
Defeasible Reasoning in Dynamic Domains

M. Capobianco G. R. Simari

Grupo de Investigación en Inteligencia Artificial (GIIA)
Departamento de Ciencias de la Computación

Universidad Nacional del Sur
e-mail: { mc,grs }@cs.uns.edu.ar

Abstract

The design of intelligent agents is a key issue for many applications. Since there
is no universally accepted definition of intelligence, the notion of rational agency was
proposed by Russell as an alternative for the characterization of intelligent agency.

A rational agent must have models of itself and its surroundings to use them in
its reasoning. To this end, this paper develops a formalism appropriate to represent
the knowledge of an agent. Moreover, if dynamic environments are considered, the
agent should be able to observe the changes in the world, and integrate them into
its existing beliefs. This motivates the incorporation of perception capabilities into
our framework.

The abilities to perceive and act, essential activities in a practica! agent, demand
a timely interaction with the environment. Given that the cognitive process of a
rational agent is complex and computationally expensive, this interaction may not
be easy to achieve. To solve this problem, we propase inference mechanisms that
rely on the use precompiled knowledge to optimize the reasoning process.

Keywords: knowledge representation, defeasible reasoning, rational agents.

1 Introd uction

The design of intelligent agents is a key issue for many applications. Since there is no
universally accepted definition of intelligence, the notion of rational agency was proposed
by Russell [11] as an alterna ti ve for the characterization of intelligent agency. In short,
an agent is said to be rational if it performs the right actions according to the information
it possesses and the goals it wants to achieve.

A rational agent must have models of itself and its surroundings to use them in its
reasoning [7]. To this end, this paper develops a formalism appropriate to represent the
knowledge of our agent. When a dynamic environment is considered, the agent should be
able to perceive the changes in the world and integrate them into its existing beliefs [7].
This involves to provide the agent with the capability of sensing its surroundings, and to
define a way of incorporating the new observations into its knowledge. The specification of

the former depends 011 the a.pplícatio11 domain, but it should be broad enough to comprise
the input by a human opera.tor. To accomplish the latter, we have ada.pted the k11mvledge
representa.tion system to handle perceptions properly.

The abilities to perceive and act, essential activities in practical agents, demand a
timcly interaction with the environment. Given that the cognitive process of rational
agents is complcx and compntationally expensive, this interact.ion may not be eas~y to
achieve. To solve this problem, 've ha.ve defined inference rnechanisms tha.t rely on the
use of precompiled knowledge to optirnize the reasoning process.

The problem of optimizing a K11mvledge Representation and Reasoning frame"\vork was
anal:yzed b:y the authors in a prior work [3]. In that a.rticle, the basic idea "\Vas to mai11tai11
a repository of the conclusions previously computed to avoid repeating the reasoning
process on the same input. The disadvantages of that formulation were twofold. Firstly,
its applicability was restricted given that it only hclped in the solution of recurrent queries.
Secondly, the recorded information had to be updated each time the agent acquired a new
observation: and the restoring operation was a demanding task. In this \vork, we have
developed a new proposal that addresses those shortcornings.

The remainder of this paper is organized as follows. Section 2 redefines the system of
defeasible logic progmmming, ta.iloring it for modeling the epistemic state of an a.ge11t in a.
dynamic domain. Kext, section 3 focuses 011 the incorporatio11 of perception mecha11isms
and sect.ion 4 describes how to use precompilcd knowlcdge to speed-up thc deduction
process. Finally, section 5 statcs thc conclusions.

2 Observation based DeLP

The formalism of Dr'-fr'.asib le Logic PmgmmrnJng [5] (DcLP) combines thc advantages of
logic programming ami defr'.asible argnrnentatúm 1

. In this framcwork, an ar:qmrwntation
systern is used to decide bet,veen contradictory goa.ls through a dialectical analysis.

Codifying the knmvledge base of the a.gent by rnea.ns of a DeLP program is a prornising
alternative, since it provides a good trade-off between expressivity and implernenta.bility.
For this reason, "\Ve ha.ve chosen to use a modification of DeLP that i11corporates perceptio11
abilities. This modificatio11 is called Observation based DeLP (ooeLP). Kext , we define
the ODeLP formalism, detailing the differences with respect to the original system.

