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Abstract

Ensemble methods show improved generalization capabilities that outperform those of
single learners. It is generally accepted that, for aggregation to be effective, the individual
learners must be as accurate and diverse as possible. An important problem in ensemble
learning is then how to find a good balance between these two conflicting conditions. For
tree-based methods a successful strategy was introduced by Breiman with the Random-
Forest algorithm. In this work we introduce new methods for neural network ensemble
construction that follow Random-Forest-like strategies to construct ensembles. Using sev-
eral real and artificial regression problems, we compare our new methods with the more
typical Bagging algorithm and with three state-of-the-art regression methods. We find
that our algorithms produce very good results on several datasets. Some evidence suggest
that our new methods work better on problems with several redundant or noisy inputs.
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1 Introduction

Over the last decade ensemble methods have been on the focus of machine learning research[10,
17]. The base of these procedures is the intuitive idea that by combining the outputs of several
individual predictors one might improve on the performance of a single generic one. The so-called
bias/variance dilemma [6] provides formal support to the success of these strategies. According
to these ideas, good ensemble members must be both accurate and diverse, which poses the
problem of generating a set of predictors with reasonably good individual performances and
independently distributed predictions for the test points. As these are two opposite conditions,
good ensemble methods achieve a compromise between them. Typical examples are bagging [2]
and boosting [5].

Diverse individual predictors can be obtained in several ways. Bagging and boosting strate-
gies are based on learning from different adequately-chosen subsets of the data set. Other
methods try to generate diversity by adding small perturbations to the data at hand. For ex-
ample, Rodriguez et al. [12] use partial PCA decompositions at each node of a CART Tree.
Breiman [4] randomizes the class labels of a small sub-sample of the data when growing each tree
and Martinez et al. [11] perform the same procedure for neural networks ensembles. Another
successful strategy is to modify slightly the internal learning structure of a given algorithm in
order to gain in diversity. For example, Geurts et al. [7] grow decision trees using randomly
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selected variables and split points. Clearly, the most successful method of this class is the Ran-
dom Forest (RF) algorithm [3], introduced by Leo Breiman. In RF, like in bagging, several
CART trees are grown on bootstrap samples of the original dataset. But, when growing each
tree, only a small random subset of features is considered at each node. Doing this, at each
step the algorithm minimizes a cost function only in a randomly selected subspace of the full
hypothesis space.

Several ensemble techniques have been recently applied to artificial neural networks (ANN)
[8, 14, 16]. As the diversity of ANN comes naturally from the training process randomness and
from the intrinsic non-identifiability of the model, it is difficult to improve over simple strategies
like using several networks trained on the same data or plain bagging. For classification problems
boosting of ANN outperforms other ensemble methods in several cases [16, 13] but for regression
problems several methods show similar results [8]. Aiming at increasing the diversity in ANN
ensembles, in this work we introduce new methods for neural network ensemble construction that
follow Random-Forest-like strategies, i.e., that minimize the ANN cost function on randomly
selected subspaces. We test the proposed algorithms on regression problems, using real and
artificial benchmark datasets and time series.

This paper is organized as follows. In the next section we recall the bias/variance dilemma.
Next, we introduce our new ensemble construction strategies. In Section 4 we describe the
experimental settings used and in Section 5 we show and discuss the empirical results of our
new methods. Finally, in Section 6 we draw some conclusions and discuss future lines of research.

2 Bias and Variance

In this section we will briefly recall the bias/variance decomposition of the generalization error
[6] (which is the theoretical base of ensemble methods) following [9]. Let us consider a set of N
noisy data pairs D ={(t;,x;), i = 1, N}, where the vectors x; of predictor variables are obtained
from some distribution P(x) and the regression targets ¢; are generated according to

ti = f(xi) + i (1)

Here f is the true regression and ¢ is random noise with zero mean. If we estimate f using D
obtaining a model fp, the (quadratic) generalization error on a test point (¢,x) averaged over
all possible realizations of the data set D (with respect to P and noise ¢) can be decomposed
as:

E[(t — fp(x))*|D] = E[e’|e] + (E[fn(x)|D] — f(x))* + E[(fp(x) — E[fp(x)|D])*[D]  (2)

The first term on the right-hand side is simply the noise variance o2; the second and third terms
are, respectively, the squared bias and variance of the estimation method. For a single model
fp we can interpret this equation by saying that a good method should be no biased and have
as little variance as possible between different realizations.

