
E�e
tive Mapping of Hypermedia High-Level Design

Primitives to Implementation Environments

Walter A. Risi Daniel H. Mar
os Pablo E. Mart��nez L�opez

LIFIA, Fa
ultad de Inform�ati
a, Universidad Na
ional de La Plata.

C.C.11, Correo Central, 1900, La Plata, Buenos Aires, Rep�ubli
a Argentina.

E-mail: fwalter,daniel,fidelg�lifia.info.unlp.edu.ar

URL: http://www-lifia.info.unlp.edu.ar/

Abstra
t

As the inherent 
omplexity of hypermedia appli
ations grows, the need for high-level

design models and methods be
omes imperative. There are several software engineering

methods spe
ially tailored for the domain of hypermedia appli
ations, whi
h take into a
-


ount the spe
ial needs of this kind of appli
ations. However, the mapping of these high-level

models to the implementation environments often results in a drasti
 loss of ri
hness.

This paper presents a domain-spe
i�
 language whi
h 
an be used to as an interme-

diary between the software engineering models and the implementation environment. We

show, through examples, how primitives found in di�erent hypermedia design methods 
an

be mapped to our language, still preserving the original expresiveness. Our language also

provides rendering fa
ilities whi
h allow to obtain working prototypes of the designs in a

parti
ular implementation platform.

1 Introdu
tion

The dramati
 expansion of the WWW in the re
ent years has resulted in a 
onsiderable interest in

developing large hypermedia appli
ations e�e
tively. As the inherent 
omplexity of hypermedia

appli
ations grows, the need for high-level design models and methods be
omes imperative.

There are several software engineering methods spe
ially tailored for the domain of hypermedia

and web appli
ations, whi
h take into a

ount the spe
ial needs of this kind of appli
ations. Some

of these methods are OOHDM [S
hwabe and Rossi, 1995℄, RMM [Isakowitz et al., 1995℄, W3DT

[Bi
hler and Nussler, 1996℄ and HyDev [Pauen and Voss, 1998℄. Ea
h one is geared towards a

parti
ular kind of appli
ation.

Despite the several engineering methods available, the design of web appli
ations still is

rather low-level. Commonly used approa
hes relay on several types of editing environments

and te
hnologies. These environments have evolved from the very basi
 web-page editing tools

(su
h as FrontPage

1

[Fro, 1999℄), to more 
omplex site-oriented developing environments (see

for example NetObje
ts Fusion

2

[Net, 1999℄). However, site-oriented tools still do not embra
e

high-level abstra
tions: site-maintenan
e features are limited to keeping an uniform look in all

pages, or having a general view of the stru
ture of the site.

A dramati
 point in the a

eptan
e of engineering approa
hes is the wide gap between high-

level design primitives and the implementation environments. Often, the mapping of models to

implementation results in a drasti
 loss of expressiveness. Moreover, several bene�ts of the high-

level models, su
h as reuse of stru
tures, are lost when performing the a
tual implementation.

1

Copyright 1999, Mi
rosoft Corporation.

2

Copyright 1999, NetObje
ts In
.



In this paper we show how this gap 
an be redu
ed, by means of HyCom (Hypermedia

Combinators) [Mar
os et al., 1997, Mar
os et al., 1998℄. HyCom is a high-level, domain-spe
i�


language for hypermedia authoring. HyCom expresiveness allows dire
t mapping of design

primitives, without risking a loss of ri
hness. Moreover, designs expressed with HyCom 
an

be rendered to HTML pages or other implementation platforms automati
ally. The version we

present here is a redesign of the one presented in previous papers, but the overall ideas remain

the same.

This paper is stru
tured as follows: in se
tion 2 we introdu
e HyCom, and the basi
 features

and stru
ture of its latest version. In se
tion 3, we show through examples how design primitives

from a well-known method 
an be e�e
tively mapped into HyCom. In se
tion 4 we review some

related work. Finally, in se
tion 5 we draw some 
on
lusions and present our 
urrent resear
h

lines.

2 HyCom: A Domain Spe
i�
 Language for Hypermedia

In re
ent years, there has been a growing interest in using Domain Spe
i�
 Languages (DSLs)

for software development [Hudak, 1996℄. DSLs provide several interesting features to program-

mers, in
luding a very high-level of abstra
tion, domain-spe
i�
 tools, redu
ed developing times,

among others. The most important feature is that developers 
an think in terms of domain spe-


i�
 abstra
tions. This feature yields programs that are more 
on
ise, and easier to understand

and maintain than their 
ounterparts in general purpose languages. Well known DSLs are SQL,

L

A

T

E

X, and HTML. Examples of domain-spe
i�
 tools are query optimizers in SQL and BibTeX

in L

A

T

E

X.

An important group in the DSL family 
onsists of the so-
alled embedded DSLs (DSELs).