The language of ODeLP is composed by a sct of observations encoding the knowl­
edge the agent has about the world, ancl a set of defeas1:ble rules representing tentative
information, i.c., inforrnat.ion that can be used if nothing is posed against it. In the fol­
lmvings definitions, we consider literals as atoms that may be preceded by the syrnbol
"rv" denoting classical 11egatio11.

Definition 2.1. (Obscrvation) An observation ú; a gmnnd litcml re¡JTescnting some fact
abont the world tlwt the agent bdicues to be cornx:t. •

Definition 2.2. (Defeas'ible Tule) A defeasible rule is an orden;d paiT: converáently de­
noted as Head < Body, when; Head is a gnmnd ldeml and Body 'is a non-em:pty finite set
of qround litemls. •

1 For a more detailed analytiis of thiH coneept, tiee [13, 8, 10, 2, 4].

Definition 2.3. (De.feasible Loqic Progmm) A defeasible logic progra.m (DLP) is a finite
set o.f observations and de.feasible rules. In a DLP P, we distinguish the set \jJ o.f obser­
vations and the set .6. o.f de.feasible rules. The set \jJ must be non-contradictory: i.e.: it
cannot contain a litr'-ml and ds cornplr'.rnent. Whr'-n required, we denote P as (w, .6.). •

:.Jote that we only focus on propositional programs. As sta.ted in [6]. rules with variables
are viewed as "schemata" tha.t represent a. set of ground instances.

I\ oticc the difference bctween ODeLP and thc DcLP language. A DeLP program con­
sists of a sct of dr'.fr'-asible rules and a set of str·ict rulr'.s. A strict rule is defined as an
ordered pair, denoted as Head f- Body. Facts are represented by strict rules with an
ernpty body. Syntact.ically, the syrnbol :'f-'' is all that dist.inguishes strict from defeasible
rules. Hmvever, they a.re semant.ically different: strict rules stablish a strong connection
between its antecedent and its consequent. In ODeLP these rules are reduced to a set
of observations. This simplifying assumption "\Vill help in understa.nding the problems
related with a dynamic environment. The final goa.l of this research is to use full DeLP.

Having defincd the conccpt of dcfeasiblc programs, we focus on the conscquencc op­
erator for this programs. Thc infcrcnces that can be obtained from a ODeLP program are
ground literals. Accordingly, a defeas'ible queTy (or simply a query) is a defeasible rule
"--<!" wit.h empty head and a ground literal l in its body.

Definition 2.4. (Defeasible dr'.r·ivation) Let P be a ODeLP prograrn and let q be a gmnnd
l'iter·al. A finüe sequence of gnmnd lüemls. s = q 1 , q2, ... , qn-l, q. ú; said to be a defeasible
derivation joT q from p (abbr-eviated p rv q) 'ij jor every qi, 1 <:::: i -<; n .. 'it holds tJwt q¡ E W,
or q¡ is a consequent o.f a de.feasible rule r E .6., r = q.¡ --<h , lm, where h , lm are
qround literals previously occurrinq in s. •

The defea.':>ible rules belonging to .6. play the role of inference rules in the derivat.ion.
Although the set \jJ must be non-contradictory. P may allmv the defeasible derivation of
complementary literals. Thus, the system should have a. mecha.nism for deciding between
them. In what follows, wc characteri~c this mcchanism.

In ODeLP, thc cxistcnce of a dcfeasiblc dcrivation for a literal q is not cnough to acccpt
it. Answcrs to qucrics must be supported by arguments:

Definition 2.5. (Ar:qmrwnt Snb-argurnent) Oiven a ODeLP progrnrn P, an argumcnt
A for a gm·nnd literal q, also denoted (A, q), Ls a subsr;t of the de.feasible n1Jes in P such
that:

1. therc C'.:r:ists a defeasible derúJation for q from \jJ U A,

2. W U A is non-contradictory,

8. A is the minimal set with respect to set inclusion that satisfies the previous condi­
tions.

•
Example 2 .l. In the following DL P ~ o bservations ami defeasible rules are separated for
the sake of clarity.

cat(tom).
cat(sylvester).
cat (grace) .
manx-cat (grace).
young(tom).

has-tail (X)---< cat (X) .
"""has-tail (X)---< cat (X) , manx-cat (X) .
'"'-'SOCial (X)---< aloof (X).
social (X)---< cat (X) , young (X) .
aloof (X)---< cat (X) .

From this program, thc following argumcnts can be built:

• (A1 , has-tail(grace)), whcrc A1 = {has-tail(gracc)---< cat(gracc)}.

