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Abstract 

The design of intelligent agents is a key issue for many applications. Since there 
is no universally accepted definition of intelligence, the notion of rational agency was 
proposed by Russell as an alternative for the characterization of intelligent agency. 

A rational agent must have models of itself and its surroundings to use them in 
its reasoning. To this end, this paper develops a formalism appropriate to represent 
the knowledge of an agent. Moreover, if dynamic environments are considered, the 
agent should be able to observe the changes in the world, and integrate them into 
its existing beliefs. This motivates the incorporation of perception capabilities into 
our framework. 

The abilities to perceive and act, essential activities in a practica! agent, demand 
a timely interaction with the environment. Given that the cognitive process of a 
rational agent is complex and computationally expensive, this interaction may not 
be easy to achieve. To solve this problem, we propase inference mechanisms that 
rely on the use precompiled knowledge to optimize the reasoning process. 
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1 Introd uction 

The design of intelligent agents is a key issue for many applications. Since there is no 
universally accepted definition of intelligence, the notion of rational agency was proposed 
by Russell [11] as an alterna ti ve for the characterization of intelligent agency. In short, 
an agent is said to be rational if it performs the right actions according to the information 
it possesses and the goals it wants to achieve. 

A rational agent must have models of itself and its surroundings to use them in its 
reasoning [7]. To this end, this paper develops a formalism appropriate to represent the 
knowledge of our agent. When a dynamic environment is considered, the agent should be 
able to perceive the changes in the world and integrate them into its existing beliefs [7]. 
This involves to provide the agent with the capability of sensing its surroundings, and to 
define a way of incorporating the new observations into its knowledge. The specification of 



the former depends 011 the a.pplícatio11 domain, but it should be broad enough to comprise 
the input by a human opera.tor. To accomplish the latter, we have ada.pted the k11mvledge 
representa.tion system to handle perceptions properly. 

The abilities to perceive and act, essential activities in practical agents, demand a 
timcly interaction with the environment. Given that the cognitive process of rational 
agents is complcx and compntationally expensive, this interact.ion may not be eas~y to 
achieve. To solve this problem, 've ha.ve defined inference rnechanisms tha.t rely on the 
use of precompiled knowledge to optirnize the reasoning process. 

The problem of optimizing a K11mvledge Representation and Reasoning frame"\vork was 
anal:yzed b:y the authors in a prior work [3]. In that a.rticle, the basic idea "\Vas to mai11tai11 
a repository of the conclusions previously computed to avoid repeating the reasoning 
process on the same input. The disadvantages of that formulation were twofold. Firstly, 
its applicability was restricted given that it only hclped in the solution of recurrent queries. 
Secondly, the recorded information had to be updated each time the agent acquired a new 
observation: and the restoring operation was a demanding task. In this \vork, we have 
developed a new proposal that addresses those shortcornings. 

The remainder of this paper is organized as follows. Section 2 redefines the system of 
defeasible logic progmmming, ta.iloring it for modeling the epistemic state of an a.ge11t in a. 
dynamic domain. Kext, section 3 focuses 011 the incorporatio11 of perception mecha11isms 
and sect.ion 4 describes how to use precompilcd knowlcdge to speed-up thc deduction 
process. Finally, section 5 statcs thc conclusions. 

2 Observation based DeLP 

The formalism of Dr'-fr'.asib le Logic PmgmmrnJng [5] (DcLP) combines thc advantages of 
logic programming ami defr'.asible argnrnentatúm 1

. In this framcwork, an ar:qmrwntation 
systern is used to decide bet,veen contradictory goa.ls through a dialectical analysis. 

Codifying the knmvledge base of the a.gent by rnea.ns of a DeLP program is a prornising 
alternative, since it provides a good trade-off between expressivity and implernenta.bility. 
For this reason, "\Ve ha.ve chosen to use a modification of DeLP that i11corporates perceptio11 
abilities. This modificatio11 is called Observation based DeLP (ooeLP). Kext , we define 
the ODeLP formalism, detailing the differences with respect to the original system. 