These languages are embedded in general purpose languages as domain spe
i�
 vo
abularies

(often implemented as libraries). From the software developer's point of view, DSEL present

important advantages. On one hand, the developer 
an bene�t from having inmediate a

ess

to the power of the host language (this is frequently needed, as DSLs often are not used in

isolation). On the other hand, the host language a
ts as a `glue' for integrating several DSELs

embedded in itself. The idea of DSEL was �rst proposed by Peter Landin [Landin, 1966℄, who

observed that a programming language 
onsists of a domain independent 
ore, and a set of

domain spe
i�
 vo
abularies.

HyCom is a DSEL for hypermedia, embedded in the HOT (Higher-Order, Typed) language

Haskell [Peyton Jones and Hughes, 1999℄. HyCom was designed with the hypermedia develop-

ers' needs in mind, and thus provides the frequently desired fa
ilities (e.g. reuse, automati


prototyping). Moreover, Haskell is a very advan
ed language, thus developers 
an bene�t from

its powerful features (e.g. higher-order fun
tions, a powerful type system, libraries). Further-

more, using Haskell allows us to integrate to other existing DSELs (e.g. CGI s
ripting, Database

handling) in a straightforward manner. Finally, several works have shown the virtues of Haskell

as a host language [Leijen and Meijer, 1999℄.

The general ar
hite
ture of HyCom is depi
ted in Fig. 1. In the 
ore, we �nd the HyCom

DSEL itself, whi
h de�nes its main features. We also �nd additional utility modules, su
h

as database integration. Another important part is the environment spe
i�
 features (su
h as

HTML) whi
h allow the developer not only to use environment spe
i�
 
omponents, but also

to render designs to working prototypes in that environment. Finally, there are the authoring

libraries, whi
h provide appli
ation spe
i�
 abstra
tions.

2.1 A Brief Overview of Haskell

Being a DSEL embedded in Haskell, HyCom inherits its notational 
onventions and semanti
s.

Here, we give a very brief overview of Haskell. More details about Haskell 
an be found in



General Utilities


HyCom DSEL


Authoring Libraries


Database Access


Persistence


. . .


Implementation

Environment Specific


Features


W W W


. . .


Academic Site


Personal Site


Product Catalog


. . .


Figure 1: General HyCom Ar
hite
ture

[Peyton Jones and Hughes, 1999℄.

Haskell is a fun
tional language, similar to Lazy ML [Augustsson, 1984℄ or Miranda

3

[Turner, 1985℄. The main 
onstru
t is the fun
tion, whi
h is very similar to its mathemati
al


ounterpart.

-- A fun
tion that 
al
ulates the minimum of two values. (Comments begin with --).

min x y = if (x<y) then x else y

All 
omputations in a fun
tional language are performed by evaluating fun
tions. Fun
tion

appli
ation is denoted by juxtaposition of the fun
tion name to its arguments. For example,

min 2 3 is an expression that denotes the appli
ation of fun
tion min to numbers 2 and 3. The

value of the mentioned expression is 2.

Haskell is also strongly typed, whi
h means that a type is assigned to every valid 
onstru
t

at 
ompile time. Types 
an be expli
itly given by a type signature. Sin
e expli
itly giving a

type to every 
onstru
t 
an be a tedious task, Haskell uses a type inferen
e me
hanism. This

me
hanism 
an infer, for example, the type of fun
tion min. Therefore, it is not usually ne
essary

to give type signatures expli
itly { though it is good pra
ti
e, and sometimes may be required.

The following is the type signature for the min fun
tion shown above, meaning that the fun
tion

takes two Integer values and yields another Integer.

min :: Integer -> Integer -> Integer

A
tually, the above fun
tion 
an be extended to all values supporting the < operation. This


an be expressed in Haskell in the following way.

min :: Ord a => a -> a -> a

The Ord a => ... 
ontext means that fun
tion min is de�ned for every type a that is

instan
e of the Ord type 
lass. Type 
lasses are a me
hanism for overloading, whi
h is similar {

though not identi
al { to the interfa
e 
onstru
t in Java. Basi
ally, types belonging to a 
lass

implement a set of operations de�ned in that 
lass. For example, instan
es of 
lass Eq implement

the == operator, and 
an be 
ompared for equality. The Ord type 
lass de�nes 
ommonly used

order operators, su
h as < (`smaller than') and >= (`greater than or equal'). Type 
lasses form

a hierar
hy, meaning that instan
es of a sub
lass implement the operators of that sub
lass, and

also the operators of the super
lass { for example, Ord is a sub
lass of Eq, meaning that elements

that 
an be ordered 
an also be 
ompared by equality.

Type 
ontexts are used when one must assume something about a 
ertain type. For example,

in fun
tion min, we must assume that for type a, operator < is de�ned. When there is no need

3

Copyright 1986, Resear
h Software Limited



to assume anything about a type, we do not give any 
ontext. The trivial example is fun
tion

id x = x, of type id :: a -> a. We do not need to assume anything about a, so we do not

spe
ify any 
ontext restri
tion. This is a simple example of parametri
 polymorphism in Haskell

{ in 
ontrast to ad-ho
 polymorphism, or overloading, whi
h we already mentioned. In all these


ases, we say that a is a type variable, sin
e it stands for any type, or for all types satisfying a


ontext.