If we rewrite the error decomposition in the form:

E[(t — E[fp(x)|D])?| D] = Bias® + 02 = MeanError — Variance, (3)

we can reinterpret this equation in the following way: using the average E[fp|D] as estimator,
the generalization error can be reduced if we are able to produce fairly accurate models fp (small
MeanError') while, at the same time, allowing them to produce the most diverse predictions at

'In this work we use the terms Accuracy and MeanError with the same meaning. In other cases Accuracy is
defined as —MeanFError or in another mathematical form that has a derivative opposite to MeanError’s one.
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every point (large Variance). Of course, there is a trade-off between these two conditions and
several previous works [8, 14] discussed how to find a good compromise between mean error and
diversity on ANN ensembles.

3 Learning in random subspaces

RF, as was discussed in the Introduction, is one of the most successful tree-based ensemble
methods. RF combines two different sources of diversity: i) each tree in the ensemble is grown
on a bootstrap sample of the original dataset and ii) when growing each tree, only a small
random subset of features is considered at each node. By this second condition the learning
algorithm is restricted to minimize its cost function only in randomly selected subspaces of the
original hypothesis space. According to Breiman, this procedure produces less correlated trees
while keeping a low mean error.

We can incorporate this last source of diversity to ANN ensembles with simple modifications
of the training procedure. All practical ANN learning methods are based on an iterative min-
imization of a cost function over the vector space of possible weight values [1]. In all cases we
can easily restrict the minimization procedure to random subspaces by the following procedure:
i) select at random a subset of weights.

ii) iterate a few cycles the learning algorithm but limiting it to change only the selected weights.
iii) iterate steps i) and ii) until a stopping criterion is reached.

Of course, different stopping criteria or random selection strategies can be implemented, leading
to slightly different versions of the method. It worth mention that at step ii) all weights are
available to the training algorithm to compute ANN outputs but it is limited to train (change)
only the selected subset of weights.

This work is limited to model regression problems using ensembles of ANNs with a single
hidden layer (with sigmoid activation functions) and a single output unit (with linear activation).
For this particular setting we choose to keep all weights connecting the output unit to the hidden
layer? and to limit the random selection to weights connecting the hidden layer to the input
units using the following two strategies:

i) simply select at random a fraction F of all weights and pass them to the learning method.
We call this strategy weight selection (WS),

ii) select a fraction F of input units and pass all weights coming from these units to the learning
method. We call this strategy input selection (IS).

We also consider two different stopping criteria for the training of individual ANNs. In the first
case, called optimal training (OT), we use the out-of-bag data as a validation set in order to
monitor the performance of each ANN on unseen data and avoid overfitting. This is the most
usual strategy for ANN or tree based ensembles. It is well known [3, 8] that some degree of
overfitting of the individual members can be of benefit for the ensemble performance. We thus
use a second criterion by which we train all ANNs a fixed number of epochs, long enough as
to be sure that we overfit the training data. We call this second criterion full training (FT).
Combining the two selection and stopping criteria plus different values of the fraction F of
selected weights we produce diverse methods with different compromises between accuracy and
variance.

2 As all ANNs have only one output unit, selecting a subset of connections for that unit can reduce the effective
complexity of the model and produce an accuracy decrease without the corresponding variance increase.
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4 Experimental Settings

We evaluate the algorithms described in the previous section by applying them to several bench-
mark databases: the synthetic Friedman #1 and #2, the real-world Boston Housing and Ozone
and two times series, Sunspots and Tkeda. In the following we give brief descriptions of the
databases and details on the experimental settings.

4.1 Datasets
Friedman #1

The Friedman #1 synthetic data set corresponds to vectors with 10 input and one output
variables generated according to

t = 10sin(2129) + 20(x5 — 0.5)% 4+ 1024 + 535 + £,

where ¢ is Gaussian noise (N(u = 0,0 = 1)) and x1,... 219 are uniformly distributed over the
interval [0, 1]. Notice that xg,... 219 do not enter in the definition of ¢ and are only included to
add input noise. We generate 1100 sample vectors and consider ANNs with 10:10:1 architectures.