• (A2 , rvhas-tail Cgrace)), vvhere A 2 = { rvhas-ta.il(grace)---< cat(grace),
manx-cat(grace)}

• (A3, rv social (tom)), \Vhere A3 = { rvsocial(tom)---< aloof(tom),
aloof(tom)---< cat (tom)}

• (A4 , social(tom)), where A 4 = {social(tom)---<cat(tom), :young(tom)}

The first argurnent supports the condusion tha.t Grace has a tail, because she is a cat
and norrnally ca.ts have tails. The second one clairns tha.t Grace is tailless given that she
belongs to a specia.l breed of cats 'vhose members do not have a tail. A 3 asserts that Tom
is not a socia.l creature since Tom is a cat, and cats are aloof. On the other hand, A 4

supports that Tom is social, considering that young cats are fricndly animals.

To give an answer to a quer:y q, the system tries to build an argument A for q, but
arguments that contradict or attack A could also exist (as shmvn in the example above).

Definition 2.6. (Co1.1nter-argument) An arg1.1ment (A1 , q1) counter-argues an arg1.1ment
(A2, q2) at a literal q zf and only if there is a sub-ar:qument (A, q) of (Az , q2) S'Uch that the
set { q1 , q} is contradictoryZ. •

Informally, a query for a literal q succeeds if there exists an undefeated argument
supporting q; that argument becomes a justzfication. To esta.blish whether A is an unde­
featcd argumcnt we must analyzc thc defeater-.s of A, i.e., thc countcr-argumcnts prcfcrcd
to A undcr a givcn criterion. Any partial ordcr on the sct of possiblc arguments can
be uscd to formulatc this critcrion. In particular, wc define thc following onc bascd on
specificity [9, 5].

Definition 2.7. (cmcLP Speczfú;ity) Let P be a ODcLP prograrn and let Lit be the .set o.f
grmmd lüerals belonging to the s'ignatnTe ofP. An mgnment (A1, h1) ú; rnon; specific than
an argurnent (A2 , h2) {denoted (A1, h1) C:: (A2 , h2)) 'if and only if foT every H C:: Lit 'it
holds tlwt HUA1 ~ h1 and H ff h1 únpl'ies tlwt HUA2 f-v h2 . (A1, h1) 'is saúl to be strictly
more spec~fic than (A2, h2) (denoted (A1, h1) >-- (Az, hz)) zt and only zt (A1. h1) t (A2, hz)
and (A2, hz) >i (A1, h1) •

2\Ve say that two literalH are contradietory if they are cornplementary >vith respect to dassieal negation.

Thís synta.ctíc comparíson a.llmvs us to díscrímínate two conflíctíng a.rguments, prefer­
íng the argument wíth grea.ter ínformatíon content or less use of defeasible rules. Lets
analyze definítíon 2. 7. The condítíon HU A1 f'-' h1 normally holds vvíth a nonempty set
H, bccause arguments do not contain facts. In thís case, the set H is saíd to adiDair'- A 1 .

Thc expressíon H f7L h1 is called the non-triviality requisitc, bccause it forces the cffect.ive
use of thc set H for deriving h1 . Hence, the previous dcfinition may be read as (A1 , h1)

is more specific than (A2 , h2) if ami only if for every set H which non-trivially activates
(A1 , h1) it holds that H non-trivia.lly acüva.tes (A2 , h2).

Example 2.2. Considcr thc arguments in example 2.1. (A2 , r-vhas-tail(tom)) is strictly
more spccific than (A1 , has-tail(tom)). Appl~ying definition 2.7, it holds that evcry
subsct of Lit that activates A 1 also activates A 2 , but there are subscts (c.g., { cat (tom)})
tha.t activa te A2 a.nd do not acüva.te A1 .

Although a críterion ís required, the notíon of defeat can be índependently formula.ted.

Definition 2.8. (Defeater) An argurnent (A1 , r11) defeats (A2 , q2) at a literal q, zf and
only if there e:ásts a sub-myument (A, q) of (A2, q2) such tlwt (A1, q¡) counter-my·¡ws
(A2, q2) at q. and e'ithcr:

1. (A1 , q1) is prejéred to (A, q) by the prefererux criterion (then (A1, q1) v:; a proper
dcfcatcr of (A2, (]2)), or

2. (A1 , q1) is unrelated to (A, q) by the preference criterion (then (A1 , q1) is a blockíng
defea.ter o.f (A2, q2)). •

Since defeaters are arguments , there rnay be defeaters for the defeaters and so on. For
this reason, a complete díalectical a.nalysis is required to determine \vhich a.rguments
are ultímately accepted. Thís analysís consísts of the constructíon and ma.rking of the
dialectical tree. As an output of the markíng process, the undefea.ted a.rguments are
labeled as U-nodes, and the defeated ones as D-nodes.