The language of ODeLP is composed by a sct of observations encoding the knowl­
edge the agent has about the world, ancl a set of defeas1:ble rules representing tentative 
information, i.c., inforrnat.ion that can be used if nothing is posed against it. In the fol­
lmvings definitions, we consider literals as atoms that may be preceded by the syrnbol 
"rv" denoting classical 11egatio11. 

Definition 2.1. ( Obscrvation) An observation ú; a gmnnd litcml re¡JTescnting some fact 
abont the world tlwt the agent bdicues to be cornx:t. • 

Definition 2.2. (Defeas'ible Tule) A defeasible rule is an orden;d paiT: converáently de­
noted as Head < Body, when; Head is a gnmnd ldeml and Body 'is a non-em:pty finite set 
of qround litemls. • 

1 For a more detailed analytiis of thiH coneept, tiee [13, 8, 10, 2, 4]. 



Definition 2.3. (De.feasible Loqic Progmm) A defeasible logic progra.m (DLP) is a finite 
set o.f observations and de.feasible rules. In a DLP P, we distinguish the set \jJ o.f obser­
vations and the set .6. o.f de.feasible rules. The set \jJ must be non-contradictory: i.e.: it 
cannot contain a litr'-ml and ds cornplr'.rnent. Whr'-n required, we denote P as (w, .6.). • 

:.Jote that we only focus on propositional programs. As sta.ted in [6]. rules with variables 
are viewed as "schemata" tha.t represent a. set of ground instances. 

I\ oticc the difference bctween ODeLP and thc DcLP language. A DeLP program con­
sists of a sct of dr'.fr'-asible rules and a set of str·ict rulr'.s. A strict rule is defined as an 
ordered pair, denoted as Head f- Body. Facts are represented by strict rules with an 
ernpty body. Syntact.ically, the syrnbol :'f-'' is all that dist.inguishes strict from defeasible 
rules. Hmvever, they a.re semant.ically different: strict rules stablish a strong connection 
between its antecedent and its consequent. In ODeLP these rules are reduced to a set 
of observations. This simplifying assumption "\Vill help in understa.nding the problems 
related with a dynamic environment. The final goa.l of this research is to use full DeLP. 

Having defincd the conccpt of dcfeasiblc programs, we focus on the conscquencc op­
erator for this programs. Thc infcrcnces that can be obtained from a ODeLP program are 
ground literals. Accordingly, a defeas'ible queTy (or simply a query) is a defeasible rule 
"--<!" wit.h empty head and a ground literal l in its body. 

Definition 2.4. (Defeasible dr'.r·ivation) Let P be a ODeLP prograrn and let q be a gmnnd 
l'iter·al. A finüe sequence of gnmnd lüemls. s = q 1 , q2, ... , qn-l, q. ú; said to be a defeasible 
derivation joT q from p ( abbr-eviated p rv q) 'ij jor every qi, 1 <:::: i -<; n .. 'it holds tJwt q¡ E W, 
or q¡ is a consequent o.f a de.feasible rule r E .6., r = q.¡ --<h .... , lm, where h .... , lm are 
qround literals previously occurrinq in s. • 

The defea.':>ible rules belonging to .6. play the role of inference rules in the derivat.ion. 
Although the set \jJ must be non-contradictory. P may allmv the defeasible derivation of 
complementary literals. Thus, the system should have a. mecha.nism for deciding between 
them. In what follows, wc characteri~c this mcchanism. 

In ODeLP, thc cxistcnce of a dcfeasiblc dcrivation for a literal q is not cnough to acccpt 
it. Answcrs to qucrics must be supported by arguments: 

Definition 2.5. (Ar:qmrwnt Snb-argurnent) Oiven a ODeLP progrnrn P, an argumcnt 
A for a gm·nnd literal q, also denoted (A, q), Ls a subsr;t of the de.feasible n1Jes in P such 
that: 

1. therc C'.:r:ists a defeasible derúJation for q from \jJ U A, 

2. W U A is non-contradictory, 

8. A is the minimal set with respect to set inclusion that satisfies the previous condi­
tions. 

• 
Example 2 .l. In the following DL P ~ o bservations ami defeasible rules are separated for 
the sake of clarity. 



cat(tom). 
cat(sylvester). 
cat (grace) . 
manx-cat (grace). 
young(tom). 

has-tail (X)---< cat (X) . 
"""has-tail (X)---< cat (X) , manx-cat (X) . 
'"'-'SOCial (X)---< aloof (X). 
social (X)---< cat (X) , young (X) . 
aloof (X)---< cat (X) . 

