Effective Mapping of Hypermedia High-Level Design
Primitives to Implementation Environments

Walter A. Risi Daniel H. Marcos Pablo E. Martinez Lopez

LIFTA, Facultad de Informética, Universidad Nacional de La Plata.
C.C.11, Correo Central, 1900, La Plata, Buenos Aires, Republica Argentina.
E-mail: {walter,daniel,fidel}@lifia.info.unlp.edu.ar
URL: http://www-1ifia.info.unlp.edu.ar/

Abstract

As the inherent complexity of hypermedia applications grows, the need for high-level
design models and methods becomes imperative. There are several software engineering
methods specially tailored for the domain of hypermedia applications, which take into ac-
count the special needs of this kind of applications. However, the mapping of these high-level
models to the implementation environments often results in a drastic loss of richness.

This paper presents a domain-specific language which can be used to as an interme-
diary between the software engineering models and the implementation environment. We
show, through examples, how primitives found in different hypermedia design methods can
be mapped to our language, still preserving the original expresiveness. Our language also
provides rendering facilities which allow to obtain working prototypes of the designs in a
particular implementation platform.

1 Introduction

The dramatic expansion of the WWW in the recent years has resulted in a considerable interest in
developing large hypermedia applications effectively. As the inherent complexity of hypermedia
applications grows, the need for high-level design models and methods becomes imperative.
There are several software engineering methods specially tailored for the domain of hypermedia
and web applications, which take into account the special needs of this kind of applications. Some
of these methods are OOHDM [Schwabe and Rossi, 1995], RMM [Isakowitz et al., 1995], W3DT
[Bichler and Nussler, 1996] and HyDev [Pauen and Voss, 1998]. Each one is geared towards a
particular kind of application.

Despite the several engineering methods available, the design of web applications still is
rather low-level. Commonly used approaches relay on several types of editing environments
and technologies. These environments have evolved from the very basic web-page editing tools
(such as FrontPage! [Fro, 1999]), to more complex site-oriented developing environments (see
for example NetObjects Fusion? [Net, 1999]). However, site-oriented tools still do not embrace
high-level abstractions: site-maintenance features are limited to keeping an uniform look in all
pages, or having a general view of the structure of the site.

A dramatic point in the acceptance of engineering approaches is the wide gap between high-
level design primitives and the implementation environments. Often, the mapping of models to
implementation results in a drastic loss of expressiveness. Moreover, several benefits of the high-
level models, such as reuse of structures, are lost when performing the actual implementation.

!Copyright 1999, Microsoft Corporation.
2Copyright 1999, NetObjects Inc.

In this paper we show how this gap can be reduced, by means of HyCom (Hypermedia
Combinators) [Marcos et al., 1997, Marcos et al., 1998]. HyCom is a high-level, domain-specific
language for hypermedia authoring. HyCom expresiveness allows direct mapping of design
primitives, without risking a loss of richness. Moreover, designs expressed with HyCom can
be rendered to HTML pages or other implementation platforms automatically. The version we
present here is a redesign of the one presented in previous papers, but the overall ideas remain
the same.

This paper is structured as follows: in section 2 we introduce HyCom, and the basic features
and structure of its latest version. In section 3, we show through examples how design primitives
from a well-known method can be effectively mapped into HyCom. In section 4 we review some
related work. Finally, in section 5 we draw some conclusions and present our current research
lines.

2 HyCom: A Domain Specific Language for Hypermedia

In recent years, there has been a growing interest in using Domain Specific Languages (DSLs)
for software development [Hudak, 1996]. DSLs provide several interesting features to program-
mers, including a very high-level of abstraction, domain-specific tools, reduced developing times,
among others. The most important feature is that developers can think in terms of domain spe-
cific abstractions. This feature yields programs that are more concise, and easier to understand
and maintain than their counterparts in general purpose languages. Well known DSLs are SQL,
KTEX, and HTML. Examples of domain-specific tools are query optimizers in SQL and BibTeX
in BTRX.