Friedman #2

Friedman #2 has four independent variables and the target data are generated according to

y = a2 + \/mng — (19m4)72 + £,

where the zero-mean, normal noise is adjusted to give a noise-to-signal power ratio 1:3. The
variables x; are uniformly distributed in the ranges

0 <z, < 100, 20<§—2<280, O<as<1, 1<z <1l
v

We generate 1100 patterns and consider 4:10:1 ANNs.

Boston Housing

This data set, from the UCI machine learning repository, consists of 506 training vectors with
11 input variables and one target output. The inputs are mainly socioeconomic information
from census tracts on the greater Boston area and the output is the median housing price in the
tract. We select an 11:8:1 architecture for ANNs.

Ozone

The Ozone data correspond to meteorological information (humidity, temperature, etc.) related
to the maximum daily ozone at a location in Los Angeles area. Removing missing values one
is left with 330 training vectors, containing 8 inputs and one target output in each one. The
data set can be downloaded University of California at Berkeley. We select a 8:8:1 architecture
in this case.
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‘ Method ‘ Fried#1 ‘ Fried#2 ‘ Ozone ‘ Boston ‘ Ikeda ‘ SSP

Bagging 0.30 0.12 0.25 0.12 0.29 | 0.12
WS-90% 0.89 - 1.02 0.99 0.99 -

WS-80% 0.94 1.03 0.99 1.02 1.00 -

WS-70% 0.97 1.02 1.04 1.04 1.07 | 1.03
WS-60% 1.00 1.02 1.01 0.97 1.04 | 1.03
WS-50% 1.03 1.04 1.02 0.95 1.05 | 1.02
WS-40% - - - - - 1.03
IS-90% 0.99 - - 0.94 1.00 -

IS-80% 0.98 1.01 1.00 0.98 1.00 -

IS-70% 0.97 1.00 1.02 0.91 0.97 | 0.99
IS-60% 0.93 0.99 0.98 0.98 1.02 | 0.99
IS-50% 0.90 0.99 0.98 1.05 1.04 | 0.99
IS-40% - - - - - 0.98
IS-30% - - - - - 0.97

Table 1: Experimental results for the Optimal Training stopping criterion. Bagging results are given
in NMSE units. Results of all other methods are in relative units to the corresponding bagging value
(i.e., a value lower than one means increasing in performance over bagging). Each row corresponds to
a different selection strategy and fraction of selected weights.

Ikeda

The Tkeda laser map, which describes instabilities in the transmitted light by a ring cavity
system, is given by the real part of the complex iterates

61
Zpe1 =1 4+092,exp |0.40 — ———| .
" pl 1+ mm]
We generate 605 iterates and create 600 vectors using as inputs the last five values of the time
series and as output the corresponding next value. We consider 5:8:1 ANNs.

Sunspots

The sunspots (SSP) time series is one of the most used benchmarks in time series prediction. It
is the record of the yearly average of the number of sunspots (dark blotches on the sun mainly
caused by magnetic activity) since 1700 to 1999. We generate 287 vectors using as inputs the
last 12 values of the time series and as output the corresponding next value. We consider 12:6:1
ANNSs for this problem.

4.2 FEvaluation methods

For all six datasets we use ensembles with 50 ANNs. We selected this number of networks after
checking in all cases that there are practically no performance improvements with bigger ensem-
bles. Each ANN is trained with the standard back-propagation algorithm with momentum[1].
Training parameters (momentum, learning rate and # of epochs) were selected by internal cross
validation but without a in-depth search for optimal values, because we are mainly interested
in the relative performance of different ensemble methods.
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‘ Method ‘ Fried#1 ‘ Fried#2 ‘ Ozone ‘ Boston ‘ Tkeda, ‘ Ssp ‘

