Defeasible Reasoning in Dynamic Domains

M. Capobianco G. R. Simari

Grupo de Investigacién en Inteligencia Artificial (GIIA)
Departamento de Ciencias de la Computacion
Universidad Nacional del Sur
e-mail: {mc,grs}@cs.uns.edu.ar

Abstract

The design of intelligent agents is a key issue for many applications. Since there
is no universally accepted definition of intelligence, the notion of rational agency was
proposed by Russell as an alternative for the characterization of intelligent agency.

A rational agent must have models of itself and its surroundings to use them in
its reasoning. To this end, this paper develops a formalism appropriate to represent
the knowledge of an agent. Moreover, if dynamic environments are considered, the
agent should be able to observe the changes in the world, and integrate them into
its existing beliefs. This motivates the incorporation of perception capabilities into
our framework.

The abilities to perceive and act, essential activities in a practical agent, demand
a timely interaction with the environment. Given that the cognitive process of a
rational agent is complex and computationally expensive, this interaction may not
be easy to achieve. To solve this problem, we propose inference mechanisms that
rely on the use precompiled knowledge to optimize the reasoning process.

Keywords: knowledge representation, defeasible reasoning, rational agents.

1 Introduction

The design of intelligent agents is a key issue for many applications. Since there is no
universally accepted definition of intelligence, the notion of rational agency was proposed
by Russell [11] as an alternative for the characterization of intelligent agency. In short,
an agent is said to be rational if it performs the right actions according to the information
it possesses and the goals it wants to achieve.

A rational agent must have models of itself and its surroundings to use them in its
reasoning [7]. To this end, this paper develops a formalism appropriate to represent the
knowledge of our agent. When a dynamic environment is considered, the agent should be
able to perceive the changes in the world and integrate them into its existing beliefs [7].
This involves to provide the agent with the capability of sensing its surroundings, and to
define a way of incorporating the new observations into its knowledge. The specification of

the former depends on the application domain, but it should be broad enongh to comprise
the input by a human operator. To accomplish the latter, we have adapted the knowledge
representation system to handle perceptions properly.

The abilitics to perceive and act, cssential activities in practical agents, demand a
timely interaction with the environment. Given that the cognitive process of rational
agents 18 complex and computationally expensive, this interaction may not be casy to
achieve. To solve this problem, we have defined inference mechanisms that rely on the
use of precompiled knowledge to optimize the reasoning process.

The problem of optimizing a Knowledge Representation and Reasoning framework was
analyzed by the authors in a prior work [3]. In that article, the basic idea was to maintain
a repository of the conclusions previously computed to avoid repeating the reasoning
process on the samce input. The disadvantages of that formulation were twofold. Firstly,
its applicability was restricted given that it only helped in the solution of recurrent querics.
Sccondly, the recorded information had to be updated cach time the agent acquired a new
observation; and the restoring operation was a demanding task. In this work, we have
developed a new proposal that addresses those shortcomings.

The remainder of this paper is organized as follows. Section 2 redefines the system of
defeasible logic programming, tailoring it for modeling the epistemic state of an agent in a
dynamic domain. Next, section 3 focuses on the incorporation of perception mechanisms
and scction 4 describes how to use precompiled knowledge to speed-up the deduction
process. Finally, scetion 5 states the conclusions.

2 Observation based DeLP

The formalism of Defeasible Logic Programming [5] (DeLP) combines the advantages of
logic programming and defeasible argumentation . In this framework, an argumentation
systemn is used to decide between contradictory goals through a dialectical onalysis.

Codifying the knowledge base of the agent by means of a DelL.P program is a promising
alternative, since it provides a good trade-off between expressivity and implementability.
For this reason, we have chosen to use a modification of DevLp that incorporates perception
abilities. This modification is called Observation based DeLp {ODeLP). Next, we define
the 0DeLP formalism, detailing the differences with respect to the original system.

The language of ODeLP is composed by a sct of observations cncoding the knowl-
cdge the agent has about the world, and a sct ot defeasible rules representing tentative
information, ¢.e.. information that can be used it nothing is posed against it. In the fol-
lowings definitions, we consider literals as atoms that may be preceded by the symbol
“~7 denoting classical negation.

