
Agent Programming using Defeasible Argumentation for Knowledge
Representation and Reasoning

Sebastián Gottifredi Alejandro J. Garcı́a Guillermo R. Simari
Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET),

Laboratorio de Investigación y Desarrollo de Inteligencia Artificial,
Departamento de Ciencias e Ingenierı́a de la Computación, Universidad Nacional del Sur,

Avenida Alem 1253,(B8000BCP), Bahı́a Blanca, Argentina
Tel: (0291) 459-5135 / Fax: (0291) 459-5136

Email: {sg,ajg,grs}@cs.uns.edu.ar

Abstract
In this work two declarative approaches based on the BDI theory are studied, an agent programming lan-

guage 3APL and an agent architecture that uses defeasible argumentation for knowledge representation and
reasoning. Based on that study and considering that in 3APL the knowledge representation language is not
fixed, we will propose 3APL-DeLP where the agent knowledge is represented by a DeLP-program and the
agent may reason with a defeasible argumentation formalism.

Keywords: Agent Programming Languages, Agent Architectures, Agent Theories, Defeasible Argumentation.

1 INTRODUCTION

In this work two declarative approaches based on the BDI theory are studied. The 3APL program-
ming language, was chosen because it allows a declarative specification and implementation of the
agents, where agents can communicate and can reach their goals using plans. The agent architecture
proposed in [7],[6] (BDI-DeLP), was chosen because it uses Defeasible argumentation for the knowl-
edge representation and reasoning of the agents. Based on the study of the approaches and considering
that in 3APL the knowledge representation language is not fixed, we will propose 3APL-DeLP where
the agent knowledge is represented by a DeLP-program and the agent may reason with a defeasible
argumentation formalism.

The importance of using intelligent agents based on mental components like Beliefs, Desires,
Commitments and Intentions to solve complex problems is well known in the literature [11], espe-
cially those agents based on BDI theory [1]. Nowadays, tools are needed to specify and programs
agents in terms of these components. Several programming Languages and architectures based on
BDI are proposed in the literature. However, only some of them allow to specify agents in a declar-
ative way. In particular, we are interested in agent development tools that provide an argumentative
mechanism for agent reasoning, besides a declarative way to specify its mental components.

This work is organized as follows. In Section 2 an introduction to 3APL and BDI-DeLP ap-
proaches is made, indicating goals, advantages and scope for each of them. In Section 3 examples
for the approaches are shown. Then an analysis of how the mental components are specified and how
reasoning process works for each approach is made. In Section 4 3APL-DeLP is specified. Finally,
in Section 5 we expose some conclusions and areas of future research.

Partially supported by CONICET (PIP 5050), Universidad Nacional del Sur and Agencia Nacional de Promoción
Cientı́fica y Tecnológica.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
VIII Workshop de Agentes y Sistemas Inteligentes
_________________________________________________________________________

 
 

1464



2 TWO APPROACHES BASED ON THE BDI THEORY

In this section, two approaches that use BDI-Theory [1], are introduced. As exposed in [11] the
research on agent programming can be divided in three areas: agent theories, agent architectures
and agent programming languages. Agent theories are related to the formalisms that specify the
properties of the agents. Agent architectures are related to the building of mental components and
their interactions, satisfying the properties of an agent theory. Finally, agent programming languages
are related to the primitives used to program and implement agents specified by agent theory.

This work is focused on the BDI agent theory. This theory exposes that the mental state of an
agent is composed by three components which try to capture the intuitive meaning of Beliefs, Desires
and Intentions. The BDI theory is well known in the literature and several agent architectures and
Languages have been defined using it. In this work, two of these approaches will be considered: an
agent architecture called BDI-DeLP, and an agent programming language called 3APL.

2.1 A BDI agent architecture with a Dialectical Framework: BDI-DeLP

In [7] and [6] a BDI agent architecture based on a Dialectical Framework was defined. The goal of
this proposal is to allow the specification of the agent mental components and their relations, using
Defeasible Logic Programming (DeLP) [4]. This architecture is based on the BDI theory. It introduces
a formalism to allow the specification of Beliefs, Desires and Intentions using DeLP programs. Thus,
the agent may reason with a defeasible argumentation formalism. Therefore this proposal will be
referred as BDI-DeLP in the rest of this work.

BDI-DeLP has advantages as an agent architecture: BDI agents mental components and their
interaction can be specified in a declarative way (see Fig.1), and it uses a high level mechanism
(DeLP) for knowledge representation and reasoning.

Next, we give a brief summary of DeLP (for more details see [4]). The goal of this summary
is to introduce the concepts of DeLP that will be used in the analysis of further sections. In DeLP,
knowledge is represented using facts, strict rules, and defeasible rules:

• Facts are ground literals representing atomic information or the negation of atomic information
using strong negation “∼”.

• Strict Rules are denoted L0← L1, . . . , Ln, where L0 is a ground literal and {Li}i>0 is a set of
ground extended literals (e.g. ∼a← b).