Bagg-FT | 0.93 143 | 1.10 | 0.97 | 0.99 | 1.02
WS-70% | 0.85 140 | 1.14 | 091 | 1.00 | 0.96
WS-60% | 0.90 1.33 | 1.15 | 0.90 | 1.00 |0.96
WS-50% | 0.94 1.39 | 1.13 | 091 | 1.01 |0.94
WS-40% | 0.97 1.39 | 117 | 090 | 1.06 |0.95
WS-30% | 1.00 - 1.15 - - 1094
IS-70% | 0.88 - 112 | 090 | 1.00 | 0.95
1S-60% | 0.84 142 | 1.13 | 0.84 | 0.99 | 0.93
1S-50% | 0.83 1.35 | 1.17 | 0.88 | 1.00 |0.92
1S-40% | 0.79 1.37 | 1.10 | 0.91 | 1.00 |0.93
I1S-30% | 0.75 1.35 | 1.11 | 091 | 1.00 |0.91

Table 2: Experimental results for the Full Training stopping criterion. All results are in relative units
to the corresponding bagging value (see Table 1). Each row corresponds to a different selection strategy
and fraction of selected weights.

All the results given in the next section are averages over 100 runs of each method. We
repeated 10 times a 10-folds cross validation procedure, using alternatively one fold as test set
and the remaining nine as training set. For all the methods under evaluation we use exactly the
same 100 partitions in training and test sets.

The results quoted below are given in terms of the normalized mean-squared test error:

MSE
NMSEp=—"T (4)

)

defined as the mean-squared error on the test set 7' divided by the variance of the total data set
D. For easy of interpretation, the results of the baseline method (bagging of optimally trained
ANNS) are given in these units and the results of the other methods are given relative to these
values. For example, the value 0.89 corresponding to Fried#1, WS-90% in Table 1 means that
the WS-90% strategy gives more than a 10% decrease in test set prediction error over plain

bagging.

5 Experimental results

We start our analysis evaluating the more typical OT stopping criterion. For both WS and
IS selection strategies we use several values of the fraction F of selected weights in the 30-90%
range. In Table 1 we show the corresponding results, including for comparison the results of
bagging of optimally trained ANNs. Note that the only difference between bagging and the WS
and IS strategies is the limitation on the last two methods to train only the selected subset of
weights. For the WS strategy the results are poor. Only for Friedman#1 and Boston there
are improvements over bagging for some values of F. In all other cases the OT-WS strategy
produce worse results than bagging. On the other hand, the IS strategy outperforms WS in
all six datasets. For this method, OT-IS, there are consistently better than bagging results
for Friedman#1, Boston and SSP, and similar to bagging prediction errors for the other three
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‘ Dataset Fried#1 Boston Ssp ‘
‘ Method ‘Acc Var ‘ Acc  Var ‘ Acc Var ‘

Bagging | 0.46 0.16 | 0.20 0.086 | 0.156 0.033
Bagg-FT | 1.75 3.32 | 1.41 2.17 | 1.02 0.9
WS-70% | 1.79 3.51 | 1.29 1.83 | 1.61 4.0
WS-60% | 1.82 3.51|1.27 1.77 | 1.56  3.83
WS-50% | 1.88 3.65 | 1.23 1.67 | 1.49 3.57
WS-40% | 1.96 3.83|1.21 1.61 | 1.43 3.21
WS-30% | - - | - - | 134 285
1S70% | 1.73 3.36 | 1.41 2.10 | 1.67 4.40
1S-60% | 1.72 3.39 | 1.34 2.01 | 1.63 4.20
1S-50% | 1.70 3.38 | 1.32 1.93 | 1.48  3.60
1S-40% | 1.66 3.33|1.33 1.89 | 1.43 3.31
1S-30% | 1.64 334|127 1.82 | 1.34 2.96

Table 3: Mean Error and Variance for three datasets (Fried#1, Boston and SSP) with similar
behavior. Results are given in units relative to the corresponding bagging results. Columns la-
beled Acc show accuracy values (lower values are better) and columns labeled Var show variance
values (bigger values are better).

problems. Analysing the dependence on the F value there is not a clear pattern, in some cases
there are improvements using small subspaces and in other cases the opposite is true.