Definition 2.9. (Dialectical Tree) Let A be an argum.ent joT q. Adialectical tree for
(A, q), denoted T(A,q) , is Tecursú;ely defined as follows:

1. A single node labeled with an arqument (A, q) with no defeaters (proper or blockinq)
L.:; by itself the dialectical tn>.e for (A, q).

2. Let (A1 , q1), (A2 • q2), .•. , (An, qn) be all the defeaters (proper or blockinq) .for (A, q).
The dialectical tree for (A, q), T(Aq), is obtained by labeling the root no de with (A, q),
and rnaking this nodr'. the paren,t of the roots nodr'.s j(n- the &ialedical trr'.es correspond-
1:ng to (Al, ql), (A2, q2), .. . , (An, (}¡¡.). •

Definition 2.10. (Markinq o.fthe dialectical tree) Let (A1 , q1) be an arqurnent and T(A1 ,r11)

its dialectical tree, then.·

1. All the lea.ves in 'Tc.A1 ,q1) ar-e rnarked a..s a U-nade.

2. Let (A2 , q2) be an inner node of T(A1 ,q1) . Then (A2 , q2) is rnarked as U-nade ~l and
only if every child o.f (A2 , q2) i.s rna.rked a.s a D- nade. The nodr; \A2 , r12) 1:s rnarked
a.s a D- nade 1}' and only if it ha.s at lea..st a child rnarked a.s U- nade. •

Example 2.3. The dialectical tree for (A1 , has-tail (grace)) is composed by the argu­
ment (A1) has-tail (grace)) and its sale defeater (A2) rvhas-tail (grace)) o Therefore,
(A2 , rvhas-tailCgrace)) is marked as a U-node and (A1 , has-tailCgrace)) is marked
as a D-nodeo

The notion of acceptable argumentation lines) required to avoid the so-called .fallacious
argumentation [12L is defined belmv. Let (A0 , q0) be an argument, and let 'Y(Ao,qo) be its
associatcd dialcctical trec. Every path from thc root (Ao, qo) toa lcaf (An, qn) in 'Y(Ao,qo) •

denotcd .A= [(Ao, 'lo), (A1, ql), o o o, (An, fln)J, is an argumentation line of 'Y(AfMo)o
In each argumentation line .A = [(A0 , q0), (A1, q1), o o . , (An, qn)] the argument (A0 , q0)

is supporting the main query q0 , ami every argument (Aí, qi) defeats its predecessor
(A·i-1, q¡_¡) o Thus, for k 2': O, (A2k, q2kl is a supporting argument for q0 ami (A~k+1, q2k+l)
is a.n int.erfering argument for q0 • In other "\Vords, every argument. in the line supports qo
or int.erferes "\Vith it. As a result, an argumentation line can be split in nvo disjoint. sets:
As of supporting arguments) a.nd A1 of interfering argument.so Following) we define "\Vhich
argumentation lines are valid:

Definition 2.11. (Acceptable Argumentation Line) Let A= [(A0 , q0), (A 1, q1)). o o) (An, qn)]
be an argurnentation line in 'Y(Ao,Go) o We say that A is an acceptable argumcntation linc
zf and only 1f:

lo The sets A8 and A1 are both non-contradictory sets of arguments:

20 N o ar:qument (Ai, q.i) in .A is a sub-argument o.f an earlier argument (A1) q,i) in A
(i < .7)0 •

An acceptable dialectical tn;e is defined in turn as a tree where evcry argumentation linc
is acceptableo Finally, the notion of justification follows:

Definition 2.12. (Jnsti:fú:ation) Let A be an argurnent for- a literal qo and let 'Y(A,q) be
it.s associated acceptable dialectical tr-eeo A is a justification for q if and only if the root
of 'Y(A,q) is marked as a U-no deo •

3 Modeling an agent 's epistemic state

This section cstablishes the foundations for the use of the ODeLP system in defining thc set
of the agent 's beliefs. 1\ ext) it details t.he percept.ion capabilities added in the formalism
and deals "\Vit.h its associated problems.