• Defeasible Rules are denoted L0 –≺L1, . . . , Ln, where L0 is a ground literal and {Li}i>0 is a set
of ground extended literals. (e.g. c –≺ ∼d f –≺not g).

Rules are distinguished by the type of arrows, and a defeasible rule “Head –≺Body” expresses that
“reasons to believe in the antecedent Body give reasons to believe in the consequent Head” repre-
senting tentative information that may be used if nothing could be posed against it.

A Defeasible Logic Program (DeLP) P is a set of facts, strict rules and defeasible rules. When
required, P is denoted (Π, ∆) distinguishing the subset Π of facts and strict rules, and the subset ∆
of defeasible rules. Strict and defeasible rules are ground, however, following the usual convention,
some examples will use “schematic rules” with variables.

Strong negation could appear in the head of program rules, and can be used to represent contradic-
tory knowledge. From a program (Π, ∆) contradictory literals could be derived. however, the set Π
(used to represent non-defeasible information) must be non-contradictory, i.e.no pair of contradictory
literals can be derived from Π. Given a literal L, L represents the complement with respect to strong
negation.

If contradictory literals are derived from (Π, ∆), a dialectical process is used for deciding which
literal prevails. In short, an argument for a literal L, denoted 〈A, L〉, is a minimal set of defeasible

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
VIII Workshop de Agentes y Sistemas Inteligentes
_________________________________________________________________________

 
 

1465



rules A⊆ Π, such that A∪Π is non-contradictory, and there is a derivation for L from A∪Π. A literal
L is warranted from (Π, ∆) if there exists a non-defeated argument A supporting L. To establish if
〈A, L〉 is a non-defeated argument, argument rebuttals or counter-arguments that could be defeaters
for 〈A, L〉 are considered, i.e.counter-arguments that by some criterion are preferred to 〈A, L〉. A
defeater A1 for an argument A2 can be proper (A1 stronger than A2) or blocking (same strength). In
the examples of this paper we assume generalized specificity as the comparison criterion, however, as
explained in [4] the criterion could be easily changed.

Since defeaters are arguments, there may exist defeaters for them, and defeaters for these de-
featers, and so on. Thus, a sequence of arguments called argumentation line is constructed, where
each argument defeats its predecessor in the line (for a detailed explanation of this dialectical pro-
cess see [4]). In DeLP, a query Q could have four possible answers: YES, if Q is warranted; NO, if
the complement of Q is warranted; UNDECIDED, if neither Q nor its complement is warranted; and
UNKNOWN, if Q is not in the signature of the program.

2.2 An agent programming Language: 3APL

In contrast with the BDI-DeLP that provides an agent architecture, 3APL [5] provides an agent pro-
gramming language. 3APL was presented in [5] and extended in [3] and follows the spirit of Shoham’s
Agent Oriented Programming paradigm [8]. Its goal is to allow the programmer the creation of cog-
nitive agents that can interact each other. As an agent programming language 3APL [11] is based on
the BDI agent theory, and provides a concrete language to program and execute agents. The agents of
3APL combine logic programming (for the specification of their mental components) and imperative
programming (for the structure of their plans).

3APL has advantages as an agent programming language: Agents can be specified and imple-
mented in a declarative way through their mental components (see Fig.2), these mental components
follow the BDI mental components, agents can solve their goals via plans and communication be-
tween agents can be specified and affects the agent mental components. The authors of 3APL have
developed a platform[9] were agents can executed and tested.

3 AN ANALYSIS OF 3APL AND BDI-DELP

In this section an analysis of 3APL and BDI-DeLP will be made. The goal of this analysis is to
expose strong and weak points of each approach, and show how these alternatives can complement
each other.

This analysis will be centered in knowledge representation and Reasoning. Therefore, the analysis
will be divided in two categories: Mental Components and Reasoning mechanism where the mental
component area will be divided in three subcategories: Beliefs, Desires and Intentions.

Since 3APL is agent programming language, it provides support for full agent implementation.
Thus, communication and planning, will not be analysed in deep in this work because these items are
only supported by 3APL. The communication model used in 3APL is presented in [10] and is based
on the FIPA standards. This model is integrated with mental components of the agent. Plans in 3APL
can be a basic action or a structure of basic actions. This structure follows the spirit of an imperative
programming language.

Now we will introduce a working example in order to show and analyze the main differences
between both approaches.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
VIII Workshop de Agentes y Sistemas Inteligentes
_________________________________________________________________________

 
 

1466



Example 1 Consider a cognitive agent with the following features:

• it has five signal sensors for perceiving the environment. If si is present in the agent beliefs
means that the sensor i is active.

• it can infer new beliefs from active sensors: b1, if s1 or s2 are active; b2 if s3 is active; ∼b1, if
s1 and s2 are both active, or if s5 is active; and ∼b2, if s2 and s4 are both active.

• it has two desires: g1, achievable if it believes in b1 and not achievable if it believes in b2; and
g2, achievable if s3 is active and not achievable if it believe in b1.

• it has: two ways to achieve the desire g1, one when s1 and s4 are both active, and the other only
s4 is active; and one way to achieve the desire g2, that is when s4 is active.