We repeat the analysis for the FT stopping criterion. In table 2 we show the new results, but
including this time the results of bagging of fully trained ANNs (bagg-FT). Again, for the FT
stopping criterion, the only difference between bagg-FT and the WS and IS strategies is that
the last two methods train only a selected subset of weights. The bagg-F'T results are similar to
plain bagging for three datasets, worst for Fried#2 and Ozono and better only for Fried#1. IS
is almost always better than WS, which is consistent with the OT results, suggesting that the
IS strategy is more efficient. Comparing with bagg-FT there are two different behaviors. For
Fried#1, Boston and SSP there are now clear improvements over bagging and bagg-FT. On the
other side, for Fried#2, Ozono and Ikeda the results are similar or slightly worst than bagg-FT,
and clearly worst than bagging for the first two. As in the OT case, there is not a clear pattern
for the dependence on the F value, which seems to be problem-dependent.

Comparing the OT and FT stopping criteria, both show improvements over bagging on the
same three datasets and some decrease in performance on the other three, but the FT strategy
produces bigger differences with bagging in all cases.

5.1 Accuracy vs. Diversity

In order to gain some insight on the behavior of the new methods we also estimate the
accuracy and diversity components of the prediction error according to section 2, equations 2
and 3. We limit the analysis to the IS strategy, which produces the bigger improvements over
bagging.

In Tables 3 and 4 we present the corresponding results; for easier comparison, we again give
them normalized by the mean accuracy and diversity of plain bagging and give bagging results
in NMSE units. In Table 3 we present the results for the three datasets that clearly improve on
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‘ Dataset Fried#2 Ozone Tkeda ‘
‘ Method ‘Acc Var ‘Acc Var ‘ Acc Var‘

Bagging | 0.16 0.035 | 0.31 0.058 | 0.716 0.43
Bagg-FT | 3.07 887 | 2.05 6.20 | 2.05 2.74
WS-70% | 2.43  6.08 | 1.85 4.96 | 1.95 2.56
WS-60% | 2.39 6.14 | 1.82 4.76 | 2.03 2.71
WS-50% | 2.56 6.68 | 1.75 4.46 | 1.99 2.62
WS-40% | 2.48 6.34 | 1.58 3.38 | 2.03 2.71
WS-30% | - - 148 297 | - _
IS70% | 280 7.67 |1.96 568 | 2.06 2.75
1S-60% |2.34 5.80 | 1.89 520 | 2.08 2.78
1S-50% |2.33 5.69 | 1.81 4.63 | 2.00 2.65
1S-40% |2.33 5.82 | 1.79 4.79 | 1.99 2.63
1S-30% | - - | 167 410 | 2.00 2.66

Table 4: Mean Error and Variance for three datasets (Fried#2, Ozone and Tkeda) with similar
behavior. Results are given in units relative to the corresponding bagging results. Columns la-
beled Acc show accuracy values (lower values are better) and columns labeled Var show variance
values (bigger values are better).

bagging, Fried#1, Boston and SSP, and left the other three datasets for Table 4. The bagg-FT
values in both tables show that the FT strategy produces a lost in accuracy linked with an
increase in variance, relative to bagging values, in all but the SSP dataset. Comparing both
groups of datasets, the first one (Table 3) has lower increases in both accuracy and variance
over bagging.

The accuracy and variance values for the WS and IS strategies are not easy to analyze. For
SSP there is, as expected, a four times increase in variance coupled with a moderate loss in
accuracy (bigger Acc values), given as result a reduced prediction error (see Table 2). But the
results for Fried#1 and Boston are unexpected. In both datasets the better performance is
associated to accuracy values better than bagg-F'T together with increases in variance similar to
bagg-FT. For all datasets in Table 4 our subspace strategies also produce better than bagg-FT
accuracies, but coupled in this case with a reduction in variance, which seems to be the cause
of the lost in prediction capabilities.

5.2 Adding noisy inputs

The three datasets that show improvements in prediction error over bagging and bagg—FT have
some very noisy or irrelevant inputs. The Fried#1 datasets has 5 white noise inputs. Our
embedding of the SSP datasets uses the last 12 values of the series, but is know that a non-
uniform embedding with 3 values gives optimal results. The inputs in the Boston problem
consist of very noisy socioeconomic information from census tracts. The other three datasets
have fewer inputs and all relevant. To check if this can be the origin of the different behavior
of the two groups we conducted a small experiment adding white-noise inputs to the Fried#2
dataset. We produced two new datasets, one with 5 added noisy inputs and a second one with 15
more noisy inputs. We show the new results in Table 5. The addition of useless inputs produces
a better performance of our FT subspace methods relative to that of bagging and bagg—FT. The
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‘ Plain +5 Features +20 Features ‘
‘ Method ‘Err Ace  Var ‘Err Ace Var ‘ Err  Ace Var‘