From this program, thc following argumcnts can be built: 

• (A1 , has-tail(grace) ), whcrc A1 = {has-tail(gracc)---< cat(gracc)}. 

• (A2 , rvhas-tail Cgrace) ), vvhere A 2 = { rvhas-ta.il(grace)---< cat(grace), 
manx-cat(grace)} 

• (A3, rv social (tom) ), \Vhere A3 = { rvsocial(tom)---< aloof(tom), 
aloof( tom)---< cat ( tom)} 

• (A4 , social(tom)), where A 4 = {social(tom)---<cat(tom), :young(tom)} 

The first argurnent supports the condusion tha.t Grace has a tail, because she is a cat 
and norrnally ca.ts have tails. The second one clairns tha.t Grace is tailless given that she 
belongs to a specia.l breed of cats 'vhose members do not have a tail. A 3 asserts that Tom 
is not a socia.l creature since Tom is a cat, and cats are aloof. On the other hand, A 4 

supports that Tom is social, considering that young cats are fricndly animals. 

To give an answer to a quer:y q, the system tries to build an argument A for q, but 
arguments that contradict or attack A could also exist (as shmvn in the example above). 

Definition 2.6. ( Co1.1nter-argument) An arg1.1ment (A1 , q1 ) counter-argues an arg1.1ment 
(A2, q2) at a literal q zf and only if there is a sub-ar:qument (A, q) of (Az , q2) S'Uch that the 
set { q1 , q} is contradictoryZ. • 

Informally, a query for a literal q succeeds if there exists an undefeated argument 
supporting q; that argument becomes a justzfication. To esta.blish whether A is an unde­
featcd argumcnt we must analyzc thc defeater-.s of A, i.e., thc countcr-argumcnts prcfcrcd 
to A undcr a givcn criterion. Any partial ordcr on the sct of possiblc arguments can 
be uscd to formulatc this critcrion. In particular, wc define thc following onc bascd on 
specificity [9, 5]. 

Definition 2.7. (cmcLP Speczfú;ity) Let P be a ODcLP prograrn and let Lit be the .set o.f 
grmmd lüerals belonging to the s'ignatnTe ofP. An mgnment (A1, h1) ú; rnon; specific than 
an argurnent (A2 , h2 ) {denoted (A1, h1 ) C:: (A2 , h2 )) 'if and only if foT every H C:: Lit 'it 
holds tlwt HUA1 ~ h1 and H ff h1 únpl'ies tlwt HUA2 f-v h2 . (A1, h1) 'is saúl to be strictly 
more spec~fic than (A2, h2) (denoted (A1, h1) >-- (Az, hz)) zt and only zt (A1. h1) t (A2, hz) 
and (A2, hz) >i (A1, h1) • 

2\Ve say that two literalH are contradietory if they are cornplementary >vith respect to dassieal negation. 



Thís synta.ctíc comparíson a.llmvs us to díscrímínate two conflíctíng a.rguments, prefer­
íng the argument wíth grea.ter ínformatíon content or less use of defeasible rules. Lets 
analyze definítíon 2. 7. The condítíon HU A1 f'-' h1 normally holds vvíth a nonempty set 
H, bccause arguments do not contain facts. In thís case, the set H is saíd to adiDair'- A 1 . 

Thc expressíon H f7L h1 is called the non-triviality requisitc, bccause it forces the cffect.ive 
use of thc set H for deriving h1 . Hence, the previous dcfinition may be read as (A1 , h1 ) 

is more specific than (A2 , h2 ) if ami only if for every set H which non-trivially activates 
(A1 , h1 ) it holds that H non-trivia.lly acüva.tes (A2 , h2 ). 