The agent of Ex.1 has not necessarily a real connotation, it is a brief example that will be used just
to show the representational capabilities of both approaches. Next, we will show a specification for
the agent of Ex.1 in BDI-DeLP (Fig.1) and in 3APL (Fig.2). The goal of these figures is to show
similarities and differences between both approaches. This specification will represent a snapshot of
the agent mental state in an arbitrary moment, where the sensors s1, s3, s4, s5 are active. The mental
components of the agent of each figure will be detailed below.

The specification of the agent of Ex.1 with BDI-DeLP is shown below in Fig.1. In this specifi-
cation mental components like, Beliefs (Φ and BR), Desires (D), filtering rules for the desires (PF )
and the intention rules (IR), can be differentiated. There, Φ has facts used to represents sensors, BR
has rules used to obtain inferred beliefs, D has facts used to represents the desires, PF has rules used
to determine if a desire is achievable, and IR has rules used to determine which desire the agent will
try to achieve next.

Φ =





s1

s3

s4

s5





BR =





b1 –≺s1

b1 –≺s2

∼b1 –≺s5

∼b1 –≺s1, s2

b2 –≺s3

∼b2 –≺s2, s4





D=

{
g1

g2

}

PF =





g1 –≺b1

∼g1 –≺b2

g2 –≺s3

∼g2 –≺ ∼b1





IR =





g1 ⇐ {s1, s4}{}
g1 ⇐ {s4}{}
g2 ⇐ {s4}{}





Figure 1: BDI-DeLP Agent example

The specification of the agent of Ex.1 with 3APL is shown below in Fig.2. In this specification,
Beliefs (BELIEF BASE), capabilities to manipulate the beliefs (CAPABILITIES), Desires (GOAL
BASE) and the reasoning rules (RULEBASE), can be differentiated. There, BELIEF BASE has facts
and rules used to represent the sensors and the inferred beliefs, CAPABILITIES has rules used to
represent updates of the sensors, GOAL BASE has facts used to represent the desires, and RULEBASE
has rules used to select a desire and a plan for achieving it.

In Fig.2 in order to obtain an equivalent version of the agent specified in Fig.1, the defeasible
rules and the argumentation process were emulated. This will be described in detail in the rest of the
section.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
VIII Workshop de Agentes y Sistemas Inteligentes
_________________________________________________________________________

 
 

1467



CAPABILITIES {
{perception(Y)} Add(X) {not perception(Y), perception(X)}

} BELIEFBASE {
perception([s1, s3, s4, s5]),
perceived(X):-perception(L),member(X,L).
b1:- perceived(s1), not tail1, not perceived(s5).
b1:- perceived(s2), not tail1, not perceived(s5).
tail1:- perceived(s1), perceived(s2).
b2:- perceived(s3), not tail2.
tail2:- perceived(s2), perceived(s4).

} GOALBASE {
g1, g2

} RULEBASE {
g1 <- perceived(s1), perceived(s4), b1, not(b2) | {Plan1Goal1, Sense(X), Add(X)},
g1 <- perceived(s4), b1, not(b2) | {Plan2Goal1, Sense(X), Add(X)},
g2 <- perceived(s4), perceived(s3), not(tail1) | {PlanGoal2, Sense(X), Add(X)},}

Figure 2: 3APL Agent example

3.1 Agent mental components

As stated above, both 3APL and BDI-Delp are based on the BDI agent theory. Agents specified using
the BDI theory are described by three mental components: Beliefs, Desires and Intentions. Thus
the analysis in this section will be divided in three parts, one for each mental component of the BDI
theory.

3.1.1 Beliefs
In the BDI-DeLP proposal, agent beliefs are specified by a DeLP program called PB = (ΠB, ∆B). In
ΠB two disjoint subsets will be distinguished: Φ of perceived beliefs that will be updated dynamically,
as the agent perceives the environment, and Σ of strict rules and facts that represent static knowledge.
Thus ΠB = Φ ∪ Σ. The agent of Fig.1 has Σ = ∅. Besides the perceived beliefs, the agent may use
strict and defeasible rules from PB to obtain a warrant for its derived beliefs. The facts of Σ are not
perceived, they do represent agent features, roles, etc. Therefore an agent in this proposal will have
different types of beliefs:

• Perceived belief :it is a fact of Φ that the agent has perceived directly from its environment.
• Strict belief : it is a literal that is not a perceived belief, and its derived only from ΠB.
• Defeasible belief : it is a warranted literal L supported by a non empty argument A
• Derived belief : it is a strict or a defeasible belief.

In Fig.1 the BR are the rules used to get the Derived beliefs.
Example 2 The Derived beliefs of the agent of Fig.1 will be {b2} , because there is an undefeated
argument (b2 –≺s3) for literal b2. Thus, this agent will believe in {s1, s3, s4, s5, b2}

The BDI-DeLP does not specify any mechanism to manipulate beliefs. However two processes
can be identified: one to update the Perceived beliefs in every deliberative cycle; and other to add,
modify or remove beliefs rules from PB, when the agent decides to do so.