Some 
lasses have more than one parameter, meaning that overloading is done over two

types instead of just one. Therefore, a type T 
an be instan
e of a 
ertain 
lass ClassName a

b, with Integer as the se
ond argument, and also with Char as the se
ond argument. This

means that an overloaded fun
tion of 
lass ClassName { say op :: a -> b -> a { will behave

di�erently when applied to an obje
t of type a, depending not only on the type of the �rst

fun
tion parameter, but also on the type of the se
ond. A 
ontext for a multiparameter type


lass has a similar notation to the one for single parameter 
lasses { for example, for 
lass

ClassName we 
ould have ClassName a b => ... as a 
ontext for a 
ertain fun
tion.

The most important feature of Haskell is the possibility of de�ning higher-order fun
tions.

Higher order fun
tions may take a fun
tion as its argument, and may yield another fun
tion as

its result. The 
lassi
al example is map, whi
h takes a fun
tion f, and returns another fun
tion

that applies f to all the 
omponents of a list. The following is the type signature for map { note

that bra
kets are used to denote lists.

map :: (a -> b) -> [a℄ -> [b℄

For example, applying map negate to the list [1,2,3℄ yields the list [-1,-2,-3℄, and applying

map su

 to the same list yields [2,3,4℄. Higher-order fun
tions are a very powerful feature,

and allow reuse at a very large s
ale [Hughes, 1989℄. Haskell libraries provide a ri
h set of

higher-order fun
tions (su
h as map), but the user 
an also de�ne her own.

Another very important feature of Haskell is related to types. Haskell gives the user several

ways to de�ne its own types. The �rst is through type synonyms. Type synonyms do not de�ne

new types, but rather they give new names to existing ones. For example, a type synonym

de
laration like type Amount = Integer says that type Amount is another name for Integer.

Truly new types 
an be de�ned using algebrai
 data types. Algebrai
 data types allow to de�ne

types by enumerating its elements. For example, the following is a type de
laration for a pair

of values of types a and b, respe
tively.

data Pair a b = Pair a b

As it 
an be seen from the above 
ode, type de
larations 
an be parameterized { this also

stands for type synonyms. Moreover, parameters in type de
larations 
an be 
onstrained by

type 
lass 
ontexts, in the same way as we did for fun
tions. Note also that we used the same

Pair in both sides of the equation. This is possible sin
e the left side is denoting how a type

is 
onstru
ted { thus, Pair is 
alled here a type 
onstru
tor { and the right side denotes how a

data element of that type is built { therefore, Pair in the right side is 
alled a data 
onstru
tor.

An alternative way for writing the previous de
laration is the following.

data Pair a b = Pair { fst :: a, snd :: b }

This se
ond version is identi
al to the last one, ex
ept that values are labelled, and one 
an

assume that there exist fun
tions fst and snd, to retrieve the �rst and se
ond 
omponents.

With both versions, one 
an also retrieve the 
omponents by pattern mat
hing. Algebrai
 data

types 
an also be re
ursive, allowing to de�ne re
ursive data stru
tures su
h as lists and trees.

Other interesting feature of Haskell are in�x operators. Fun
tions, normally pre�x, 
an also

be expressed in an in�x fashion, thus gaining expressiveness in 
ertain situations. For example,

we 
an de�ne an in�x version of the min fun
tion already de�ned.



min, (.�.) :: Num a => a -> a -> a

(.�.) = min

Now we have an operator (.�.) that has the same fun
tionality as min, but 
an be used

in�x. That means that, for example, 1.�.2 is the same as min 1 2. In general, in�x operators

are a very powerful feature for gaining expressiveness. Furthermore, it is possible to de�ne

pre
eden
e and asso
iativity for in�x operators.

To �nish with this brief overview of Haskell, we present lo
al de
larations. A lo
al de
laration

allows to de�ne fun
tions only in the s
ope of another de
laration. For example, the following

de�nes sum only in the s
ope of double.

double x = sum x x

where sum x x = x + x

This has been only a very short introdu
tion to Haskell 
apabilities. We have limited our-

selves to explaining the features needed to understand this paper. The interested reader 
an

found further information in the referen
es already mentioned.

2.2 The HyCom DSEL

The stru
ture of the HyCom DSEL is given by the type 
lass hierar
hy shown in Fig. 2. Note

that this hierar
hy is not denoting a 
lass-hierar
hy in the obje
t-oriented (OO) sense, but rather

a type 
lass hierar
hy in the sense that we explained in previous se
tion. Also note that when

we speak of data obje
t we are referring to a data element of a 
ertain type, and not to an obje
t

in the OO sense.

HLComponent
 UIComponent


HLComponentUI


HasText
 HasCommand
 HasLink
 HasState


NodeComponent


HasUI


Component


Figure 2: HyCom Type-Class Hierar
hy

The base 
lass in the HyCom hierar
hy is Component. A 
omponent is a data obje
t with

an asso
iated ID, that allows to univo
ally identify the obje
t. A 
omponent supports op-

erations getID and setID. Almost every data obje
t in HyCom is a 
omponent. Sub
lasses

of Component, su
h as HLComponent and UIComponent provide hyperlinking and user-interfa
e

related operations, respe
tively.