Definition 2.1. (Observation) An observation is o ground literal representing some fact
about the world that the agent believes to be correct. 1]

Definition 2.2. (Defeasible rule) A defeasible rule is an ordered pair. conveniently de-
noted as Head < Body. where Head is a ground literal and Body is o non-empty finite set
of ground literals. i]

IFor a more detailed analvsis of this concept, see [13, 8, 10, 2, 4].

Definition 2.3. (Defeasible Logic Program) A defeasible logic program (DLP) is o finite
set of observations and defeasible rules. In a DLp P, we distinguish the set U of obser-
vations and the set A of defeasible rules. The set W must be non-contradictory, i.e., it
cannot contain a lteral and its complement. When required, we denote P oas (U, Ay, B

Note that we only focus on propositional programs. As stated in [6], rules with variables
are viewed as “schemata” that represent a set of ground instances.

Notice the difference between ODeLP and the DeLP language. A DeLP program con-
sists of a sct of defeasible rules and a set of striet rules. A strict rule is defined as an
ordered pair. denoted as Head «+ Body. Facts are represented by strict rules with an
empty body. Syntactically, the symbol “«" ig all that distinguishes strict from defeasible
rules. However, they are semantically different: strict rules stablish a strong conmection
between its antecedent and its consequent. In ODeLP these rules are reduced to a set
of observations, This simplifying assumption will help in understanding the problems
related with a dynamic environment. The final goal of this research is to use full beLp.

Having defined the concept of defeasible programs, we focus on the consequence op-
crator for this programs. The inferences that can be obtained from a ODeLP program are
ground literals. Accordingly, a defeasible query (or simply a query) is a defeasible rule
“<[” with empty head and a ground literal [in its body.

Definition 2.4. (Defeasible derivation) Let P be a ODLP program and let ¢ be a ground
literal. A finite sequence of ground literals. s = ¢, ¢o. . .., gn_1,¢. 15 s0id to be a defeasible
derivation for g from P (abbreviated P~ q) if for every ¢;. 1 < i < n, it holds that ¢; € U,
or q; 15 a consequent of a defeasible rule r € A, v = ¢;—~<ly, ..., L, where I1,...,1,, are
ground literals previously occurring in s. m

The defeasible rules belonging to A play the role of inference rules in the derivation.
Although the set ¥ must be non-contradictory, P may allow the defeasible derivation of
complementary literals. Thus, the system should have a mechanism for deciding between
them. In what follows, we characterize this mechanism.

In opeLr, the existence of a defeasible derivation for a literal ¢ is not cnough to accept
it. Answers to queries must be supported by arguments:

Definition 2.5. (Argument Sub-argument) Given a ODCLP program P, an argument
A for a ground literal ¢, also denoted (A, q). is a subset of the defeasible rules in P such
that:

1. there exists a defeasible derivation for q from U A,
2. WU A is non-contradictory,

3. A is the minimal set with respect to set inclusion that satisfies the previous condi-
tions.

An argument (Ay. q) s a sub-argument of {As, go), if Ay € As. n

Example 2.1. In the following DL.P, observations and defeasible rules are separated for
the sake of clarity.

W A

cat{tom) . has-tail(X) —<cat(X).
cat(sylvester). ~has-tail(X) < cat(X), manx-cat(X).
cat{grace). ~social(X) < aloof (X).
manx-cat(grace). social(X) <cat(X), young(X).

young (tom) . aloof (X)—cat(X).

From this program, the following arguments can be built:
e (A, has-tail(grace)), where A, = {has-tail{gracc) < cat(grace)}.

o (A5, ~has-tail(grace)), where Ay = {~has tail{grace)— cat(grace),
manx-cat (grace) }

o (A;, ~ social(tom)), where A3 = {~social{tom)— aloof(tom),
aloof{tom)— cat({tom) }

e (A, social(tom)), where 4, = {social{tom)— cat{tom), voung{tom)}

The first argument supports the conclusion that Grace has a tail, because she is a cat
and normally cats have tails. The second one claims that Grace is tailless given that she
belongs to a special breed of cats whose members do not have a tail. A5 asserts that Tom
is not a social creature since Tom is a cat, and cats are aloof. On the other hand, A4
supports that Tom is social, considering that young cats are friendly animals.