In 3APL agent beliefs can be specified by any logic language [5]. However, as it was exposed in
Section 2.2 3APL is an agent programming language, so a logic language for beliefs must be given.
In their works they use propositional logic or Prolog logic. In this work we will study the approach
of 3APL that uses Prolog to specify beliefs (see 3APL platform [9]). Thus, agent beliefs are specified
by a Prolog program called BELIEF BASE. Therefore, a Belief can be a fact or a literal derived by
Prolog rules. The agent can consult about its beliefs using a Prolog query.

In 3APL beliefs are not categorized. However the categorization exposed in BDI-DeLP above
can be partially emulated. To specify Perceived beliefs, Prolog facts can be used. This can be seen

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
VIII Workshop de Agentes y Sistemas Inteligentes
_________________________________________________________________________

 
 

1468



in Fig.2 with the fact perception([s1, s3, s4, s5]), where the argument is the list of
the perceived facts. Strict beliefs can be specified using Prolog rules. Using a Prolog program is
not possible to specify Defeasible beliefs, because Prolog does not have defeasible rules. Hence the
Derived beliefs are only strict beliefs. Defeasible rules allow the programmer, for example to express
easily exceptions of general rules (see [4] for examples).

It can be seen in Fig.1 and Fig. 2 that the representation of the agent of Ex.1 beliefs is different.
One is made in Prolog and the other in DeLP. Form this difference, some issues arise. First, DeLP
allows four types of answers for a query, whereas Prolog allows only two. Thus some kind of decision
choice must be made in the Prolog approach, at the cost of losing flexibility in the agent reasoning
process. It can be seen in the example of Fig.2 that the decision choice taken in this work is that
UNDECIDED and UNKNOWN answers will be NO in Prolog. Nevertheless, this decision choice
is not as restrictive as it seems, because it is considered reasonable to be skeptical about Beliefs.
Second, a DeLP Program can sometimes be emulated by Prolog program. However, this emulated
DeLP program will have more complex rules, will lose declarativity and will be less scalable. This
comes because the Prolog rules will try to emulate the argumentative process done in DeLP. This can
be seen in the form of the belief rules related to b1 in Fig.1 and Fig.2. Moreover, If the selection
criterion of DeLP is changed or more rules related to b1 are added to BR in Fig.1, all the rules related
to b1 in the BELIEF BASE of Fig.2 should be revised and in the worst case all will be changed.
Example 3 Consider the agents of Fig.1 and Fig.2. If the belief rule∼b1 –≺s3 is added to the Beliefs
Rules set of Fig.1, then the term not(s3) should be added to all rules related to b1 in BELIEF
BASE of Fig.2.
Third, DeLP has mechanism to specify and use Strong Negation and Prolog does not. In brief, most
of these issues come from the advantages DeLP over Prolog as knowledge representation languages.
These advantages are exposed in [4].

3APL, as an programming language needs an explicit mechanism to add, remove or revise beliefs.
For this, 3APL provides the set CAPABILITIES, which contains rules to add or remove beliefs.
These rules, are called basic actions and can be used as a part of a plan. However, as it was said
above, 3APL does not categorize beliefs. Therefore, all the beliefs are treated equally, which means
that all the beliefs are updated using basic action rules. This means that the agent will update its
perception beliefs only when basic action rules are executed, that is when it is executing a plan.
Moreover, if the agent wants to update its perception beliefs every deliberation cycle, every plan
it executes should include the basic action rules that update the perception (plans are explained in
Section 3.1.3). This can be seen in Fig.2 where every rule in the RULEBASE set has, as part of
its plan, the sequence Sense(X),Add(X). Where Sense(X) is an external function to sense the
environment and Add(X) is the basic action to add the acquired information X to the BELIEF BASE

3.1.2 Desires
In BDI-DeLP the set D is used to specify desires of the BDI theory. This set is composed of Literals,
and can be contradictory. It represents all the desires that the agent want to achieve. A desire in this
proposal represents an action that the agent wants to do. The agent only adopts a subset of desires,
each time. This subset contains the current achievable desires and will be called Dc. To do this a
DeLP program PF = (ΠF , ∆F ) called Filtering Rules is used. This program PF contains strict and
defeasible rules that represent reasons for and against adopting desires (see Fig.1). To build the set
Dc, the DeLP program Kag= (Πag, ∆ag) is used. The program Kag represents the agent knowledge
base and it is created merging PF and PB (see [7] for details).