3.1 Using the ODcLP system

Thc ODeLP systcm exhibits interesting propertics when used as a Knowledgc Reprcsen­
t.at.ion and Reasoning syst.emo In contrast with other models, no mechanisrn t.o enforce
consist.ency is required. The ODeLP prograrn P representing the knowledge base of t.he
agent is able to express the following doxast.ic at.titudes with respect to a ground literal q
in the signature of P.

• I3elieve that q is true.

• Believe that q is false~ t. e.~ believe in q, \vhere q means the cornplement of q \Vith
respect to dassical negation.

• ='Jeither believe that q is true nor that it is false.

To fonnalizc thcsc statcs, wc adopt a rnetalanguage bascd on a modal opcrator B
standing for "thc agcnt bclicvcs". This modal languagc consists of exprcssions of the
form Bq~ where q is a ground literal belonging to the signature of the prograrn. In the
semantics of this language~ Bq is true if ami only if there is a justification for q from the
ODeLP progra.m encoding t.he knowledge of t.he agent., i.e. , if there exist.s an argument A
such that A is a justífication for q.

I3ased on this, vve say that the agent believes in q vvhen Bq is true, does not believe in
q when B q is trne, and is undecidcd on q whcn neither Bq nor B q are true . .:--Jo te that for
any ODeLP program P, Bq bcing trne implies the falsity of B q: an agcnt cannot bclievc
a literal and its cornplement. Anot.her int.eresting property involves the cert.a.inty of t he
lit.era.ls present in the observation set \11. It can be shmvn that for every literal q E W, it
holds Bq. This is consistent \Vith definit.ion 2.1, in which observations are fa.cts the agent
beliwv·es.

3.2 Handling perceptions

To a.ct in a. dyna.rnic \vorld, our a.gent rnust be a.ble t.o consta.ntly upda.te its beliefs: a.cquire
new ones and revise or give up old ones. To do t.his, t.he agent must. be able to perceíve.
Hmvever, the a.cquisít.ion of non-cert.a.ín beliefs is a problem a.ssociated \Vith percept.ion. To
deal \Vít.h ít., we assume the perceptíon mechanism t.o be flavvless. This prevents sít.ua.t.ions
whcrc false infercnces are obtaincd. Albcit we realize that this assumption nccds not to
be veridical, therc are many interesting domains whcre this is a rcasonable precondition

The task of perceiving can be carried out by a mechanism that detect.s the changes in
t.he world aml reports the literals representing t.hose changes. This mechanism depends on
t.he particular application dornain~ aml its definition is not. addressed in this paper. The
perceived literals are added to the knowledge of the agent ~ into the set of observations \11 .
.:--Jotice t.ha.t. if new facts are blindly added to \11, ít. may b ecome inconsístent..

Example 3.1. Suppose t.hat rvyoung (tom) is to be added to the ODeLP prograrn in
example 2.1. (Tom may have become a grmvn-up cat.). This cont.radicts the exísting
observation th at t.om ís young.

\Ve avoid thís sit.uat.ion using a revision funct.ion t.hat. cont.rols t.he updating of \11 \Vhen
new information ís added. Prior to the addition of a new literal a to W, this funct.ion
removes the element of \11 t.hat. contra.dicts o, if one exist.s.

In this rcvision, we apply an implicit critcrion that favors ncw perccptions. This stems
from thc fact that givcn our initial assumption, both of thc obscrvations in disagreemcnt
were correct. a.t the time of their incorporation. Accordingly, the only reason for t he
conflict. to a.rise is a. cha.nge in the st ate of world , a.nd the new fa.ct should b e preferred
uver the old one.

Definition 3.1. (Revision) Let P = (w, ~~ be a ODeLP program anda an observation.
The revision o.fw by a, denoted as W*a, is defined as.follows: W*a = (w-{a})U{a:} •

Continuing \Vith the previous example, we can see hmv a revision p erformed over the
set of observa.tions modifies the set of beliefs. In a. sense, the a.gent can change its previous
picture of the world when faced vvith nevv information.

Example 3.2. Before the revision of \jJ \Vith respect to rvyoung(tom) ~ the conclusion
social(tom) was inferred by the system. This conclusion is \Vithdra.wn vvith the elimi­
na.tion of young(tom), and the argument (A 3 , rv social(tom)) (see exa.mple 2.1) becomes
a justification for rvso cial (tom).