To give an answer to a query ¢, the system tries to build an argument A4 for ¢, but
arguments that contradict or attack A could also exist {as shown in the example above).

Definition 2.6. {Counter-argument) An argument (A;, ¢} counter-argues an argumernt
(Az, g2} at a literal g if and only if there is a sub-argument {A, q) of {As, ¢2) such that the
set {qv,q} is contradictory®. i}

Informally, a query for a literal ¢ succeeds if there exists an undefeated argument
supporting ¢; that argument becomes a justification. To establish whether A4 is an unde-
feated argument we must analyze the defeaters of A, i.e., the counter-arguments prefered
to A under a given criterion. Any partial order on the set of possible arguments can
be used to formulate this eriterion. In particular, we define the following one based on
specificity [9, B].

Definition 2.7. {oDcLP Specificity) Let P be a ODeLP program and let Lit be the sct of
ground literals belonging to the signature of P. An argument (A, hy) is more specific than
an argument (Ao, ho) (denoted (Ay. hi) = {As. he}) if and only if for every H C Lit it
holds that HUA, v hy and H B hy implies that HUAy b ha. (A4, ha) is said to be strictly
more specific than (Aa, ha) (denoted (A, h) = (As, ha)) if and only if (A1, k1) = (As, ha)
ard <./4.2, hQ) % <./4.1, hq) |

2We say that two literals are contradictory if they arve complementary with respect to classical negation.

This syntactic comparison allows us to discriminate two conflicting areuments, prefer-
ing the argument with greater information content or less use of defeasible rules. Lets
analyze definition 2.7. The condition H U A; |~ iy normally holds with a nonempty set
H, hecause arguments do not contain facts. In this case, the set H is said to activate A,.
The expression H (e hy is called the non-triviality requisite, because it forces the effective
use of the set H for deriving h;. Hence, the previous definition may be read as {(Ay,)
is wore specific than {As, bs) if and ounly if for every set H which non-trivially activates
(A, i) it holds that H non-trivially activates (A, ho).

Example 2.2. Consider the arguments in example 2.1, {A,, ~has-tail (tom)) is strictly
more specific than (A}, has-tail(tom)}. Applying definition 2.7, it holds that cvery
subsct of Lit that activates A; also activates Ay, but there are subscts (e.g., {cat (tom) })
that activate A, and do not activate A4;.

Although a criterion is required, the notion of defeat can be independently formulated.

Definition 2.8. {Defeater) An argument {(Ay, q1) defeats {(Ag, qu) at a literal ¢, if and
only if there exists a sub-argument {A,q) of {As,q) such that {Ay,¢1) counter-argues
(Ag, o) at g. and either:

1. (Ay, qu) is prefered to (A, q) by the preference eriterion (then (Ay, q1) is a proper
defeater of (Ag, ga)), or

2. (A1, q1) is unrelated to {A, q) by the preference criterion (then (A1, 1) is a blocking
defeater of (As, g2}). |

Since defeaters are arguments, there may be defeaters for the defeaters and so on. For
this reason, a complete dialectical analysis is required to determine which arguinents
are ultimately accepted. This analysis consists of the construction and marking of the
dialectical tree. As an output of the marking process, the undefeated arguments are
labeled as U-nodes, and the defeated onesg as D-nodes.

Definition 2.9. (Diolectical Tree) Let A be an argument for ¢. Adialectical tree for
(A, q). denoted T a . is recursively defined as follows:

1. A single node labeled with an argument (A, q) with no defeaters (proper or blocking)
is by itself the dialectical tree for (A, q).

2. Let (A1, q1), (A, @2}, . .., (An, Gn) be all the defeaters (proper or blocking) for {A, q).
The dialectical tree for (A, q), Tiaq, is obtained by labeling the root node with (A, q),
and making this node the parent of the roots nodes for the dialectical trees correspond-

ing to (AL q), (A2, @), {An.). n

Definition 2.10. {Marking of the dialectical tree) Let (A1, q1) be an argument and T4, 4
its dialectical tree, then:

1. All the leaves in Ty 4, 4 are marked as a U-node.

2. Let (Az,q2) be an inner node of Tp g, 4y Then (A, qa) is marked as U-node if and
only if every child of {As, o) is marked as o D-node. The node {Ay, qo) is marked
as @ D-node if and only iof it has at least a child marked as U-node. m

Example 2.3. The dialectical tree for (4;, has-tail(grace)) is composed by the argu-
ment (A;, has-tail(grace)) and its sole defeater {As, ~has-tail(grace)). Therefore,
{Ag, ~has-tail(grace)) is marked as a U-node and (A, has-tail(grace)) is marked
as a D-node.