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
VIII Workshop de Agentes y Sistemas Inteligentes
_________________________________________________________________________

 
 

1469



Example 4 Consider the sets Φ, BR and PF from Fig.1. The program Kag= (Πag, ∆ag) will be

Πag =

{
s1 s3

s4 s5

}
∆ag =





b1 –≺s1 b1 –≺s2 ∼b1 –≺s5 ∼b1 –≺s1, s2

b2 –≺s3 ∼b2 –≺s2, s4 g1 –≺b1 ∼g1 –≺b2

g2 –≺s3 ∼g2 –≺ ∼b1





In Ex.4 the Kag program is composed by all rules from BR and PF , and all the literals in Φ of Fig.1.
Besides Kag a selection criterion T is used. This criterion establishes the answers of Kag that will
be acceptable for the agent. Therefore, it determines the type of the agent. The elements in Dc will
be only those elements of D that satisfy the selection criterion T in Kag. To this purpose a filtering
function is used. This function takes the selection criterion T and the desire set D, and builds Dc. In
[6] two possible selection criterion T are specified: one for cautious agents, that accepts only desires
δ, if there is a warrant for δ from Kag; and the other for bold agents, that accepts desires δ, if there is
no warrant for ∼δ from Kag. In the example of Fig.1 the agent type is not shown, but we assume that
the agent is cautious, so he believes and desires only warranted things.
Example 5 Consider a cautious agent A, with Kag of the Ex. 4, and D of Fig.1. The set Dc set will
be {g2}, because there is an undefeated argument for g2 (g2 –≺s3), and there is no warrant for g1.

In BDI-DeLP there is no mechanism to drop, modify or add new desires to the desire set D.
However, the agent can have all the desires that will use in his lifespan in the set D, and use the Kag to
select which of them are currently are achievable. We assume that a agent can not adopt new desires.
Thus the agent selects desires from the desire pool that are currently achievable under some policy.

In 3APL the GOAL BASE set is used to specify Desires of the BDI theory. This set is composed by
terms, which are called goals. Goals represent the situation where the agent wants to be in. The goals
in GOAL BASE are those goals that the agent want to achieve. Thus the GOAL BASE is similar to the
desire set D of BDI-DeLP, which is exposed above. In 3APL there is no independent mechanism to
determine which goals are currently achievable. Hence, this means that all goals in the GOAL BASE
can be adopted as intentions.

In our opinion the agent development tool should provide some way to specify conditions over
the desires. In the BDI-DeLP approach this is done via the filtering rules explained above. In 3APL,
there are three alternatives for doing it, two indirectly via the reasoning rules (see 3.1.3), and the
other at a meta level with the deliberative cycle program. One of those alternatives is using the goal
rules (see 3.1.3), where the agent can manipulate the GOAL BASE to emulate the currently achievable
desires set Dc of the other proposal. For us, this alternative leads the agent to have desires to change
other desires. Other alternative is putting every condition for a goal as part of the precondition of
the reasoning rules related to that goal. This is the alternative that was adopted in Fig.2. There, it
can be seen that both reasoning rules related to the goal g1 have, as part of their preconditions, the
consults b1, not(b2). This tries to emulate the conditions that are established by the filtering
rules { g1 –≺b1 , ∼g1 –≺b2 } of the example from Fig.1. This design choice leads to some issues over
the reasoning rules that will be detailed in the next section (because they are related to the intention
model). Finally, the last alternative to expose conditions over goals in 3APL is using the tools to
change the deliberative cycle program, which are proposed in [2]. These tools allow to redefine
the deliberative cycle of the 3APL interpreter. In the redefinition the developer can put conditions
related to the goals and the beliefs in the deliberative cycle. Thus the behavior of the filtering rules
of the other approach can be emulated using these tools. These tools are at a meta level of the
agent (The interpreter algorithm is changed) thus, every time a rule over the desires is to be added,
the whole deliberative cycle algorithm must be revised. Therefore, compered to the other ways to
specify the conditions over desires in 3APL this way is more unscalable. Thus, using one of these
alternatives the filtering rules of BDI-DeLP can be emulated in 3APL. However, the same issues
marked in Section 3.1.1 and exemplified in Ex.3 will arise.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
VIII Workshop de Agentes y Sistemas Inteligentes
_________________________________________________________________________

 
 

1470



In 3APL it is possible to define the agent type using the tools to redefine the delineative cycle
program[2], exposing conditions over the execution of the mental components.

3.1.3 Intentions
In BDI-DeLP intention rules are used to specify how desires are adopted as intentions. An intention
in this model is a current desire that the agent can commit with under some established preconditions
and constrains. An intention rule will be applicable if its associated desire is in the Dc set and its
preconditions and constrains are satisfied. Satisfied preconditions are warranted beliefs of Kag or
desires in Dc. Satisfied constrains are not warranted beliefs of Kag or desires that are not in Dc.
To select between various applicable intention rules, a selection policy is used. This policy can be
specified by the developer. In the example of Fig.1 the intention rules are model by the set IR, and
the policy used is “Select the first applicable rule”.

Example 6 Consider the agent of Fig.1, Kag of Ex.4 and Dc of Ex.5. The only applicable rule from
IR of this agent will be g2 ⇐ {s4}{}, because g2 is the only desire in the set Dc and s4 is derivable
from the program Kag.

The BDI-DeLP proposal does not specify a way to manipulate or write the actions associated with
a selected intention, which is left to future works. Also in their approach there is no mechanism to
add, modify or remove Intention Rules.

In 3APL intentions are specified by the set of rules called RULEBASE. The rules of this set are
called Reasoning Rules and can be divided in three types: the interaction rules, the goal rules and the
plan rules. The plan rules are used to revise or drop plans, and will not be treated in this work. The
interactions rules and the goal rules are used to specify intentions.