An important group in the DSL family consists of the so-called embedded DSLs (DSELs).
These languages are embedded in general purpose languages as domain specific vocabularies
(often implemented as libraries). From the software developer’s point of view, DSEL present
important advantages. On one hand, the developer can benefit from having inmediate access
to the power of the host language (this is frequently needed, as DSLs often are not used in
isolation). On the other hand, the host language acts as a ‘glue’ for integrating several DSELs
embedded in itself. The idea of DSEL was first proposed by Peter Landin [Landin, 1966], who
observed that a programming language consists of a domain independent core, and a set of
domain specific vocabularies.

HyCom is a DSEL for hypermedia, embedded in the HOT (Higher-Order, Typed) language
Haskell [Peyton Jones and Hughes, 1999]. HyCom was designed with the hypermedia develop-
ers’ needs in mind, and thus provides the frequently desired facilities (e.g. reuse, automatic
prototyping). Moreover, Haskell is a very advanced language, thus developers can benefit from
its powerful features (e.g. higher-order functions, a powerful type system, libraries). Further-
more, using Haskell allows us to integrate to other existing DSELs (e.g. CGI scripting, Database
handling) in a straightforward manner. Finally, several works have shown the virtues of Haskell
as a host language [Leijen and Meijer, 1999].

The general architecture of HyCom is depicted in Fig. 1. In the core, we find the HyCom
DSEL itself, which defines its main features. We also find additional utility modules, such
as database integration. Another important part is the environment specific features (such as
HTML) which allow the developer not only to use environment specific components, but also
to render designs to working prototypes in that environment. Finally, there are the authoring
libraries, which provide application specific abstractions.

2.1 A Brief Overview of Haskell

Being a DSEL embedded in Haskell, HyCom inherits its notational conventions and semantics.
Here, we give a very brief overview of Haskell. More details about Haskell can be found in

General Utilities Authoring Libraries

Persistence l
Database Access

Academic Site

HyCom DSEL > Personal Site

Implementation
Environment Specific
Features

wWWwWw

S £

Product Catalog

Figure 1: General HyCom Architecture

[Peyton Jones and Hughes, 1999].

Haskell is a functional language, similar to Lazy ML [Augustsson, 1984] or Miranda?
[Turner, 1985]. The main construct is the function, which is very similar to its mathematical
counterpart.

-- A function that calculates the minimum of two values. (Comments begin with --).
min x y = if (x<y) then x else y

All computations in a functional language are performed by evaluating functions. Function
application is denoted by juxtaposition of the function name to its arguments. For example,
min 2 3 is an expression that denotes the application of function min to numbers 2 and 3. The
value of the mentioned expression is 2.

Haskell is also strongly typed, which means that a type is assigned to every valid construct
at compile time. Types can be explicitly given by a type signature. Since explicitly giving a
type to every construct can be a tedious task, Haskell uses a type inference mechanism. This
mechanism can infer, for example, the type of function min. Therefore, it is not usually necessary
to give type signatures explicitly — though it is good practice, and sometimes may be required.
The following is the type signature for the min function shown above, meaning that the function
takes two Integer values and yields another Integer.

min :: Integer -> Integer -> Integer

Actually, the above function can be extended to all values supporting the < operation. This
can be expressed in Haskell in the following way.

min :: Ord a => a -> a -> a

The Ord a => ... context means that function min is defined for every type a that is
instance of the Ord type class. Type classes are a mechanism for overloading, which is similar —
though not identical — to the interface construct in Java. Basically, types belonging to a class
implement a set of operations defined in that class. For example, instances of class Eq implement
the == operator, and can be compared for equality. The 0rd type class defines commonly used
order operators, such as < (‘smaller than’) and >= (‘greater than or equal’). Type classes form
a hierarchy, meaning that instances of a subclass implement the operators of that subclass, and
also the operators of the superclass — for example, Ord is a subclass of Eq, meaning that elements
that can be ordered can also be compared by equality.

