos Tedricos de la
Inteligencia Artificial (Nov. 1996), Universidad Nacional de San Luis.

[6] Garcfa, AL J., Stmagri, G. R., AND CIIESNEVAR, C. 1. An Argumentative Framework
for Reasoning with Inconsistent and Incomplete Information. In Proceedings of the Work-
shop on Practical Reasoning and Rationality (Brighton, United Kingdom, Aug. 1998), 13th
European Conference on Artificial Intelligence, pp. 13-19.

[7]

8]

[9]

[10]

[12]

[13]

[16]

JENNINGS, N. R., PARsOnSs, 5., NORIEGA, PP., AND SIERRA, C. On argumentation-
based negotiation. In Proceedings of the International Workshop on Multi-Agent Systems
(Boston, United States, 1998).

KRrAUS, S., Svycara, K., AND EVENCHIK, A. Reaching Agreements through Argu-
mentation: A Logical Model and Implementation. Artificial Intelligence 104, 1-2 {1998},
1-69.

PARSONS, S., SIERRA, C., AND JENNINGS, N. Agents that Reason and Negotiate by
Arguing. Journal of Logic and Computation 8, 3 {1998), 261-292.

PEREIRA, L. M., Aprarfcio, J. N., aAND ALFERES, J. J. Nonmonotonic Reasoning
with Well Founded Semantic. In Proceedings of the 8th International Conference on Logic
Programming (June 1991}, K. Furokawa, Ed., MIT, pp. 475-489.

Poolre, D. L. On the Comparison of Theories: Preferring the Most Specific Explanation.
In Proceedings of the 9th International Joint Conference on Artificial Intelligence {1985),
pp. 144-147.

ROSENSCHEIN, J., AND ZLOTKIN, (. Rules of Encounter: Designing Conventions for
Automated Negotiation among Computers. Artificial Intelligence Series. MIT Press, 1994.

StMARI, G. R., CHESNEVAR, C. L., AND GARcia, A. J. The Role of Dialectics in Defea-
sible Argumentation. In Proceedings of the X1V Conferencia Internacional de la Sociedad
Chilena para Ciencias de la Computacion (Concepeion, Chile, Nov. 1994), Universidad de
Concepcién, pp. 111-121.

StMaRI, G. R., AND Lotr, R. P. A Mathematical Treatment of Defeasible Reasoning
and its Implementation. Artificial Intelligence 53, 1-2 (1992), 125-157.

H

STANKEVICIUS, A. G., AND GARCiA, A. J. Modelling Negotiation Protocols in a Dialecti-
cal Framework. In Proceedings of the 6th Workshop on Aspectos Teoricos de la Inteligencia
Artificial (ATIA), 1st Workshop of Investigadores en Ciencias de la Computacién (WICC)
(San Juan, Argentina, May 1999), Universidad Nacional de San Juan, pp. 69-76.

STANKEVICIUS, A. G., Ganrcia, A, J., aND Simanri, G. R. Could Negotiation Among
Agents be Regarded as an Arsumentative Process. In Proceedings of the 7th Workshop
on Aspectos Tecoricos de la Inteligencia Artificial (ATIA), 2nd Workshop of Investigadores
en Ciencias de la Computacidn (WICC) (La Plata, Argentina, May 2000), Universidad
Nacional de La Plata.