Example 2.2. Considcr thc arguments in example 2.1. (A2 , r-vhas-tail(tom)) is strictly 
more spccific than (A1 , has-tail(tom) ). Appl~ying definition 2.7, it holds that evcry 
subsct of Lit that activates A 1 also activates A 2 , but there are subscts (c.g., { cat (tom)}) 
tha.t activa te A2 a.nd do not acüva.te A1 . 

Although a críterion ís required, the notíon of defeat can be índependently formula.ted. 

Definition 2.8. (Defeater) An argurnent (A1 , r11) defeats (A2 , q2 ) at a literal q, zf and 
only if there e:ásts a sub-myument (A, q) of (A2, q2) such tlwt (A1, q¡) counter-my·¡ws 
(A2, q2) at q. and e'ithcr: 

1. (A1 , q1) is prejéred to (A, q) by the prefererux criterion (then (A1, q1) v:; a proper 
dcfcatcr of (A2, (]2)), or 

2. (A1 , q1) is unrelated to (A, q) by the preference criterion (then (A1 , q1 ) is a blockíng 
defea.ter o.f (A2, q2) ). • 

Since defeaters are arguments , there rnay be defeaters for the defeaters and so on. For 
this reason, a complete díalectical a.nalysis is required to determine \vhich a.rguments 
are ultímately accepted. Thís analysís consísts of the constructíon and ma.rking of the 
dialectical tree. As an output of the markíng process, the undefea.ted a.rguments are 
labeled as U-nodes, and the defeated ones as D-nodes. 

Definition 2.9. (Dialectical Tree) Let A be an argum.ent joT q. Adialectical tree for 
(A, q), denoted T(A,q) , is Tecursú;ely defined as follows: 

1. A single node labeled with an arqument (A, q) with no defeaters (proper or blockinq) 
L.:; by itself the dialectical tn>.e for (A, q). 

2. Let (A1 , q1), (A2 • q2), .•. , (An, qn) be all the defeaters (proper or blockinq) .for (A, q). 
The dialectical tree for (A, q), T(Aq), is obtained by labeling the root no de with (A, q), 
and rnaking this nodr'. the paren,t of the roots nodr'.s j(n- the &ialedical trr'.es correspond-
1:ng to (Al, ql), (A2, q2), .. . , (An, (}¡¡.). • 

Definition 2.10. (Markinq o.fthe dialectical tree) Let (A1 , q1) be an arqurnent and T(A1 ,r11) 

its dialectical tree, then.· 

1. All the lea.ves in 'Tc.A1 ,q1 ) ar-e rnarked a..s a U-nade. 

2. Let (A2 , q2) be an inner node of T(A1 ,q1) . Then (A2 , q2) is rnarked as U-nade ~l and 
only if every child o.f (A2 , q2 ) i.s rna.rked a.s a D- nade. The nodr; \A2 , r12) 1:s rnarked 
a.s a D- nade 1}' and only if it ha.s at lea..st a child rnarked a.s U- nade. • 



Example 2.3. The dialectical tree for (A1 , has-tail (grace)) is composed by the argu­
ment (A1 ) has-tail (grace)) and its sale defeater (A2 ) rvhas-tail (grace)) o Therefore, 
(A2 , rvhas-tailCgrace)) is marked as a U-node and (A1 , has-tailCgrace)) is marked 
as a D-nodeo 

The notion of acceptable argumentation lines) required to avoid the so-called .fallacious 
argumentation [12L is defined belmv. Let (A0 , q0 ) be an argument, and let 'Y(Ao,qo) be its 
associatcd dialcctical trec. Every path from thc root (Ao, qo) toa lcaf (An, qn) in 'Y(Ao,qo ) • 

denotcd .A= [(Ao, 'lo), (A1, ql), o o o, (An, fln)J, is an argumentation line of 'Y(AfMo)o 
In each argumentation line .A = [ (A0 , q0), (A1, q1), o o . , (An, qn)] the argument (A0 , q0) 

is supporting the main query q0 , ami every argument (Aí, qi) defeats its predecessor 
(A·i-1, q¡_¡) o Thus, for k 2': O, (A2k, q2kl is a supporting argument for q0 ami (A~k+1, q2k+l) 
is a.n int.erfering argument for q0 • In other "\Vords, every argument. in the line supports qo 
or int.erferes "\Vith it. As a result, an argumentation line can be split in nvo disjoint. sets: 
As of supporting arguments) a.nd A1 of interfering argument.so Following) we define "\Vhich 
argumentation lines are valid: 