Interaction rules of 3APL allow the agent to reach its goals via plans. These rules consist of a
header goal, a guard, and a plan. The header goal is the goal which the agent will commit to. The
guard represents the preconditions that must be satisfied (with respect to the BELIEF BASE) to apply
the rule. The plan represents the set of actions that the agent will do to achieve the selected goal. Thus
a rule of this set is a map under some established preconditions between a goal and a plan to solve
it. The goal rules are very similar, in its form, to the interaction rules. The difference between these
rules types is that the plans of the goal rules are only actions over the GOAL BASE. In the example
of Fig.2 the set RULEBASE is only composed by interaction rules (No goal or plan rules were used).

In 3APL a interation/goal rule is applicable if its header goal is in the GOAL BASE and its guard
is satisfied. To satisfy a guard all its elements must be derivable from the BELIEF BASE Prolog
program. Once a rule is selected, its plan is executed.
Example 7 Consider the 3APL agent of Fig.2. The only applicable interaction rule is
g2 <- perceived(s4),perceived(s3),not(tail1)|{PlanGoal2,Sense(X),Add(X)}
because g2 is in the GOAL BASE and the guard elements of the guard perceived(s4),
perceived(s3) and not(tail1) are derivable from the BELIEF BASE program. Note that,
despite g1 is in the GOAL BASE, all the interaction rules related to g1 do not satisfy its guards.

To select between two or more applicable rules, a policy can be used. In the 3APL Platform [9] a
simple policy is used: Select the first specified rule (The same that we used in the example of BDI-
DeLP). However, this policy can be redefined using the tools to redefine the deliberative cycle [2].

As it was mentioned above the guard of a 3APL interaction/goal rule will have all preconditions
related to the applicability of an intention. However, it was exposed in 3.1.2 that the conditions over
goals are added to the guard of the interaction/goal rule. Thus, the guard of the interaction/goal rule
in 3APL will have preconditions to verify two semantically different things: if the rule is applicable;
and if the associated goal is achievable. This issue add some undesired practical effects in the rules.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
VIII Workshop de Agentes y Sistemas Inteligentes
_________________________________________________________________________

 
 

1471



Example 8 Consider the agent of Fig.2. It can be seen that b1, not(b2), which represents the
conditions for the g1, is repeated in every rule that has g1 as a header goal.
In general, all the conditions over a goal will be present in the guard of every interaction/goal rule
related to that goal. This “repeated code problem” can become bigger if the conditions over the
goals are more complex. These issues are not present in BDI-DeLP, because it provides different
mechanisms to represent conditions over desires and preconditions over intention rules.

Contrary to BDI-DeLP, 3APL, as agent programming language has a well defined model to specify
the actions (plans) associated with the intention, and rules (plan rules) to revise them. 3APL does not
specify a mechanism to add, modify or remove reasoning rules.

3.2 Reasoning

In this section the deliberative cycle and the reasoning processes of both approaches are analyzed.
The BDI-DeLP approach does not explicitly define a deliberative cycle, it is left open for the

developer. However, the deliberative cycle can not be arbitrary defined. There are several restrictions
on how the cycle can be built. These restrictions are due to the way the sets for the reasoning process
are used. Next, one possible deliberative cycle will be exposed:

1. Find which desires are currently achievable, using the Kag DeLP program (beliefs and the fil-
tering rules).

2. Find intention rules that match with the desires selected in step 1.
3. Find which rules, of those selected in step 2, satisfy the preconditions and constrains, using the

Kag DeLP program
4. If one or more rule satisfies step 3, then select one rule using the policy p.

The reasoning process of the BDI-DeLP proposal has two stages. One when the agent determines if a
desire is in the set of the current desires, and the other when it checks if an intention rule is applicable.
The applicable intention policy can also be thought as part of the reasoning process.

3APL, as an agent programming language has a concrete deliberative cycle specified [9],[2]. How-
ever, as it was stated in previous sections there are tools to reprogram the procedure that specifies the
cycle [2]. The 3APL Deliberative cycle exposed in[2] is described next:

1. Find a reasoning rule matching with goals in the GOAL BASE.
2. Find which rules of step 1 satisfy its preconditions (Guard) with respect to the BELIEF BASE

Prolog program.
3. If one or more rules satisfy steps 1 y 2, select a rule and execute its plan.