Type contexts are used when one must assume something about a certain type. For example,
in function min, we must assume that for type a, operator < is defined. When there is no need

3Copyright 1986, Research Software Limited

to assume anything about a type, we do not give any context. The trivial example is function
id x = x, of type id :: a -> a. We do not need to assume anything about a, so we do not
specify any context restriction. This is a simple example of parametric polymorphism in Haskell
— in contrast to ad-hoc polymorphism, or overloading, which we already mentioned. In all these
cases, we say that a is a type variable, since it stands for any type, or for all types satisfying a
context.

Some classes have more than one parameter, meaning that overloading is done over two
types instead of just one. Therefore, a type T can be instance of a certain class ClassName a
b, with Integer as the second argument, and also with Char as the second argument. This
means that an overloaded function of class ClassName —say op :: a -> b -> a— will behave
differently when applied to an object of type a, depending not only on the type of the first
function parameter, but also on the type of the second. A context for a multiparameter type
class has a similar notation to the one for single parameter classes — for example, for class
ClassName we could have ClassName a b => ... as a context for a certain function.

The most important feature of Haskell is the possibility of defining higher-order functions.
Higher order functions may take a function as its argument, and may yield another function as
its result. The classical example is map, which takes a function £, and returns another function
that applies £ to all the components of a list. The following is the type signature for map — note
that brackets are used to denote lists.

map :: (a -> b) -> [a] -> [b]

For example, applying map negate to the list [1,2,3] yields the list [-1,-2,-3], and applying
map succ to the same list yields [2,3,4]. Higher-order functions are a very powerful feature,
and allow reuse at a very large scale [Hughes, 1989]. Haskell libraries provide a rich set of
higher-order functions (such as map), but the user can also define her own.

Another very important feature of Haskell is related to types. Haskell gives the user several
ways to define its own types. The first is through type synonyms. Type synonyms do not define
new types, but rather they give new names to existing ones. For example, a type synonym
declaration like type Amount = Integer says that type Amount is another name for Integer.
Truly new types can be defined using algebraic data types. Algebraic data types allow to define
types by enumerating its elements. For example, the following is a type declaration for a pair
of values of types a and b, respectively.

data Pair a b = Pair a b

As it can be seen from the above code, type declarations can be parameterized — this also
stands for type synonyms. Moreover, parameters in type declarations can be constrained by
type class contexts, in the same way as we did for functions. Note also that we used the same
Pair in both sides of the equation. This is possible since the left side is denoting how a type
is constructed — thus, Pair is called here a type constructor — and the right side denotes how a
data element of that type is built — therefore, Pair in the right side is called a data constructor.
An alternative way for writing the previous declaration is the following.

data Pair a b = Pair { fst :: a, snd :: b }

This second version is identical to the last one, except that values are labelled, and one can
assume that there exist functions fst and snd, to retrieve the first and second components.
With both versions, one can also retrieve the components by pattern matching. Algebraic data
types can also be recursive, allowing to define recursive data structures such as lists and trees.

Other interesting feature of Haskell are infix operators. Functions, normally prefix, can also
be expressed in an infix fashion, thus gaining expressiveness in certain situations. For example,
we can define an infix version of the min function already defined.

min, (.@.) :: Num a => a -> a —> a
(.@0.) = min

Now we have an operator (.@.) that has the same functionality as min, but can be used
infix. That means that, for example, 1.@.2 is the same as min 1 2. In general, infix operators
are a very powerful feature for gaining expressiveness. Furthermore, it is possible to define
precedence and associativity for infix operators.

To finish with this brief overview of Haskell, we present local declarations. A local declaration
allows to define functions only in the scope of another declaration. For example, the following
defines sum only in the scope of double.

double x = sum X X
where sum x x = x + X

This has been only a very short introduction to Haskell capabilities. We have limited our-
selves to explaining the features needed to understand this paper. The interested reader can
found further information in the references already mentioned.