Definition 2.11. (Acceptable Argumentation Line) Let A= [(A0 , q0 ), (A 1, q1)). o o) (An, qn)] 
be an argurnentation line in 'Y(Ao,Go) o We say that A is an acceptable argumcntation linc 
zf and only 1f: 

lo The sets A8 and A1 are both non-contradictory sets of arguments: 

20 N o ar:qument (Ai, q.i) in .A is a sub-argument o.f an earlier argument (A1) q,i) in A 
(i < .7)0 • 

An acceptable dialectical tn;e is defined in turn as a tree where evcry argumentation linc 
is acceptableo Finally, the notion of justification follows: 

Definition 2.12. (Jnsti:fú:ation) Let A be an argurnent for- a literal qo and let 'Y(A,q) be 
it.s associated acceptable dialectical tr-eeo A is a justification for q if and only if the root 
of 'Y(A,q ) is marked as a U-no deo • 

3 Modeling an agent 's epistemic state 

This section cstablishes the foundations for the use of the ODeLP system in defining thc set 
of the agent 's beliefs. 1\ ext) it details t.he percept.ion capabilities added in the formalism 
and deals "\Vit.h its associated problems. 

3.1 Using the ODcLP system 

Thc ODeLP systcm exhibits interesting propertics when used as a Knowledgc Reprcsen­
t.at.ion and Reasoning syst.emo In contrast with other models, no mechanisrn t.o enforce 
consist.ency is required. The ODeLP prograrn P representing the knowledge base of t.he 
agent is able to express the following doxast.ic at.titudes with respect to a ground literal q 
in the signature of P. 



• I3elieve that q is true. 

• Believe that q is false~ t. e.~ believe in q, \vhere q means the cornplement of q \Vith 
respect to dassical negation. 

• ='Jeither believe that q is true nor that it is false. 

To fonnalizc thcsc statcs, wc adopt a rnetalanguage bascd on a modal opcrator B 
standing for "thc agcnt bclicvcs". This modal languagc consists of exprcssions of the 
form Bq~ where q is a ground literal belonging to the signature of the prograrn. In the 
semantics of this language~ Bq is true if ami only if there is a justification for q from the 
ODeLP progra.m encoding t.he knowledge of t.he agent., i.e. , if there exist.s an argument A 
such that A is a justífication for q. 

I3ased on this, vve say that the agent believes in q vvhen Bq is true, does not believe in 
q when B q is trne, and is undecidcd on q whcn neither Bq nor B q are true . .:--Jo te that for 
any ODeLP program P, Bq bcing trne implies the falsity of B q: an agcnt cannot bclievc 
a literal and its cornplement. Anot.her int.eresting property involves the cert.a.inty of t he 
lit.era.ls present in the observation set \11. It can be shmvn that for every literal q E W, it 
holds Bq. This is consistent \Vith definit.ion 2.1, in which observations are fa.cts the agent 
beliwv·es. 

3.2 Handling perceptions 

To a.ct in a. dyna.rnic \vorld, our a.gent rnust be a.ble t.o consta.ntly upda.te its beliefs: a.cquire 
new ones and revise or give up old ones. To do t.his, t.he agent must. be able to perceíve. 
Hmvever, the a.cquisít.ion of non-cert.a.ín beliefs is a problem a.ssociated \Vith percept.ion. To 
deal \Vít.h ít., we assume the perceptíon mechanism t.o be flavvless. This prevents sít.ua.t.ions 
whcrc false infercnces are obtaincd. Albcit we realize that this assumption nccds not to 
be veridical, therc are many interesting domains whcre this is a rcasonable precondition 

The task of perceiving can be carried out by a mechanism that detect.s the changes in 
t.he world aml reports the literals representing t.hose changes. This mechanism depends on 
t.he particular application dornain~ aml its definition is not. addressed in this paper. The 
perceived literals are added to the knowledge of the agent ~ into the set of observations \11 . 
.:--Jotice t.ha.t. if new facts are blindly added to \11, ít. may b ecome inconsístent.. 