The most important 
on
ept in HyCom is that of 
ombinators and transformers { hen
e

the name, Hypermedia Combinators. A 
ombinator is a fun
tion that takes two or more


omponents, and yields a new one resulting from their 
ombination. A transformer is a fun
tion

that takes a 
omponent, and returns a new one resulting from adding some kind of feature to

it. Typi
al transformers and 
ombinators are the ones used for user interfa
e 
omponents.

aboveOf,(/=\) :: (UIComponent a, UIComponent b) => a -> b -> Layout a b

leftOf,(<=<) :: (UIComponent a, UIComponent b) => a -> b -> Layout a b

an
hored :: (UIComponent 
, HLComponent l) => 
 -> l -> An
hored 
 l



The aboveOf 
ombinator takes two user interfa
e 
omponents, and returns a 
omposed


omponent in whi
h the �rst argument is pla
ed above the se
ond one. The leftOf 
ombinator

behaves similarly, but pla
es its arguments one in the left of the other. The an
hored transformer

takes an UI 
omponent and a Hyperlink 
omponent, and returns an an
hor resulting from adding

navigational fun
tionality { provided by the link { to the original 
omponent.

Typi
ally, authoring in HyCom involves de�ning appli
ation spe
i�
 
omponents { su
h as


on
eptual entities, nodes, links {, embedding them in the type 
lass framework shown before,

and glueing them using the built-in 
omponents and 
ombinators. When we say that a 
ertain

feature is `built-in', we mean that it is provided by HyCom's basi
 libraries. The following 
ode

shows a simple example.

data LabMember = LabMember { name :: String, photo :: FilePath,

personalData :: Profile, lab: Laboratory }

type LabMemberC = Basi
Component LabMemberC

In the above 
ode, a data obje
t LabMember is de�ned to hold data about members of

a laboratory. Type synonym LabMemberC is built by applying the built-in type 
onstru
tor

Basi
Component to the LabMember type. The resulting type is an instan
e of the Component


lass, sin
e Basi
Component provides the required fun
tionality. Next, we de�ne an appli
ation

spe
i�
 node, whi
h not only holds data, but also a hyperlink.

data MemberNode = MemberNode LabMemberC MemberLink

type MemberNodeC = NodeComponent MemberNode

The appli
ation-spe
i�
 node is de�ned in the same fashion as the LabMember. However, we

now use built-in type 
onstru
tor NodeComponent, whi
h implements the basi
 fun
tionality re-

quired for nodes. This yields an instan
e of the 
lass NodeComponent, that we 
all MemberNodeC.

The link type MemberLink used in the node de�nition is de�ned as follows.

type MemberLink = PlainLink MemberNodeC MemberNodeC

Type MemberLink is an appli
ation-spe
i�
 link, de�ned by applying built-in type 
onstru
tor

PlainLink { whi
h provides the basi
 hyperlinking fa
ilities. A member link is thus a plain link

{ the most simple type of link {, going from a MemberNodeC to another MemberNodeC.

Normally, appli
ations from the same 
on
eptual domain use very similar 
on
eptual entities.

Therefore, it is not ne
essary to de�ne new 
omponents ea
h time a new appli
ation needs to be

developed. Instead, the author 
an use 
omponents provided by authoring libraries. Authoring

libraries are des
ribed in the next se
tion.

2.3 The Authoring Libraries

HyCom takes the DSEL approa
h to its limit through authoring libraries. As the HyCom

DSEL is a hypermedia-spe
i�
 vo
abulary embedded in Haskell, authoring libraries provide

appli
ation-spe
i�
 vo
abularies embedded in HyCom. In this way, developers of a parti
ular

kind of appli
ation do not have to de�ne the basi
 abstra
tions from s
rat
h, sin
e they are

provided by the library.

A typi
al example is the a
ademi
 site authoring library. A
ademi
 sites often present a

similar stru
ture. The underlying 
on
eptual model is similar, and involves entities su
h as

professors, resear
hers, students, subje
ts, proje
ts, resear
h-areas, et
. The authoring library

already provides types to represent these entities, and also default navigational 
onstru
ts typ-

i
ally found in this kind of appli
ation { for example, a guided tour de�ned over the professors

of a parti
ular area, et
. These reusable 
omponents are de�ned basi
ally in the same way that

was shown in the previous se
tion.



Authoring libraries not only allow to reuse 
omponents, but also design de
isions about the

overall hypermedia stru
ture. There exists a set of hypermedia design patterns [Rossi et al., 1997℄

that provide useful guidelines to enhan
e the quality of the appli
ations. We are taking a

ount

of these patterns in designing the libraries.

Another interesting possibility are authoring assistants. Basi
ally, authoring assistants ask

the user several questions about the appli
ation to be developed, and generate the basi
 skeleton

of the appli
ation. Therefore, authoring assistants 
omplement authoring libraries, by redu
ing

the { often high { initial e�ort in appli
ation development. Authoring assistants are 
urrently

under development.