The notion of acceptable argumentation lines, required to avoid the so-called fallacious
argumentation [12], is defined below. Let {Ap, go) be an argument, and let 74, ., be its
associated dialectical tree. Every path from the root (A, go) to a leaf (An, ¢} in 77400
denoted A = [(Ao. qo), (A1, @), .. {(Ans 20)], Is an argumentation line of 74y 4o

In each argumentation line A = [{ Ao, ¢o), (A1, q1), - ... {4y, gu)] the argument (4. qo)
is supporting the main query gy, and every argument (A;,¢;) defeats its predecessor
(A1, qi—1). Thus, for k > 0. (Ao, gap) is a supporting argurment for gy and {(Aog 1, gopr1)
is an interfering argument for gy. In other words, every argument in the line supports gq
or interferes with it. As a result, an argumentation line can be split in two disjoint sets:
Ag of supporting arguments, and A; of interfering arguments. Following, we define which
argumentation lines are valid:

Definition 2.11. (Acceptable Argumentation Line) Let A=[{Aq, q0). (A1, @1}, ..., {4, ¢:)]

be an argumentation line in 1 . We say that A is an acceptable argumentation line
L {Ap.q0))
if and only if:

1. The sets Ag and A; are both non-contradictory sets of arquments.

2. No argument (A;,q;) in A is a sub-argument of an earlier argument {A;, ¢;) n A

& 4. u

An acceptable dialectical tree is defined in turn as a tree where every argumentation line
is acceptable. Finally, the notion of justification follows:

Definition 2.12. (Justification) Let A be an argument for o literal g, and let Tiqq be
its associated acceptable dialectical tree. A is a justification for q if and only if the root
of T i5 marked as o U-node. [

3 Modeling an agent’s epistemic state

This section establishes the foundations for the usc of the ODeLP system in defining the set
of the agent’s beliefs. Next. it details the perception capabilities added in the formalism
and deals with its associated problems.

3.1 Using the ODcLP system

The opeLp system exhibits interesting properties when used as a Knowledge Represen-
tation and Reagoning system. In contrast with other models, no mechanism to enforce
consistency is required. The ODelLP program P representing the knowledge base of the
agent is able to express the following doxastic attitudes with respect to a ground literal ¢
in the signature of P.

e Delieve that g is true.

e Believe that ¢ is false. i.e.. believe in g, where g means the complement of ¢ with
respect to classical negation.

e Neither believe that ¢ is true nor that it is false.

To formalize these states, we adopt a metalanguage based on a modal operator B
standing for “the agent believes”. This modal language consists of cxpressions of the
form Bg. where ¢ is a ground literal belonging to the signature of the program. In the
semantics of this language, By is true if and only if there is a justification for ¢ from the
ODeLP program encoding the knowledge of the agent, i.e., if there exists an argument. A
such that A4 is a justification for ¢.

Based on this, we say that the agent believes in ¢ when By is true, does not believe in
¢ when B9 is true, and is undecided on ¢ when neither Bg nor B arc truc. Note that for
any ODeLP program P, Bg being true implics the falsity of B7: an agent cannot believe
a literal and its complement. Another interesting property involves the certainty of the
literals present in the observation set W. It can be shown that for every literal ¢ € W, it
holds Bq. This is consistent with definition 2.1, in which observations are facts the agent
helieves.

3.2 Handling perceptions

To act in a dynamic world, our agent must be able to constantly update its beliefs: acquire
new ones and revise or give up old ones. To do this, the agent must be able to perceive.
However, the acquisition of non-certain beliefs is a problem associated with perception. To
deal with it, we assume the perception mechanism to be flawless. This prevents situations
where false inferences are obtained. Albeit we realize that this assumption needs not to
he veridical, there are many interesting domaing where this is a reasonable precondition

The task of perceiving can be carried out by a mechanism that detects the changes in
the world and reports the literals representing those changes. This mechanisin depends on
the particular application domain, and its definition is not addressed in this paper. The
perceived literals are added to the knowledsze of the agent, into the set of observations W,
Notice that if new facts are blindly added to ¥, it may become inconsistent.