Example 3.1. Suppose t.hat rvyoung ( tom) is to be added to the ODeLP prograrn in 
example 2.1. (Tom may have become a grmvn-up cat.). This cont.radicts the exísting 
observation th at t.om ís young. 

\Ve avoid thís sit.uat.ion using a revision funct.ion t.hat. cont.rols t.he updating of \11 \Vhen 
new information ís added. Prior to the addition of a new literal a to W, this funct.ion 
removes the element of \11 t.hat. contra.dicts o, if one exist.s. 

In this rcvision, we apply an implicit critcrion that favors ncw perccptions. This stems 
from thc fact that givcn our initial assumption, both of thc obscrvations in disagreemcnt 
were correct. a.t the time of their incorporation. Accordingly, the only reason for t he 
conflict. to a.rise is a. cha.nge in the st ate of world , a.nd the new fa.ct should b e preferred 
uver the old one. 



Definition 3.1. (Revision) Let P = (w, ~~ be a ODeLP program anda an observation. 
The revision o.fw by a, denoted as W*a, is defined as.follows: W*a = (w-{a})U{a:} • 

Continuing \Vith the previous example, we can see hmv a revision p erformed over the 
set of observa.tions modifies the set of beliefs. In a. sense, the a.gent can change its previous 
picture of the world when faced vvith nevv information. 

Example 3.2. Before the revision of \jJ \Vith respect to rvyoung(tom) ~ the conclusion 
social(tom) was inferred by the system. This conclusion is \Vithdra.wn vvith the elimi­
na.tion of young(tom), and the argument (A 3 , rv social(tom)) (see exa.mple 2.1) becomes 
a justification for rvso cial ( tom). 

4 Introducing Dialectical Bases 

As mentioned in the introduction, integrating precompiled knowlcdge may hclp to opti­
mi;>;e the inference process. In this ::;ection~ we addre::;s how to build this component and 
how to u::;e it to speed-up reasoning in ODeLP. \Ve maintain a repo::;itory containing every 
possible a.rgument that could be built from a given set ~ of defeasible rules. This reposi­
tory should also keep the defea.t relation between these arguments. \Vhen the reasoning 
process starts over a certain ODeLP program P = (w~ ~). the system uses the precompiled 
arguments that are valid in this situa.t.ion, i.e., those which can be constrncted from the 
set \jJ. This prevents the construction of the arguments and the search for their dcfeaters 
that takes place when a query is being solved. 

It rna.y be argued tha.t keeping track of every potential argurnent for a gi·ven progra.m 
is costly. Hmvever , this task is performed only once ::;ince this ::;tructure is independent 
from the current set of perceptions, and it does not have to be rebuilt or modified every 
time \jJ changes. In vvhat follows, we forma.lize this idea. 

Definition 4.1. ( Hypothetú:al ATgnrnent) Let .6. be a set of defeas'ible Tnles. A snbset A 
o.f ~ is said to be hypothetica.l a.rgument .for a literal q, also denoted (A, q)h, ~lthere exists 
a consistent subset <I> of the literals in ú, such that (A, q) is an argument with respect to 
p = (<I>, ~). • 

In the definition above, the set <I> represents a. possible state of the 'vorld in 'vhich the 
hypothetical argument can be constructed. It is clea.r that hypothetical arguments depend 
only on the set of dcfeasible rules of the program. K everthcless, not every subset of the 
dcfcasible rules is a h_ypothetical argument: some restrictions must be satisfied. The next 
proposition hclps to find the hypothetical arguments in a certain ODeLP program. 