3 Mapping Design Primitives to HyCom

In this se
tion we show examples on how to map design primitives to HyCom. We fo
us on one of

the most widely a

epted hypermedia design methods, the Relationship Management Method-

ology (RMM). We are 
urrently working on a mapping of OOHDM [S
hwabe and Rossi, 1995℄


on
epts to HyCom, whi
h we will 
over in a future paper.

3.1 A Brief Overview of RMM

The Relationship Management Methodology (RMM) is often referred as the �rst true hyperme-

dia design methodology. First presented by Isakowitz et al. in 1995 [Isakowitz et al., 1995℄, it has

gone through several enhan
ements sin
e then. The version we use here is the one presented in

[Isakowitz et al., 1998℄. In what follows, we give a very brief overview of RMM, and present the

example with whi
h we will work from now on. Note that we assume a basi
 knowledge of RMM.

Readers with no previous knowledge of this methodology should look in the following papers

[Isakowitz et al., 1995, Isakowitz et al., 1997a, Isakowitz et al., 1997b, Isakowitz et al., 1998℄.

The RMM is based on the well-known Entity-Relationship (ER) model. The user starts

de�ning a 
on
eptual model of the appli
ation, using entities and relationships. This 
omprises

the �rst step of the method. A very simple ER model is shown in Fig. 3.

Figure 3: An ER Diagram

The following two steps involve doing a top-down and a bottom-up design of the general

navigational stru
ture of the appli
ation. The overall goal is to obtain the appli
ation diagram.

An appli
ation diagram 
onsists of M-Sli
es and links between them. M-Sli
es are presentational

units, and 
onsist of attributes from one or more entities (in parti
ular, ea
h M-Sli
e has an

`owner' entity), link an
hors, a

ess stru
tures (like indexes or guided tours), and other M-Sli
es.

An M-Sli
e is an abstra
t representation of a pie
e of information that is going to be presented

in the �nal appli
ation. Top-level M-Sli
es are a
tually the nodes of the appli
ation.

In Fig. 4 we show an appli
ation diagram 
orresponding to the ER diagram shown previously.

Here we have three top-level M-Sli
es and links among them. The 
omplete de�nition of the



Resear
her top and name M-Sli
es is depi
ted in Fig. 5. The Resear
her top M-Sli
e has some

attributes from its owner (the Resear
her Entity), namely rank and photo. It also in
ludes

another M-Sli
e from its owner, the name M-Sli
e. The lower part of the M-Sli
e in
ludes

features not belonging to the owner entity, su
h as the Laboratory Logo, whi
h a
ts as an

an
hor to the Laboratory top M-Sli
e. Also, it features an index of proje
ts, an
hored in the

Proje
t name M-Sli
e { a
tually, this is a a parti
ular kind of M-Sli
e with a single attribute.

Laboratory


top


Researcher


top


Project


top


Belongs_To

Has_Researcher


Has_Project

Held_In


Works_In

Has_Participant


Figure 4: An Appli
ation Diagram

Researcher


top


rank


Index


name

Project


Laboratory


top


Project


top


Belongs_To


name


photo


Laboratory


logo


Works_In


Researcher


name


firstName


lastName


Figure 5: M-Sli
es top and name Belonging to the Resear
her Entity

The RMM de�nes four more phases. However, these phases have not been formally de�ned

by its authors, and generally, developers take an ad-ho
 approa
h for these phases

[Balasubramanian et al., 1996℄. Therefore, we will fo
us on the phases des
ribed above, whi
h

are the 
ornerstone of the method.

3.2 Mapping RMM to HyCom

In this se
tion, we show how to develop a possible mapping of RMM features to HyCom. We

use the already presented example to develop the mappings.

The �rst step is simple, and involves representing the ER model with a set of Haskell types.

There are many ways of doing this, and here we show a straightforward one.

data Resear
her = Resear
her {firstName :: String, lastName :: String, rank :: String,



photo :: String, intro :: String, proje
ts :: [Proje
t℄,

lab :: Laboratory }

Here, we de
ide to in
lude the relations in the entities, sin
e relations have no attributes.

This is not ne
essarily the 
ase, and relations 
an be also represented by types in the same

fashion as entities. We also 
hoose to make entities instan
es of the 
omponent 
lass { this is

easily done by providing de�nitions for getID and setID operations.

A
tually, the developer has to deal with sets of entities, normally stored in a database.

Type 
lass Retriever allows us to hide the storage details, thus providing an uniform inter-

fa
e to di�erent database implementations. HyCom provides built-in 
omponents implementing

Retriever fun
tionality for �le-based resour
es and relational databases.


lass Retriever r a where

retrieveBy :: (a -> Bool) -> r -> IO [a℄ -- Retrieve all entities satisfying

-- a predi
ate.

retrieve :: r -> IO [a℄ -- Retrieve all entities.