4 Introducing Dialectical Bases

As mentioned in the introduction, integrating precompiled knowlcdge may hclp to opti­
mi;>;e the inference process. In this ::;ection~ we addre::;s how to build this component and
how to u::;e it to speed-up reasoning in ODeLP. \Ve maintain a repo::;itory containing every
possible a.rgument that could be built from a given set ~ of defeasible rules. This reposi­
tory should also keep the defea.t relation between these arguments. \Vhen the reasoning
process starts over a certain ODeLP program P = (w~ ~). the system uses the precompiled
arguments that are valid in this situa.t.ion, i.e., those which can be constrncted from the
set \jJ. This prevents the construction of the arguments and the search for their dcfeaters
that takes place when a query is being solved.

It rna.y be argued tha.t keeping track of every potential argurnent for a gi·ven progra.m
is costly. Hmvever , this task is performed only once ::;ince this ::;tructure is independent
from the current set of perceptions, and it does not have to be rebuilt or modified every
time \jJ changes. In vvhat follows, we forma.lize this idea.

Definition 4.1. (Hypothetú:al ATgnrnent) Let .6. be a set of defeas'ible Tnles. A snbset A
o.f ~ is said to be hypothetica.l a.rgument .for a literal q, also denoted (A, q)h, ~lthere exists
a consistent subset <I> of the literals in ú, such that (A, q) is an argument with respect to
p = (<I>, ~). •

In the definition above, the set <I> represents a. possible state of the 'vorld in 'vhich the
hypothetical argument can be constructed. It is clea.r that hypothetical arguments depend
only on the set of dcfeasible rules of the program. K everthcless, not every subset of the
dcfcasible rules is a h_ypothetical argument: some restrictions must be satisfied. The next
proposition hclps to find the hypothetical arguments in a certain ODeLP program.

Definition 4.2. (Base) Let A be a set of dej'eas1:ble rules, and let heads(A) (r·espectively
borües(A)) denote the lderals occurring in the head (respective/y body) of a defeasible
r"ule in A. A set Q(A) of grmmd ldemls ú; S(Úd to be the ba::;e of A 'if and only if
Q(A) = bodies(A)- heads(A). •

Proposition l. Let P = (w, ~~ be an ODeLP program, A be a subset of ~ and q a literal
::;uch t hat:

l. Q(A) u A ~ q,

2. the set of lítera.ls occurring in the rules in A is consistent, and

3. A is the minimal set with respect to set. inclusion that fulfills the previous condit.ions.

Thcn A is a hypot.het.ical argumcnt for q bascd on .6... •
To understand t.he proposition above, consider a subset A of .6.. t.hat. mcets the enu­

merat.ed conditions. If wc ta.ke <I> = Q(A), it can be shown t.hat. A is an argument with
respect t.o (<I>, .6..) (This sat.isfy the existence condit.ion in definition 4.1.). Conscquentl,y,
t.he comput.at.ion of hypot.het.ical arguments can be reduced to finding subsets of .6.. based
on t.his proposition.

\Ve need to define hmv the defeat relation among t.hese elements is stored. To this
purpose, \Ve overload the term counter-argues, using it for hypothet.ical arguments too. A
hypothetical argument (A1 , q1)h co1mter-arques anot.her hypot.hetical argument (A2 , q2h
ata literal q if ami only if there is a sub-argument (A, q)h of (A2 , r12) h such that { q1, q} is
contradictory. This kind of counter-arguments reprcsents only a potential attack bctween
t.he argurnent.s in contest.. It. rnight be the case that these a.rguments cannot. co-exists in
any scena.no.

To check whether a. hypot.het.ical a.rgument defea.t.s one of its counter-argurnent.s, t.he
crit.erion used to compare pa.irs of arguments must be adapted to pairs of hypothetical
arguments. In particular, we have redefined specificity (definition 2. 7) to compare argu­
ments independently from the set of observations. Note that the meaningful activat.ion
sets of an argument. A must be subsets of thc litcrals prescnt in thc rules of A.

Definition 4.3. (Precompiled Specificity) A hypothetical ar:qument (A1 , h.1)h is more spe­
cZfú: than a hypothctical arymnent (A2, h2)h (dcnoted \A1, h1) t (A2, h2)) zf and only zf
.for every H ~ litcmls(A1), it holds that HU A 1 r.- h1, and H lf h1 irnplies HU A 2 ~ h2 .