2.2 The HyCom DSEL

The structure of the HyCom DSEL is given by the type class hierarchy shown in Fig. 2. Note
that this hierarchy is not denoting a class-hierarchy in the object-oriented (OO) sense, but rather
a type class hierarchy in the sense that we explained in previous section. Also note that when
we speak of data object we are referring to a data element of a certain type, and not to an object

in the OO sense.
’/ HLComponent ’/NodeCumponent

HasUI ‘

’/ UlComponent ‘

HLComponentUl

[I I |
’/ HasText H/Has(:ommand H/ HasLink H/ HasState ‘

Figure 2: HyCom Type-Class Hierarchy

The base class in the HyCom hierarchy is Component. A component is a data object with
an associated ID, that allows to univocally identify the object. A component supports op-
erations getID and setID. Almost every data object in HyCom is a component. Subclasses
of Component, such as HLComponent and UIComponent provide hyperlinking and user-interface
related operations, respectively.

The most important concept in HyCom is that of combinators and transformers — hence
the name, Hypermedia Combinators. A combinator is a function that takes two or more
components, and yields a new one resulting from their combination. A transformer is a function
that takes a component, and returns a new one resulting from adding some kind of feature to
it. Typical transformers and combinators are the ones used for user interface components.

aboveOf, (/=\) :: (UIComponent a, UIComponent b) => a -> b -> Layout a b
left0f, (<=<) :: (UIComponent a, UIComponent b) => a -> b -> Layout a b
anchored :: (UIComponent c, HLComponent 1) => ¢ -> 1 -> Anchored c 1

The above0f combinator takes two user interface components, and returns a composed
component in which the first argument is placed above the second one. The 1eft0f combinator
behaves similarly, but places its arguments one in the left of the other. The anchored transformer
takes an UI component and a Hyperlink component, and returns an anchor resulting from adding
navigational functionality — provided by the link — to the original component.

Typically, authoring in HyCom involves defining application specific components — such as
conceptual entities, nodes, links —, embedding them in the type class framework shown before,
and glueing them using the built-in components and combinators. When we say that a certain
feature is ‘built-in’, we mean that it is provided by HyCom’s basic libraries. The following code
shows a simple example.

data LabMember = LabMember { name :: String, photo :: FilePath,
personalData :: Profile, lab: Laboratory }
type LabMemberC = BasicComponent LabMemberC

In the above code, a data object LabMember is defined to hold data about members of
a laboratory. Type synonym LabMemberC is built by applying the built-in type constructor
BasicComponent to the LabMember type. The resulting type is an instance of the Component
class, since BasicComponent provides the required functionality. Next, we define an application
specific node, which not only holds data, but also a hyperlink.

data MemberNode = MemberNode LabMemberC MemberLink
type MemberNodeC = NodeComponent MemberNode

The application-specific node is defined in the same fashion as the LabMember. However, we
now use built-in type constructor NodeComponent, which implements the basic functionality re-
quired for nodes. This yields an instance of the class NodeComponent, that we call MemberNodeC.
The link type MemberLink used in the node definition is defined as follows.

type MemberLink = PlainLink MemberNodeC MemberNodeC

Type MemberLink is an application-specific link, defined by applying built-in type constructor
PlainLink — which provides the basic hyperlinking facilities. A member link is thus a plain link
— the most simple type of link —, going from a MemberNodeC to another MemberNodeC.

Normally, applications from the same conceptual domain use very similar conceptual entities.
Therefore, it is not necessary to define new components each time a new application needs to be
developed. Instead, the author can use components provided by authoring libraries. Authoring
libraries are described in the next section.