The interesting part 
onsists in representing sli
es { from now on, we will use the terms

sli
e and M-Sli
e inter
hangeably. We want to express sli
es 
learly, but also 
apitalize on type-


he
king to prevent de�ning ill-formed sli
es. The �rst thing we do is de�ning a type 
lass

Owned, to 
onstrain sli
e 
omponents. Class Owned has type information about the owner, and

also allows us to retrieve the ID of the owner.


lass Component o => Owned a o where

owner :: a -> o

We 
an move now to representing sli
es. Sli
es have an owner, a set of 
omponents belonging

to the owner, and a (possibly empty) set of 
omponents not belonging to the owner. Thus,

we de�ne type Sli
e, whi
h holds a 
ombination of 
omponents belonging to the owner, a


ombination of 
omponents not belonging to the owner, and also information about the owner

itself. Note that we use type 
ontexts to 
onstrain both sets of 
ombinations.

data (Component owner, Owned a owner) => Sli
e a b owner = Sli
e a b owner ID

The above type 
onstru
tor Sli
e has three parameters. Note that 
ontext Owned a owner

restri
ts the 
omponent 
ombination of type a to have the the same owner type as the owner of

the sli
e { given by the parameter owner. Note also that the data 
onstru
tor Sli
e { on the

right side of the de
laration { also holds data for an ID, whi
h is required to make Sli
e an

instan
e of the Component 
lass. Making a 
omparison with the graphi
al notation of sli
es, we


an see that the 
onstrained 
ombination { of type a { 
orresponds to the upper portion of the

sli
e, and the other 
ombination { of type b { 
orresponds to the lower portion of the sli
e.

Some sli
es only hold data from its owner. For this parti
ular kind of sli
e, we provide type

PureSli
e. This is similar to the Sli
e type, ex
ept that it does not hold the 
ombination of


omponents not belonging to the owner.

data (Component owner, Owned a owner) => PureSli
e a owner = PureSli
e a owner ID

Other interesting representations of RMM 
on
epts are types Att whi
h models attributes

or single attribute M-Sli
es {, RMM An
hor { whi
h models an
hored 
omponents within sli
es

{, and RMM Index { whi
h models indexes. We do not show the de�nitions of these 
omponents

here. All these types are instan
es of the Owned 
lass, allowing to prevent formation of invalid

stru
tures.

We mentioned previously that a sli
e holds 
ombinations of 
omponents, either belonging

to the owner or not. Combinations are modelled with 
ombinator fun
tions { the main 
on
ept

underlying HyCom. We provide two types of 
ombinations: 
ombinations of 
omponents of the

same owner { ownerCombined {, and 
ombination of any 
omponents { sli
eCombined. These


ombinators are modelled with types, and fun
tions to 
reate data obje
ts of those types.



data (Component o, Owned a o, Owned b o) => OwnerCombined a b o = OwnerCombined a b

ownerCombined,(+--+) :: (Owned a o, Owned b o) => a -> b -> OwnerCombined a b o

data Sli
eCombined a b = Sli
eCombined a b

sli
eCombined,(-##-) :: a -> b -> Sli
eCombined a b

These 
ombinators prevent the user from mixing 
omponents belonging to the sli
e's owner

with the ones not belonging to it. Note that in ownerCombined we used type 
ontexts in a

similar way that in the Sli
e de
laration: the Owned a o and Owned b o 
ontexts ensure that


omponents from di�erent owners are not 
ombined, and that the resulting 
ombination also

belongs to that owner. Note also that we provided in�x versions of the 
ombination fun
tions.

Some other interesting fun
tions are the ones used to build an
hors, indexes, and single

attribute sli
es.

rmmAn
hor :: (HLComponent l) => a -> l -> RMM_An
hor a l

rmmIndex :: (Component owner, HLComponent l, Owned a owner) =>

(owner -> a) -> (owner -> l) -> [owner℄ -> o -> RMM_Index a l o

att :: (
 -> a) -> 
 -> Att a 


Next, we show the HyCom based de�nition for the Resear
her top M-Sli
e. We de�ne a

fun
tion resear
herTop, whi
h takes a resear
her entity, a lab entity and a list of proje
ts,

and returns the Resear
her top M-Sli
e. Note that we use fun
tions att, whi
h is used to

build attributes { attributes have a value, and also information about their owner entity {, and

linkTo, whi
h is used to build a link given a destination sli
e. We do not show the de�nitions

for these fun
tions here.

resear
herTop resear
her lab proje
ts = sli
e fromOwner other resear
her

where fromOwner = (att rank resear
her) +--+

(att photo resear
her +--+

(resear
herName resear
her)

other = (rmmAn
hor (laboratoryLogo lab) linkToLab) -##-

(rmmIndex proje
tNameAtt linkToProje
t proje
ts resear
her)

linkToLab = linkTo (laboratoryTop lab)

linkToProje
t p = linkTo (proje
tTop p)

Compare the above 
ode with the sli
e de�nition previously shown. Noti
e that the Hy-

Com/Haskell based version has not lost the original expressiveness. The fromOwner lo
al de
la-

ration 
orresponds to the upper part of the sli
e graphi
al notation, and the other de
laration


orresponds to the lower part. Furthermore, using types prevents the user from de�ning ill-

formed sli
es.