Example 3.1. Suppose that ~young(tom) is to be added to the ODelLP program in
example 2.1. (Tom may have become a grown-up cat). This contradicts the existing
observation that tom is yvoung.

We avoid this situation using a revision function that controls the updating of ¥ when
new information is added. Prior to the addition of a new literal o to ¥, this function
removes the element of ¥ that contradicts a;, if one exists.

In thig revision, we apply an implicit criterion that favors new perceptions. This stems
from the fact that given our initial assumption, both of the obscrvations in disagreciment
were correct at the time of their incorporation. Accordingly, the only reason for the
conflict to arise is a change in the state of world, and the new fact should be preferred
over the old one.

Definition 3.1. (Revision) Let P = (U, A} be ¢ ODeLr program and o an observation.
The revision of ¥ by «, denoted as Uxa, is defined as follows: Uxa = (U —{a})U{«} W

Continuing with the previous example, we can see how a revision performed over the
set of observations modifies the set of beliefs. In a sense, the agent can change its previonus
picture of the world when faced with new information.

Example 3.2. Before the revision of ¥ with respect to ~young(tom). the conclusion
social (tom) was inferred by the system. This conclusion is withdrawn with the elimi-
nation of young(tom), and the argument {43, ~ social(tom)) (see example 2.1) becomes
a justification for ~social (tom).

4 Introducing Dialectical Bases

As mentioned in the introduction, integrating precompiled knowledge may help to opti-
mize the inference process. In this section, we address how to build this component and
how to use it to speed-up reasoning in ODel.P. We maintain a repository containing every
possible argument that could be builc from a given set A of defeasible rules. This reposi-
tory should also keep the defeat relation between these arguments. When the reasoning
process starts over a certain ObeLp program P = (I, A}, the system uses the precompiled
arguments that arce valid in this situation, i.c., those which can be constructed from the
sct, W, This prevents the construction of the arguments and the scarch for their defeaters
that takes place when a query is being solved.

It may be argued that keeping track of every potential argument for a given program
is costly. However, this task is performed only once since this structure is independent
from the current set of perceptions, and it does not have to be rebuilt or modified every
titme W changes. In what follows, we formalize this idea.

Definition 4.1. { Hypothetical Argument) Let A be a set of defeasible rules. A subset A
of A is said to be hypothetical argument for a literal g, also denoted (A, ¢}, . if there exists
a consistent subset O of the literals in A, such that (A, ¢) is an argument with respect to

P = (D, A). b

In the definition above, the set ® represents a possible state of the world in which the
hypothetical argument can be constructed. It is clear that hypothetical arguments depend
only on the set of defeasible rules of the program. Nevertheless, not every subset of the
defeasible rules is a hypothetical argument: some restrictions must be satistied. The next
proposition helps to find the hypothetical arguments in a certain ODeLP program.

Definition 4.2. (Base) Let A be a set of defeasible rules, and let heads{A) (respectively

badies(A)}) denote the literals occnrring in the head (respectively body) of a defeasible
rule in A. A set G(A) of ground literals is said to be the base of A if and only if
G(A) = bodies(A) — heads(A). |

Proposition 1. Let P = (¥, A} be an ODeLP program, A he a subset of A and ¢ a literal
such that:

L. GlAUA R~ g,

2. the set of literals occurring in the rules in .4 is consistent, and
3. Ais the minimal set with respect to set inclusion that fulfills the previous conditions.
Then A is a hypothetical argument for ¢ based on A. m

To understand the proposition above, consider a subset A of A that meets the enu-
merated conditions. If we take & = G(A), it can be shown that A is an argument with
respoct to (@, A) (This satisty the existence condition in definition 4.1.). Consequently,
the computation of hypothetical arguments can be reduced to finding subsets of A based
on this proposition.