2.3 The Authoring Libraries

HyCom takes the DSEL approach to its limit through authoring libraries. As the HyCom
DSEL is a hypermedia-specific vocabulary embedded in Haskell, authoring libraries provide
application-specific vocabularies embedded in HyCom. In this way, developers of a particular
kind of application do not have to define the basic abstractions from scratch, since they are
provided by the library.

A typical example is the academic site authoring library. Academic sites often present a
similar structure. The underlying conceptual model is similar, and involves entities such as
professors, researchers, students, subjects, projects, research-areas, etc. The authoring library
already provides types to represent these entities, and also default navigational constructs typ-
ically found in this kind of application — for example, a guided tour defined over the professors
of a particular area, etc. These reusable components are defined basically in the same way that
was shown in the previous section.

Authoring libraries not only allow to reuse components, but also design decisions about the
overall hypermedia structure. There exists a set of hypermedia design patterns [Rossi et al., 1997]
that provide useful guidelines to enhance the quality of the applications. We are taking account
of these patterns in designing the libraries.

Another interesting possibility are authoring assistants. Basically, authoring assistants ask
the user several questions about the application to be developed, and generate the basic skeleton
of the application. Therefore, authoring assistants complement authoring libraries, by reducing
the — often high — initial effort in application development. Authoring assistants are currently
under development.

3 Mapping Design Primitives to HyCom

In this section we show examples on how to map design primitives to HyCom. We focus on one of
the most widely accepted hypermedia design methods, the Relationship Management Method-
ology (RMM). We are currently working on a mapping of OOHDM [Schwabe and Rossi, 1995]
concepts to HyCom, which we will cover in a future paper.

3.1 A Brief Overview of RMM

The Relationship Management Methodology (RMM) is often referred as the first true hyperme-
dia design methodology. First presented by Isakowitz et al. in 1995 [Isakowitz et al., 1995], it has
gone through several enhancements since then. The version we use here is the one presented in
[Isakowitz et al., 1998]. In what follows, we give a very brief overview of RMM, and present the
example with which we will work from now on. Note that we assume a basic knowledge of RMM.
Readers with no previous knowledge of this methodology should look in the following papers
[Isakowitz et al., 1995, Isakowitz et al., 1997a, Isakowitz et al., 1997b, Isakowitz et al., 1998].

The RMM is based on the well-known Entity-Relationship (ER) model. The user starts
defining a conceptual model of the application, using entities and relationships. This comprises
the first step of the method. A very simple ER model is shown in Fig. 3.

Researcher Belongs_To Laboratory

Works_In Project

Figure 3: An ER Diagram

The following two steps involve doing a top-down and a bottom-up design of the general
navigational structure of the application. The overall goal is to obtain the application diagram.
An application diagram consists of M-Slices and links between them. M-Slices are presentational
units, and consist of attributes from one or more entities (in particular, each M-Slice has an
‘owner’ entity), link anchors, access structures (like indexes or guided tours), and other M-Slices.
An M-Slice is an abstract representation of a piece of information that is going to be presented
in the final application. Top-level M-Slices are actually the nodes of the application.

In Fig. 4 we show an application diagram corresponding to the ER diagram shown previously.
Here we have three top-level M-Slices and links among them. The complete definition of the

Researcher top and name M-Slices is depicted in Fig. 5. The Researcher top M-Slice has some
attributes from its owner (the Researcher Entity), namely rank and photo. It also includes
another M-Slice from its owner, the name M-Slice. The lower part of the M-Slice includes
features not belonging to the owner entity, such as the Laboratory Logo, which acts as an
anchor to the Laboratory top M-Slice. Also, it features an index of projects, anchored in the
Project name M-Slice — actually, this is a a particular kind of M-Slice with a single attribute.