The next step 
onsists in de�ning how the M-Sli
e is going to be seen in the interfa
e. That


an be done using HyCom UI Components and 
ombinators. We de�ne a fun
tion that takes

a resear
herTop M-Sli
e, and returns an UI 
omponent. In the following, we assume that we

have fun
tions for retrieving the internal 
omponents of the sli
e, su
h as the name M-Sli
e,

the rank attribute, et
 { those fun
tions 
an be easily de�ned by pattern mat
hing. We also

make use of some other UI 
omponents, su
h as divisionLine, rmmIndexUI (UI for indexes),

resear
herNameUI (UI for Resear
her name M-Sli
e), for whi
h we do not show the de�nitions.

resear
herTopUI resear
herTop = header /=\

personalData /=\

resear
hInterests

where header = laboratoryLogoUI logo /=\

divisionLine



personalData = resear
herNameUI theName /=\

(textLabel rank <=< image photo) /=\

divisionLine

resear
hInterests = (textSize 4 (textLabel "Proje
ts")) /=\

(rmmIndexUI indexOfProje
ts)

nameSli
e = getNameSli
e resear
herTop

proje
tIndex = getProje
tIndex resear
herTop

logo = getLogoSli
e resear
herTop

photo = getAttrContent (getPhotoAttr resear
herTop)

rank = getAttrContent (getRankAttr resear
herTop)

Again, noti
e that even when de�ning the UI, the original design 
onstru
ts (sli
es, at-

tributes) are still present. The resulting UI 
omponent 
an be 
ompiled, automati
ally yielding

a prototype in HTML or other platform. The prototype HTML page 
orresponding to the Re-

sear
her top M-Sli
e 
an be seen in Fig. 6 { noti
e that we have marked the UI representations

of the RMM 
onstru
ts, to allow easy 
omparison with the HyCom 
ode.

Figure 6: Web Page Corresponding to the Resear
her Top M-Sli
e.

4 Related Work

Several works have fa
ed the problem of the mapping of design primitives to implementation

environments. However, we 
laim that none of them embra
es the high-level prin
iples present

in HyCom. Most of the existing works emphasize implementation-oriented features, su
h as dy-

nami
 generation of web pages, but the expressiveness and abstra
tion level of those approa
hes

are often left unattended.

The WebComposition approa
h and its XML-based implementation, the WebComposition

Markup Language (WCML) [Gellersen et al., 1997, Gaedke et al., 1998℄ are in some way, an

obje
t-oriented 
ounterpart to HyCom. However, we believe that the obje
t model adopted is

poor { obje
ts support very limited fun
tionality. Moreover, WCML la
ks features like type


he
king to avoid the de�nition of invalid 
onstru
ts. HyCom also di�erentiates from WCML

for being an embedded language { whi
h allows easy integration with existing DSELs.



Another approa
h is that of the OOHDM-Web [S
hwabe and de Almeida Pontes, 1998℄ en-

vironment, that proposes mapping OOHDM design primitives to relational tables, HTML tem-

plates, and Lua s
ripts. We 
laim that the mapping of obje
ts to tables as proposed by OOHDM-

Web still results in a loss of ri
hness.

5 Con
lusions and Future Work

The wide gap between high-level design primitives and implementation environments often re-

sults in a dramati
 loss of expressiveness. Bene�ts obtained from the high-level models are

a
tually lost when performing the implementation. In this paper, we pointed out how this gap


an be redu
ed by means of HyCom, a DSEL for hypermedia. HyCom has a very high level of

abstra
tion, and allows design primitives to be mapped in a very expressive way. Moreover, the

resulting mapping bene�ts from type 
he
king and prototyping fa
ilities provided by HyCom.

Our 
urrent resear
h lines in
lude the development of solid authoring libraries. We plan

to build meta authoring-libraries for the most widely used hypermedia design methods, and

base the 
on
rete authoring libraries on those methods. This would allow us to take advantage

of those engineering models for do
umenting the libraries. We also plan to take advantage of

hypermedia design patterns in designing the libraries.

Other interesting aspe
ts for resear
h involve the development of software-based development

environments. Our primary target is the development of authoring assistants, to 
omplement

the authoring libraries. An interesting possibility is that of designing a CASE tool based in

hypermedia design methods, using HyCom as the underlying language to des
ribe designs.

Referen
es

[Augustsson, 1984℄ L. Augustsson. A 
ompiler for lazy ML. In Pro
eedings of the ACM Symposium on Lisp and

Fun
tional Programming, Austin, pages 218{27, August 1984.

[Balasubramanian et al., 1996℄ V. Balasubramanian, Mi
hael Bieber, and Tom�as Isakowitz. Systemati
 Hyper-

media Design. O
tober 1996.

[Bi
hler and Nussler, 1996℄ Martin Bi
hler and Stefan Nussler. Modular Design of Complex Web-Appli
ations

with W3DT. In Pro
eedings of the 5th Workshop of Enabling Te
hnologies: Infrastru
ture of Collaborative

Enterprises (WET ICE '96), Stanford. IEEE Computer Press, 1996.

[Bieber and Isakowitz, 1995℄ M. Bieber and T. Isakowitz, editors. Communi
ations of the ACM, volume 38 (8).