We need to define how the defeat relation among these elements is stored. To this
purpose, we overload the term counter-argues, using it for hypothetical arguments too. A
hypothetical argument (A, ¢}, counter-argues another hypothetical argument {As, ¢2),
at a literal ¢ if and only if there is a sub-argument (A, ¢), of (As, g0}, such that {q;, ¢} is
contradictory. This kind of counter-arguments represents only a potential attack between
the arguments in contest. It might be the case that these arguments cannot co-exists in
any scenario.

To check whether a hypothetical argument defeats one of its counter-arguments, the
criterion used to compare pairs of arguments must be adapted to pairs of hypothetical
argurnents. In particular, we have redefined specificity (definition 2.7) to compare argu-
ments independently from the set of observations. Note that the meaningful activation
scts of an argument, A must be subscts of the literals present in the rules of A.

Definition 4.3. (Precompiled Specificity) A hypothetical argument (Ay, k), is more spe-
cific than a hypothetical argument (Ao, ha), (denoted {(Ay, ki) > (Ao, ho)) if and only if
for every H C literals(Ay), it holds that H U A~ hy, and H P& hy implies H U As b~ ho.
(AL by, is said to be strictly more specific than (As, he), (denoted (Ay, i), > {Ag, ha),)
if and ondy if (A1,), = (Ao, hay, and (As, b)), ¥ (Ar, Ry, m

The notion of defeat between hypothetical arguments can be defined in an analogous
way to definition 2.8. The definition below describes the notion of dialectical bases. This
component subsumes the precompiled knowledge of the agent, according to the previous
discussion.

Definition 4.4. {Dialectical Base) Let P = (U, A} be a oDeLP program. The tuple
(A, Dy, Dy) is said to be the dialectical base of P with respect to A, denoted as Ba, if
and only if:

1. A s a set of hypothetical arquments, such that A € A if and only if A is based on
AL

2. D, and Dy are relations over the elements of A, such that for every pair (4., A)),
it holds that Ay is a proper (resp. blocking) defeater of Ay, if and only if (Aq. As)
belongs to D, (resp. D). n

The dialectical base of a ObeLP prosram can be constructed after the knowledge of the
agent is encoded in a ODeLP program P. First we generate the set A, including in it

Algorithm 4.1. Inference process

input: P = (T A}, ¢
output: {A4:,¢), (a justification for ¢, if any)

For every hypothetical argument (A;,g), in A such that
acceptable(A;,P)
state := undefeated
For every A» in A such that (A;, As) € D, or (A, A2} € D,
and acceptable(Ay,7)
if state(As, P, B, {A}) = undefeated
then state := defeated
if state = undefeated
then return({A4;,q);)

every subset of the defeasible rules in P satisfying the properties stated in proposition 1.
Next, we compute the defeat relation among the elements of A using the precompiled
comparison criterion. For every pair (A, As). such that A;. A5 € A and A is a proper
(resp. blocking) defeater for A;, we add (A;. A5) to D, (resp. [);). When implementing
this framework, appropriate data structures must be chosen to optimize the creation and
use of the dialectical base.

Supposce the system is faced with a query ¢ with respeet to a ODeLP program P =
(W, A). The traditional procedure starts by building an argument A; for ¢ from the
rules in P. Then it looks for the defeaters of A; that may prevent 4; from becoming
a justification for ¢. Following, the state of A4, is decided based on the condition of its
defeaters (see definition 2.10).

It IB5 is used, the inference process may be carried out as stated in algorithm 4.1.
Since every feasible argument is already recorded in B4, there is no need of constructing
the arguments for ¢ nor its defeaters. The system selects the hypothetical arguments
for ¢ that constitute arguments based on (¥, A) (i.c., that arc valid for the particular ¥
under consideration). To this purpose, every {(Ay, q), € IBa is checked using the function
acceptable(A;,P) (see algorithim 4.2). Next, each acceptable hypothetical argument
(A1, ¢}, is analyzed to see if it is a justification for ¢. This task is addressed using
the relations 1, and D), to look for the defeaters of 4;. The state function depicted
in figure 4.3 decides whether they are defeated or not, and this information is used to
determine the state of A; according to definition 2.10.