The reasoning process of 3APL has one stage, that is, when the agent checks if a rule is applicable
or not. Considering what was stated in Section 3.1.3, this means that 3APL will test in the same
reasoning step if a goal is achievable and if an interaction/goal rule is applicable. This leads to a
practical issue. It was explained in Section 3.1.2 and 3.1.3, that all conditions for a goal will be
in the guard of a rule that has that goal as a header goal. Thus the conditions for a goal will be
tested in every rule that has that goal as a header goal. For example, it can be seen in Fig.2 that
the conditions b1, not(b2) of the goal g1 are not satisfied (b1 is not derived from the BELIEF
BASE program). These conditions will be tested with the guard of every rule related to g1. This
means that these conditions will be tested two times in every deliberative cycle. This problem is not
present in the BDI-DeLP approach because it does desire filtering and intention rule applicability tests
in two separate steps. Thus, if 3APL would have two steps for those two stages the problem exposed
above would not be present.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
VIII Workshop de Agentes y Sistemas Inteligentes
_________________________________________________________________________

 
 

1472



4 3APL WITH DELP AS A BELIEF LANGUAGE: 3APL-DELP

In the last section an analysis of each approach was shown and there, strong points of each approach
were highlighted. In this section some of these strong points are used to present and define a combined
approach called 3APL-DeLP.

In the presentation of 3APL [5], the authors did not fix the logic language used for knowledge
representation. To develop the rest of their works [2], [10], [3] they used propositional logic or Prolog
as language to represent beliefs. In particular the 3APL interpreter[9] uses Prolog. In this work we
propose a to use DeLP as the knowledge representation language in 3ALP. This will be done using a
DeLP program as the BELIEF BASE program of 3APL. This proposal will be called 3APL-DeLP.

A 3APL-DeLP agent will have the same mental components as a 3APL agent. Thus the mental
state (configuration) of 3APL-DeLP is the same given in[3]. Next, we will define the components of
3APL that are affected by our proposal.
It was shown in Section 3, that DeLP is a more sophisticated mechanism for knowledge representation
than Prolog. Thus, a the program used to represent beliefs of 3APL-DeLP must be defined as follows
Definition 1 : (Belief Base) The BELIEF BASE of a 3APL-DeLP Agent will be a DeLP program
PBF = (ΠBF , ∆BF ), where ΠBF is a non contradictory set of facts and ∆BF is a set of defeasible
rules.
All the Beliefs that the agent believes are derivable by the BELIEF BASE program, therefore:
Definition 2 : (Belief) Let PBF a be BELIEF BASE, a Literal B is a Belief from PBF iff B is
warranted from PBF .
In 3APL basic action rules can be used to add or remove beliefs from the Belief Program. Therefore:

Definition 3 : (Basic Action Rule) A Basic Action rule Ba is an ordered triplet Ba=(Pre, Name,
Pos), where: Pre={P1, . . . , Pm} is a set of Literals representing a preconditions for Ba, Name is a
predicate, and Pos={X1, . . . , Xn} is a consistent set of extended Literals representing the effects of
executing Ba.
All the basic action rules are in the CAPABILITIES set of the 3APL-DeLP agent. The predicate
Name of Def.3, is used to call capability rule from the plans. This predicate can contain variables
which will be treated as in-mode parameters.
Definition 4 : (Applicable Basic Action Rule) Let Ba be a Basic Action Rule in CAPABILITIES
and PBF a be BELIEF BASE. Ba will be applicable if every Pi in Pre is a Belief.
Definition 5 : (Basic Action Rule Effect) Let Ba be an Applicable Basic Action Rule in CAPABIL-
ITIES and PBF a be BELIEF BASE. The effect of executing Ba is is the revision of the BELIEF
BASE DeLP program. This revision will consist of removing any literal in PBF that is complementary
of any literal in Pos or that is preceded by a “not” in Pos, and then adding all the literals in Pos to
the resulting program.

In 3APL an Interaction Rule of the RULEBASE, as it was explained in Section 3.1.3, involve a
goal, a guard and a plans. The plan is the specifies the actions needed to solve the goal and the guard
are the preconditions of the rule. Those preconditions are queries to the BELIEF BASE. Therefore:
Definition 6 : (Interaction Rule) A Interaction rule R is an ordered triplet R=(HG, Guard, Pl),
where: HG is a Literal representing the goal to achieve, Guard={G1, . . . , Gn} is a consistent set of
extended Literals representing the preconditions for R, and Pl is a plan.
Note that the definition of goal rules is analogous to Def.6, there, a goal action should be in the place
of the plan.
Definition 7 : (Applicable Interaction Rule) Let R be a Interaction rule in RULEBASE and PBF a
be BELIEF BASE. R will be applicable if HG is in GOALBASE and each Gi in Guard is a Belief.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
VIII Workshop de Agentes y Sistemas Inteligentes
_________________________________________________________________________

 
 

1473



Thus, using DeLP as the BELIEF BASE program allows to model the rules to represent knowl-
edge in a more declarative way. DeLP characteristics allows to model incomplete and potentially
contradictory information. The inference mechanism of DeLP allows the 3APL-DeLP agent to de-
cide between several contradictory conclusions, and to adapt to changing environments, i.e., it allows
to add or remove information in a dynamic way, without the need of changing every rule of the
agent, which adds scalability and flexibility. More examples of DeLP as a knowledge representation
language are shown in [4]. Next, in Fig.3, a complete specification of the agent of Ex.1 is shown.