Bagging | 0.12 0.16 0.035[0.19 0.60 0.41]0.27 0.69 0.42
Bagg-FT | 1.43 3.08 887 |0.96 1.00 1.01|0.99 0.97 0.96
WS-FT-50% | 1.39 2.56 6.68 | 0.98 1.02 1.02 |1.04 1.04 1.03
IS-FT-50% |1.35 2.33 5.69 | 1.03 1.25 1.34|0.98 0.99 0.99

Table 5: Prediction error (Err), Accuracy (Acc) and variance (Var) for the Friedman#2 dataset
with added white-noise input features. Results are given in units relative to the corresponding
bagging results.

results are equivalent for 5 or 20 added features, but for 20 features the IS-FT strategy gives
the best result of all methods.

5.3 Comparison with other methods

As a final investigation on our random subspace methods we compare them with three other
state-of-the-art regression methods. We selected two tree-based ensemble methods, bagging and
Random Forest [2, 3] and Support Vector Machines (SVM) [15] with a gaussian kernel. We
selected the FT-IS-50% method as a good representative of our new methods. To have a fair
comparison we use exactly the same 100 partitions in train/test set. We use 1000 trees for both
Bagging and RF and set all other parameters to the default values given by Breiman. For SVM
we selected the C and v parameters using internal cross-validation on each train set.

The corresponding results are shown in Table 6. On Fried#1, Boston, [keda and SSP datasets
the FT-IS-50% method gives the best results. On the other two datasets, tree-bagging wins in
one case and RF in the other. But in almost all cases tree-bagging, RF and SVM have bigger
than one results, showing that in fact it is really difficult to improve over the results of plain
bagging of optimally trained ANNs.

6 Conclusions

In this work we introduced new methods for neural network ensemble construction that follow
Random-Forest-like strategies in order to increase the diversity of the members. We selected two
strategies for the random selection of weights to be trained, the WS strategy that simply selects

‘ Method ‘ Fried#1 ‘ Fried#2 ‘ Ozone ‘ Boston ‘ Ikeda ‘ Ssp ‘
Bagging (trees) 1.13 1.22 1.09 1.11 1.47 | 1.66
RF (trees) 1.26 2.53 1.00 1.09 1.66 | 2.02
SVM (gaussian) | 0.85 1.39 1.14 1.94 1.21 | 1.32
FT-1S-50% 0.83 1.35 1.17 0.88 1.00 | 0.92

Table 6: Prediction error comparison with other state-of-the-art methods. Results are given in
units relative to the corresponding bagging results.
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at random a fraction F of all weights and the IS strategy that selects a fraction F of input units
and all the weights coming from these units. We also consider two different stopping criteria for
the training of individual ANNs, the typical optimal training (OT) and the full training (FT) by
which we train all ANNs a fixed number of epochs, long enough as to overfit the training data.
We evaluated the combination of the two selection and stopping criteria plus different values of
the fraction F of selected weights on six real-world and artificial regression problems. We found
that the IS strategy usually outperforms the WS one, and that the FT stopping method gives
better than OT results for three datasets where all subspace strategies outperform bagging. On
the other three datasets both stopping criteria works no better than bagging and in particular
FT gives the worst results.

The analysis of the accuracy and variance values suggest that in most cases the subspace
strategies do not produce an increase in variance over fully trained bagging ensembles. Instead,
they seem to produce better prediction errors by a combination of an increased accuracy with
similar variance than bagging. This result is very interesting and requires further investigations.

We have also evaluated the addition of noisy inputs to the Fried#2 dataset. The results
of that experiment supports the idea that our subspace methods perform better in problems
with several noisy or irrelevant inputs. This fact suggests an important application field, the
calibration of spectrometric instrument in chemometrics.

Finally, we have also performed a comparison with other three state-of-the-art regression
methods. The FT-IS strategy was the only method of the four evaluated capable of clearly
outperforming bagging of ANNs in several datasets.

As future work we are also considering extending the proposed methods to classification
problems and to evaluate other random selection strategies.
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