(A1, h1)h i.s said to be strictly more speczfú: than \A2, h2)h (dcnoted (A1, h1)h >- (A2, h2) 1)

if and only if (A1, h1) h t (A2, h2) h and \A2, h2) h 'i. (A1, h1) h •

The notion of dcfeat bctween hypot.hetical argumcnts can be dcfined in an analogous
way to definition 2.8. The definit.ion belmv describes t.he notion of dialectical bases. This
component subsumes the precornpiled knmvledge of the agent, according to the previous
discussion.

Definition 4.4. (Dialectú:al Base) Let P = (w, .6..) be a oneLP pwgrarn. The t'11ple
(A, Dp, Db) ú; said to be the dialectical base of P with respect to .6.., denoted as IBL'..: if
and only 'if:

1. A is a set of hypothetú:al arg'ument8: snch that A E A if and only if A i8 ba8ed on
.6...

2. Dp and Db aTe Telations o'uer the element8 of A, such that joT cucry paiT (A1 , A2):

it holds tlwt A2 is a]JID]JeT (resp. blocking) defeaie'r of A1: 4 and only if (A1, A2)
belong8 to Dp ('re8p. Db)· •

The dialectical base of a ODeLP program can be constructed after the knowledge of t he
agent. is encoded in a ODeLP program P. First vve generate the set. A, including in it

Algorithm 4.1. lnference process

input:
output:

P = (w, 6.), q

(A1 , q)h (a justification for q, if any)

For every hypothetical argument (A1 , q)h in A such that
acceptable CA1, P)

state := undefeated
For every A 2 in A such that (A1 , A 2) E Dp or (A1 , A 2) E Dp
and acceptable CA2 , P)

if state(A2 , P, 0, {A¡})= undefeated
then state := defeated

if state = undefeated
then returnC(A1, q) 1)

every subset of the defeasible rules in P sa.tisfying the properties stated in proposit.ion l.
='Jext, \Ve compute the defeat relation a.mong the elements of A using the precompiled
compa.rison criterion. For every pair (A1 , A 2), such that A 1 , A 2 E A and A 2 is a proper
(resp. blocking) defeater for A 1 , \Ve add (A1 , A 2) to Dv (resp. Db)· \Vhen implementing
this framework, appropriate data structures must be chosen to optimize the creation and
use of the dialcctical base.

Suppose thc s_ystcm is faccd with a query q with rcspcct to a ODcLP program P =

(w, 6.). Thc traditional proccdurc starts by building an argument A 1 for q from the
rules in P. Then it loob for the defeaters of A 1 that may prevent A 1 frorn becorning
a justification for q. Follmving, the state of A 1 is decided based on the condit.ion of its
defea.ters (see definition 2.10).

If II3Ll is used, the inference process may be ca.rried out as sta.ted in a.lgorithm 4.1.
Since every feasible a.rgument is a.lready recorded in II3Ll, there is no need of constructing
the argumcnts for q nor its dcfcatcrs. Thc systcm sclccts thc hypothctical argumcnts
for q that constitutc argumcnts bascd on (w, 6.) (i. e., that are valid for thc particular W
under considera.tion). To this purpose, every (A1 , qh E IBLl is checked using the funct.ion
acceptable CA1 , P) (see algorithrn 4.2). I\ext, each acceptable hypothet.ical argument
(A1 , q) h is analy"'ed to see if it is a justification for q. This task is addressed using
the relations Dv and Db to look for the defeaters of A 1. The state function depicted
in figure 4.3 decides vvhether the:y are defeated or not, and this information is used to

determine the state of A 1 a.ccording to definition 2.10.
Thc state algorithm takcs as input an argumcnt A 1 , a ODcLP program P such that

A 1 is bascd on P, and thc intcrfcrcncc and support argumentativo líncs up to this point,
IL and S L. It \vorks in a similar rnanner to procedure 4.1, analy:1.ing the defeater::; of
A 1 to define its state. Hmvever, one more condition must be met: for a defeater to
be sati::;factory, it rnu::;t also cornply the rules e::;tablished in definit.ion 2.11, regarding
acceptabilíty of the argumenta.tive línes. The function valid tests these conditions.