Definition 4.2. (Base) Let A be a set of dej'eas1:ble rules, and let heads(A) (r·espectively 
borües(A)) denote the lderals occurring in the head (respective/y body) of a defeasible 
r"ule in A. A set Q(A) of grmmd ldemls ú; S(Úd to be the ba::;e of A 'if and only if 
Q(A) = bodies(A)- heads(A). • 

Proposition l. Let P = (w, ~~ be an ODeLP program, A be a subset of ~ and q a literal 
::;uch t hat: 

l. Q(A) u A ~ q, 



2. the set of lítera.ls occurring in the rules in A is consistent, and 

3. A is the minimal set with respect to set. inclusion that fulfills the previous condit.ions. 

Thcn A is a hypot.het.ical argumcnt for q bascd on .6... • 
To understand t.he proposition above, consider a subset A of .6.. t.hat. mcets the enu­

merat.ed conditions. If wc ta.ke <I> = Q(A), it can be shown t.hat. A is an argument with 
respect t.o ( <I>, .6..) (This sat.isfy the existence condit.ion in definition 4.1.). Conscquentl,y, 
t.he comput.at.ion of hypot.het.ical arguments can be reduced to finding subsets of .6.. based 
on t.his proposition. 

\Ve need to define hmv the defeat relation among t.hese elements is stored. To this 
purpose, \Ve overload the term counter-argues, using it for hypothet.ical arguments too. A 
hypothetical argument (A1 , q1 )h co1mter-arques anot.her hypot.hetical argument (A2 , q2h 
ata literal q if ami only if there is a sub-argument (A, q)h of (A2 , r12) h such that { q1, q} is 
contradictory. This kind of counter-arguments reprcsents only a potential attack bctween 
t.he argurnent.s in contest.. It. rnight be the case that these a.rguments cannot. co-exists in 
any scena.no. 

To check whether a. hypot.het.ical a.rgument defea.t.s one of its counter-argurnent.s, t.he 
crit.erion used to compare pa.irs of arguments must be adapted to pairs of hypothetical 
arguments. In particular, we have redefined specificity ( definition 2. 7) to compare argu­
ments independently from the set of observations. Note that the meaningful activat.ion 
sets of an argument. A must be subsets of thc litcrals prescnt in thc rules of A. 

Definition 4.3. (Precompiled Specificity) A hypothetical ar:qument (A1 , h.1)h is more spe­
cZfú: than a hypothctical arymnent (A2, h2)h (dcnoted \A1, h1) t (A2, h2)) zf and only zf 
.for every H ~ litcmls(A1), it holds that HU A 1 r.- h1, and H lf h1 irnplies HU A 2 ~ h2 . 

(A1, h1)h i.s said to be strictly more speczfú: than \A2, h2)h (dcnoted (A1, h1)h >- (A2, h2) 1) 

if and only if (A1, h1) h t (A2, h2) h and \A2, h2) h 'i. (A1, h1) h • 

The notion of dcfeat bctween hypot.hetical argumcnts can be dcfined in an analogous 
way to definition 2.8. The definit.ion belmv describes t.he notion of dialectical bases. This 
component subsumes the precornpiled knmvledge of the agent, according to the previous 
discussion. 

Definition 4.4. ( Dialectú:al Base) Let P = (w, .6..) be a oneLP pwgrarn. The t'11ple 
(A, Dp, Db) ú; said to be the dialectical base of P with respect to .6.., denoted as IBL'..: if 
and only 'if: 

1. A is a set of hypothetú:al arg'ument8: snch that A E A if and only if A i8 ba8ed on 
.6... 

2. Dp and Db aTe Telations o'uer the element8 of A, such that joT cucry paiT (A1 , A2 ): 

it holds tlwt A2 is a ]JID]JeT (resp. blocking) defeaie'r of A1: 4 and only if (A1, A2) 
belong8 to Dp ('re8p. Db)· • 

The dialectical base of a ODeLP program can be constructed after the knowledge of t he 
agent. is encoded in a ODeLP program P. First vve generate the set. A, including in it 



Algorithm 4.1. lnference process 

input: 
output: 

P = (w, 6.), q 

(A1 , q)h (a justification for q, if any) 

For every hypothetical argument (A1 , q)h in A such that 
acceptable CA1, P) 

state := undefeated 
For every A 2 in A such that (A1 , A 2 ) E Dp or (A1 , A 2) E Dp 
and acceptable CA2 , P) 

if state(A2 , P, 0, {A¡})= undefeated 
then state := defeated 

if state = undefeated 
then returnC(A1, q) 1) 

every subset of the defeasible rules in P sa.tisfying the properties stated in proposit.ion l. 
='Jext, \Ve compute the defeat relation a.mong the elements of A using the precompiled 
compa.rison criterion. For every pair (A1 , A 2 ), such that A 1 , A 2 E A and A 2 is a proper 
(resp. blocking) defeater for A 1 , \Ve add (A1 , A 2 ) to Dv (resp. Db)· \Vhen implementing 
this framework, appropriate data structures must be chosen to optimize the creation and 
use of the dialcctical base. 