The state algorithm takes as input an argument A, a ODeLl program P such that
Ay is based on P, and the interference and support argumentative lines up to this point,
IL and SL. It works in a similar manner to procedure 4.1, analyzing the defeaters of
Ay to define its state. However, one more condition must be met: for a defeater to
be satisfactory, it must also comply the rules established in definition 2.11, regarding
acceptability of the argumentative lines. The function valid tests these conditions.

Algorithm 4.2. Acceptable

input: A, P= (U A)
output: acceptable

acceptable := false
if base(A4;) C ¥ and consistent(A;,P) and minimal (A,,P)
then acceptable := true

Algorithm 4.3. State

input: A;, P=(¥ A), IL, SL
output: state

state := undefeated
For every A, in A such that ((A;, As) € D, or (A;. A3 € D) and
acceptable(A;,P) and valid(A;,/L,SL)
if A is a supporting argument and state(A,,P,IL,SLU{A})
= undefeated
then state := defeated
if A, is an interfering argument and state(4d,,P,ILU{A4,},SL)
= undefeated
then state := defeated
return(state)

5 Conclusions

We have developed a framework for representing the epistemnic state of an agent, adapting
the Del.P system for this task. The expressiveness of the defined language allows the
description of complex domains., This formalism also provide mechanisms to acquire
information perceptually, making the agent adaptable to a dynamic world.

The use of precompiled knowledge can improve the performance of argument-based
systems. For this reason, we have defined the notion of dialectical hases and discussed
the main issues in the integration of this component into ODCLP.

Solid theoretical foundations of agent design should be based on proper formalising for
knowledge representation and reasoning [1]. The incorporation of our framework into an
agent architecture results in a model with interesting theoretical and practical features.

References

1]

2]

[11]

[12]

[13]

BaraL, C., AND GELFOND, M. Reasoning Agents in Dynamic Domains. To be
published.

BONDARENKO, A. G., Dung, P. M., Kowarskr, R. A., ann Tont, F. An
Abstract, Argumentation-Theoretic Approach to Default Reasoning. Artificial Intel-
ligence 93, 1-2 (1995), 63-101.

CaAaroBiANCO, M., CHesNEvar, C. 1., AND Simarl, G. R. A Formalization
of Dialectical Bases for Defeasible Logic Programming. In Proceedings of the VI
Internacional Congress of Informatics Engineering (Apr. 2000).

Dung, P. M. On the Acceptability of Arguments and its Fundamental Role in
Nonmonotonic Reasoning and Logic Programming and n-Person Games. Artificial
Intelligence 77, 2 (1995), 321-357.

GARrcia, A. J. La Programacién en Légica Rebatible: su definicién tedrica y com-
putacional. Master’s thesis, Departamento de Ciencias de la Computacion, Univer-
sidad Nacional del Sur, Bahia Blanca, Argentina, Junce 1997.

LirscHITZ, V. Foundations of Logic Programming. In Principles of Knowledge
Representation, G. Brewka, Ed. CSLI Publications, 1994, pp. 69-127.

PoLrLock, J. L. The Phylogeny of Rationality. Computational Intelligence 17
(1993), H68-H8S.

PoLrLock, J. L. Cognitive Carpentry: a blueprint for how to build a person. Brad-
ford/MIT Press, 1995.

Poorr, D. L. On the Comparison of Theories: Preferring the Most Specific Ex-
planation. In Proceedings of the Ninth International Joint Conference on Artificial
Intelligence (1985), IICAI pp. 144-147.

Prakken, H., AND SARTOR, G. A System for Defeasible Arsumentation with
Defeasible Priorities. In Proceedings of the International Conference on Formal and
Applied Practical Reasoning (1996), Springer Verlag, pp. 510-524.

RusseLL, S. J. Rationality and Intelligence. Artificial Intelligence 94, 1-2 (1997),
57-T17.

StMaARI, G. R., CHESNEVAR, C. L., AND GARcia, A. J. The Role of Dialectics
in Defeasible Argumentation. In Proceedings of the XIV Conferencia Internacional
de la Sociedad Chilena para Ciencias de la Computacion (Nov. 1994), pp. 111-121.
http://es.uns.edu.ar/giia.html.

Simanrl, G. R., AND Loul, R. P. A Mathematical Treatment of Defeasible Rea-
soning and its Implementation. Artificial Intelligence 53, 1-2 (1992), 125-157.