Algorithm 4.2. Acceptable

input:
output:

A1, P = (w, 6.)
acceptable

acceptable := false
if base CA1) ~ W and consistent CA1 , P) and minimal CA1 , P)

then acceptable true

Algorithm 4.3. State

input: A 1 , P = (w, 6.), IL, SL
output: state

state := undefeated
For every A 2 in A such that C CA1 , A 2) E Dp or CA1 , A 2) E Dp) and
a e ceptable CA2 , P) and val id CA2 , 1 L, S L)

if A 1 is a supporting argument and state CA2 , P ,1 L, S L U {Al})
= undefeated

then state := defeated
if A 1 is an interfering argument and stateCA2 ,P,JL U {A1 },SL)
= undefeated

then state := defeated
return(state)

5 Conclusions

\Ve have de;,reloped a framework for representing the episternic state of an agent~ adapting
the DeLP systern for this task. The expressiveness of the defined language allows the
descríption of complex domains. This formalism also provide mechanisms to acquire
ínformatíon perceptually, makíng the agent adaptable to a dynamic world.

The use of precompíled knowledge can improve the performance of argument-based
systcms. For this rca.son, wc havc dcfincd thc notion of dialcctical bases and discusscd
thc main issucs in thc intcgration of this componcnt into ODcLP.

Solid theoretical foundat.ions of agent design should be based on proper formalisms for
knmvledge representat.ion and reasoning [1]. The incorporation of our framework into an
agent architecture results in a rnodel vúth ínteresting theoretica.l and pract.ical fea.tures.

References

[1] 13AHAL, C .. AND GELFOND, :rvr. Reasoning Agents in D:ynamic Domains. To be
published.

[2] BONDARENKO, A. G., DUNG, P. 1\'1., KOWALSKT, Il. A., AND TONT, F. An
Abstract, Argumentation-Theoretic Approach to Default Reasoning. Art~ficial Intel­
ligence 98, 1-2 (1995), 63-101.

[3] CAPOBIANCO, M., CHcSÑEVAR, C. l., AND StMAlU, G. R. A Formalization
of Dialectical 13ases for Defeasible Logic Progra.mming. In Proceedings o.f the VI
Internacional Congress o.f Informatics Engineering (Apr. 2000).

[4] DuNG, P. l'vi. On the Acceptability of Arguments and its Fundamental Role in
I\onmonotonic Reasoning and Logic Progra.mming and n-Person Games. Art~ficial

Intelligence 77, 2 (1995), 321-357.

[5] GAlWÍA, A. J. La Programación en Lógica Rebatible: su definición teórica y com­
putacional. :\Iaster's thesis, Departamento de Ciencias de la Computación, Utüver­
sidad I\acional del Sur, Bahía Blanca, Argentina, Junc 1997.

[6] LlFSCHlTL;, V. Foundations of Logic Programming. In Principles of Knowledge
Representation, G. Bre\vka, Ed. CSLI Publications, 1994, pp. 69-127.

[7] POLLOCK, J. L. The Phylogeny of Rationality. Computational Intelligence 17
(1993), 568- 588.

[8] POLLOCK, J. L. Cognitive Carpentry: a blueprint .for how to build a person. I3rad­
ford(\UT Press, 1995.

[9] Poou~, D. L. On the Comparison of Theories: Preferring the :\'Iost Specific Ex­
planation. In Proceedings of the Ninth International Joint Con.ference on Art~ficial
Intelligence (1985), I.TCAI, pp. 144- 147.

[10] PHAKKEN, H., AND SAlUOH, G. A S:ystem for Defeasible Argumentation \Vith
Defeasible Priorities. In Proceedings o.f the International Con.ference on Formal and
Applied Practica! Reasoning (1996), Springer Ver lag, pp. 510-524.

[11] RuSSCLL, S. J. Rationaht}r and Intelligence. Art~ficial Intelligence 94, 1-2 (1997),
57- 77.

[12] SnvTART, G. Il., CHBSÑEVAR, C. I. , AND CAReTA, A. J. The Role of Dialectics
in Defeasible Argumentation. In Proceedings o.f the XIV Conferencia Internacional
de la Sociedad Chilena para Ciencias de la Computación (I\ov. 1994), pp. 111-121.
http: 11 cs. uns.cdu.ar 1 giia.html.

[13] Sll\1AIU, G. R., AND LOUI, R. P. A :\Iathematical Treatment of Defeasible Rea­
soning and its Implementation. Arti.fi cial Intelligence 58, 1-2 (1992) , 125-157.