Suppose thc s_ystcm is faccd with a query q with rcspcct to a ODcLP program P = 

(w, 6.). Thc traditional proccdurc starts by building an argument A 1 for q from the 
rules in P. Then it loob for the defeaters of A 1 that may prevent A 1 frorn becorning 
a justification for q. Follmving, the state of A 1 is decided based on the condit.ion of its 
defea.ters (see definition 2.10). 

If II3Ll is used, the inference process may be ca.rried out as sta.ted in a.lgorithm 4.1. 
Since every feasible a.rgument is a.lready recorded in II3Ll, there is no need of constructing 
the argumcnts for q nor its dcfcatcrs. Thc systcm sclccts thc hypothctical argumcnts 
for q that constitutc argumcnts bascd on (w, 6.) (i. e., that are valid for thc particular W 
under considera.tion). To this purpose, every (A1 , qh E IBLl is checked using the funct.ion 
acceptable CA1 , P) (see algorithrn 4.2). I\ext, each acceptable hypothet.ical argument 
(A1 , q) h is analy"'ed to see if it is a justification for q. This task is addressed using 
the relations Dv and Db to look for the defeaters of A 1. The state function depicted 
in figure 4.3 decides vvhether the:y are defeated or not, and this information is used to 

determine the state of A 1 a.ccording to definition 2.10. 
Thc state algorithm takcs as input an argumcnt A 1 , a ODcLP program P such that 

A 1 is bascd on P, and thc intcrfcrcncc and support argumentativo líncs up to this point, 
IL and S L. It \vorks in a similar rnanner to procedure 4.1, analy:1.ing the defeater::; of 
A 1 to define its state. Hmvever, one more condition must be met: for a defeater to 
be sati::;factory, it rnu::;t also cornply the rules e::;tablished in definit.ion 2.11, regarding 
acceptabilíty of the argumenta.tive línes. The function valid tests these conditions. 



Algorithm 4.2. Acceptable 

input: 
output: 

A1, P = (w, 6.) 
acceptable 

acceptable := false 
if base CA1 ) ~ W and consistent CA1 , P) and minimal CA1 , P) 

then acceptable true 

Algorithm 4.3. State 

input: A 1 , P = (w, 6.), IL, SL 
output: state 

state := undefeated 
For every A 2 in A such that C CA1 , A 2 ) E Dp or CA1 , A 2 ) E Dp) and 
a e ceptable CA2 , P) and val id CA2 , 1 L, S L) 

if A 1 is a supporting argument and state CA2 , P ,1 L, S L U {Al}) 
= undefeated 

then state := defeated 
if A 1 is an interfering argument and stateCA2 ,P,JL U {A1 },SL) 
= undefeated 

then state := defeated 
return(state) 

5 Conclusions 

\Ve have de;,reloped a framework for representing the episternic state of an agent~ adapting 
the DeLP systern for this task. The expressiveness of the defined language allows the 
descríption of complex domains. This formalism also provide mechanisms to acquire 
ínformatíon perceptually, makíng the agent adaptable to a dynamic world. 

The use of precompíled knowledge can improve the performance of argument-based 
systcms. For this rca.son, wc havc dcfincd thc notion of dialcctical bases and discusscd 
thc main issucs in thc intcgration of this componcnt into ODcLP. 

Solid theoretical foundat.ions of agent design should be based on proper formalisms for 
knmvledge representat.ion and reasoning [1]. The incorporation of our framework into an 
agent architecture results in a rnodel vúth ínteresting theoretica.l and pract.ical fea.tures. 
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