ACM Press, August 1995.

[Fro, 1999℄ FrontPage Home Page, Mi
rosoft Corporation. URL: http://www.mi
rosoft.
om/FrontPage/. 1999.

[Gaedke et al., 1998℄ M. Gaedke, M. Beigl, and H. W. Gellersen. Mobile Information A

ess: Catering for

Heterogeneous Browser Platforms. In Pro
eedings of the International Workshop on Mobile Data A

ess in

Conjun
tion with 17th International Conferen
e on Con
eptual Modelling (ER98), Singapore, 1998.

[Gellersen et al., 1997℄ H. W. Gellersen, R. Wi
ke, and M. Gaedke. WebComposition: An Obje
t-Oriented

Support System for the Web Engineering Life
y
le. In Computer Networks and ISDN Systems 29, Spe
ial

Issue of the 6th World-Wide Web Conferen
e, Santa Clara, CA, USA, 1997.

[Hudak, 1996℄ Paul Hudak. Building Domain-Spe
i�
 Embedded Languages. 1996.

[Hughes, 1989℄ J. Hughes. Why Fun
tional Programming Matters. Computer Journal, 32(2):98{107, 1989.

[Isakowitz et al., 1995℄ T. Isakowitz, E. A. Stohr, and P. Balasubramaninan. RMM: AMethodology for Stru
tured

Hypermedia Design. [1995℄, pages 34{44.

[Isakowitz et al., 1997a℄ T. Isakowitz, A. Kamis, and M. Koufaris. Extending The Capabilities of RMM: Russian

Dolls and Hypertext. In Pro
eedings of the 30th Annual Hawaii International Conferen
e on System S
ien
es,

1997.

[Isakowitz et al., 1997b℄ T. Isakowitz, A. Kamis, and M. Koufaris. Re
on
iling Top-Down and Bottom-Up Design

Approa
hes in RMM. In Pro
eedings of the Workshop on Information Te
hnologies and Systems (WITS-97),

Atlanta, GA, De
ember 1997.

[Isakowitz et al., 1998℄ T. Isakowitz, A. Kamis, and M. Koufaris. The Extended RMM Methodology for Web

Publishing. 1998. Working Paper IS-98-18, Center for Resear
h on Information Systems.



[Landin, 1966℄ Peter Landin. The Next 700 Programming Languages. Communi
ations of the ACM, 9(3):15{164,

February 1966.

[Leijen and Meijer, 1999℄ Daan Leijen and Erik Meijer. Domain Spe
i�
 Embedded Compilers. Submitted to

2nd USENIX Conferen
e on Domain-Spe
i�
 Languages, 1999.

[Mar
os et al., 1997℄ Daniel H. Mar
os, Pablo E. Mart��nez L�opez, and Walter A. Risi. Expresando Hypermedia en

Programa
i�on Fun
ional. In Pro
eedings of the Se
ond Latin Ameri
an Conferen
e on Fun
tional Programming

(CLAPF97), La Plata, Buenos Aires, Argentina, 1997.

[Mar
os et al., 1998℄ Daniel H. Mar
os, Pablo E. Mart��nez L�opez, and Walter A. Risi. A Fun
tional Programming

Approa
h to Hypermedia Authoring (Poster). In Pro
eedings of ACM International Conferen
e on Fun
tional

Programming (ICFP98), Baltimore, Maryland, USA, 1998.

[Net, 1999℄ NetObje
ts Home Page. URL: http://www.NetObje
ts.
om. 1999.

[Pauen and Voss, 1998℄ Peter Pauen and Josef Voss. The HyDev Approa
h to Model-Based Development of Hy-

permedia Appli
ations. In HyperText 98 Workshop, 1st International Workshop on Hypermedia Development:

Pro
ess, Methods and Models, 1998.

[Peyton Jones and Hughes, 1999℄ Simon Peyton Jones and John Hughes. Report on the Program-

ming Language Haskell '98. Te
hni
al report, Yale University, February 1999. Available online:

http://www.haskell.org/report.

[Rossi et al., 1997℄ G. Rossi, D. S
hwabe, and A. Garrido. Design Reuse in Hypermedia Design Appli
ation

Development. In Pro
eedings of the ACM International Conferen
e on Hypertext (HT97), Southampton. ACM

Press, April 1997.

[S
hwabe and de Almeida Pontes, 1998℄ Daniel S
hwabe and Rita de Almeida Pontes. OOHDM-WEB: Rapid

Prototyping of Hypermedia Appli
ations in the WWW. Te
hni
al report, Dept. of Informati
s, PUC-Rio,

1998.

[S
hwabe and Rossi, 1995℄ D. S
hwabe and G. Rossi. The Obje
t-Oriented Hypermedia Design Model. [1995℄,

pages 45{46.

[Turner, 1985℄ D. A. Turner. Miranda - a non-stri
t fun
tional language with polymorphi
 types. In J. P.

Jouannaud, editor, Conferen
e on Fun
tional Programming Languages and Computer Ar
hite
ture, Nan
y,

pages 1{16. Springer, 1985.