CAPABILITIES {
{perception(Y)} Add(X) {not perception(Y), perception(X)}

} BELIEFBASE {
perception([s1, s3, s4, s5]),
perceived(X) -< perception(L),member(X,L).
b1 -< perceived(s1).
b1 -< perceived(s2).
˜b1 -< perceived(s5).
˜b1 -< perceived(s1),perceived(s2).
b2 -< perceived(s3).
˜b2 -< perceived(s2),perceived(s4).

} GOALBASE {
g1, g2

} RULEBASE {
g1 <- perceived(s1), perceived(s4), b1, not(b2) | {Plan1Goal1, Sense(X), Add(X)},
g1 <- perceived(s4), b1, not(b2) | {Plan2Goal1, Sense(X), Add(X)},
g2 <- perceived(s4), perceived(s3), not(˜b1) | {PlanGoal2, Sense(X), Add(X)},}

Figure 3: 3APL-DeLP Agent example

As shown in Fig.3 the BELIEF BASE is a DeLP program is similar of the BR and Φ of Fig.1.
The only difference between these two DeLP programs is that perceptions in Fig.3 were specified in
the same way of the 3APL agent of Fig.2. It can be seen that new rules can be added without the need
of changing all the BELIEF BASE program. Thus 3APL-DeLP will allow to specify BDI based
agents with the benefits of the declarativity, planning support and communicative support of 3APL
and all the benefits of DeLP as a knowledge representation language.

5 CONCLUSIONS AND FUTURE WORK

In this work we have shown 3APL-DeLP which is an approach to a programming Language for
BDI Agents that uses defeasible argumentation for agent knowledge representation and reasoning.
To reach this programming language two approaches based on BDI theories were studied. 3APL a
programming language for cognitive agents and BDI-DeLP an BDI agent architecture that uses DeLP
for knowledge representation and reasoning.

First, an introduction for each approach was given. There, goal, scope and advantages of each
were characterized, and an example of an agent specified in each approach was shown. Then an
analysis of the knowledge representation and reasoning features of each approach was developed.
This analysis was divided in the Belief, Desires, Intention and reasoning of each approach. There, the
advantages of DeLP as knowledge representation were characterized and shown with examples.

Finally, considering the advantages of DeLP exposed in the analysis of both approaches, the ad-
vantages of 3APL as agent programming language and the fact that in 3APL the knowledge repre-
sentation language is not fixed, 3APL-DeLP was proposed. In 3APL-DeLP the agent knowledge is
represented by a DeLP-program and the agent may reason with a defeasible argumentation formalism.
Definitions and an example for this programming language were given. Thus, 3APL-DeLP allows the

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
VIII Workshop de Agentes y Sistemas Inteligentes
_________________________________________________________________________

 
 

1474



specification of BDI based agents with the benefits of the declarativity, planning support and commu-
nicative support of 3APL and all the benefits of DeLP as a knowledge representation language.

In this work we only gave the definition of those components of 3APL that were affected by
our proposal, however a full revision of other components is needed. Also, further research in how
planning is affected by our proposal should be done. Finally, we think that filtering rules can be added
to 3APL-DeLP, this has been left for future research.

REFERENCES

[1] M. E. Bratman, D. Israel, and M. Pollack. Plans and resource-bounded practical reasoning. In
Robert Cummins and John L. Pollock, editors, Philosophy and AI: Essays at the Interface, pages
1–22, Cambridge, Massachusetts, 1991. The MIT Press.

[2] M. Dastani, F. de Boer, F. Dignum, and J. Meyer. Programming agent deliberation: An approach
illustrated using the 3apl language. In The Second Conference on Autonomous Agents and Multi-
agent Systems (AAMAS’03), Melbourne, Australia, 2003.

[3] M. Dastani, B. van Riemsdijk, F. Dignum, and J. Meyer. A programming language for cognitive
agents: Goal-directed 3apl. In First Workshop on Programming Multiagent Systems: Languages,
frameworks, techniques, and tools (ProMAS03), Melbourne, Australia, 2003.

[4] A. Garcia and G. Simari. Defeasible logic programming: An argumentative approach. Theory
and Practice of Logic Programming, 4(1-2):95–138, 2004.

[5] K. Hindriks, F. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent programming in 3apl.
Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.

[6] N. D. Rotstein, A. J. Garcı́a, and G. R. Simari. Reasoning from desires to intentions: A dialec-
tical framework. In 22nd. AAAI Conference on Artificial Intelligence, July 2007.

[7] N. D. Rotstein, A. J. Garcı́a, and Guillermo R. Simari. Defeasible reasoning about beliefs and
desires. In 11th International Workshop on Non-Monotonic Reasoning (NMR 2006), pages 429–
436. Lake District, UK, May 2006.

[8] Y. Shoham. Agent-oriented programming. In Artificial Intelligence, 1993.

[9] E.C. ten Hoeve. 3apl platform. Master’s thesis, Univ. of Utrech, 2003.

[10] J. van der Ham. Multi-agent fipa compliant 3apl agents. Master’s thesis, Univ. of Utrech, 2002.

[11] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and practice. Knowl-
edge Engineering Review, 10(2):115–152, 1995.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

 
VIII Workshop de Agentes y Sistemas Inteligentes
_________________________________________________________________________

 
 

1475