Researcher Laboratory

Belongs_To
Has_Researcl her

Works_In Has_Project
Has_Participant Held_in

Project

&

Figure 4: An Application Diagram

Researcher

Researcher

5

Laboratory name

Laboratory

%

Figure 5: M-Slices top and name Belonging to the Researcher Entity

The RMM defines four more phases. However, these phases have not been formally defined
by its authors, and generally, developers take an ad-hoc approach for these phases
[Balasubramanian et al., 1996]. Therefore, we will focus on the phases described above, which
are the cornerstone of the method.

3.2 Mapping RMM to HyCom

In this section, we show how to develop a possible mapping of RMM features to HyCom. We
use the already presented example to develop the mappings.

The first step is simple, and involves representing the ER model with a set of Haskell types.
There are many ways of doing this, and here we show a straightforward one.

data Researcher = Researcher {firstName :: String, lastName :: String, rank :: String,

photo :: String, intro :: String, projects :: [Project],
lab :: Laboratory }

Here, we decide to include the relations in the entities, since relations have no attributes.
This is not necessarily the case, and relations can be also represented by types in the same
fashion as entities. We also choose to make entities instances of the component class — this is
easily done by providing definitions for getID and setID operations.

Actually, the developer has to deal with sets of entities, normally stored in a database.
Type class Retriever allows us to hide the storage details, thus providing an uniform inter-
face to different database implementations. HyCom provides built-in components implementing
Retriever functionality for file-based resources and relational databases.

class Retriever r a where

retrieveBy :: (a -> Bool) -> r -> I0 [a] -- Retrieve all entities satisfying
-- a predicate.
retrieve :: r -> I0 [a] -- Retrieve all entities.

The interesting part consists in representing slices — from now on, we will use the terms
slice and M-Slice interchangeably. We want to express slices clearly, but also capitalize on type-
checking to prevent defining ill-formed slices. The first thing we do is defining a type class
Owned, to constrain slice components. Class Owned has type information about the owner, and
also allows us to retrieve the ID of the owner.

class Component o => Owned a o where
owner :: a -> o

We can move now to representing slices. Slices have an owner, a set of components belonging
to the owner, and a (possibly empty) set of components not belonging to the owner. Thus,
we define type Slice, which holds a combination of components belonging to the owner, a
combination of components not belonging to the owner, and also information about the owner
itself. Note that we use type contexts to constrain both sets of combinations.

data (Component owner, Owned a owner) => Slice a b owner = Slice a b owner ID

The above type constructor Slice has three parameters. Note that context Owned a owner
restricts the component combination of type a to have the the same owner type as the owner of
the slice — given by the parameter owner. Note also that the data constructor Slice — on the
right side of the declaration — also holds data for an ID, which is required to make Slice an
instance of the Component class. Making a comparison with the graphical notation of slices, we
can see that the constrained combination — of type a — corresponds to the upper portion of the
slice, and the other combination — of type b — corresponds to the lower portion of the slice.

Some slices only hold data from its owner. For this particular kind of slice, we provide type
PureSlice. This is similar to the Slice type, except that it does not hold the combination of
components not belonging to the owner.

data (Component owner, Owned a owner) => PureSlice a owner = PureSlice a owner ID

Other interesting representations of RMM concepts are types Att which models attributes
or single attribute M-Slices —, RMM_Anchor — which models anchored components within slices
—, and RMM_Index — which models indexes. We do not show the definitions of these components
here. All these types are instances of the Owned class, allowing to prevent formation of invalid
structures.

We mentioned previously that a slice holds combinations of components, either belonging
to the owner or not. Combinations are modelled with combinator functions — the main concept
underlying HyCom. We provide two types of combinations: combinations of components of the
same owner — ownerCombined —, and combination of any components — sliceCombined. These
combinators are modelled with types, and functions to create data objects of those types.

data (Component o, Owned a o, Owned b o) => OwnerCombined a b o = OwnerCombined a b
ownerCombined, (+--+) :: (Owned a o, Owned b o) => a -> b -> OwnerCombined a b o
data SliceCombined a b = SliceCombined a b

sliceCombined, (-##-) :: a -> b —-> SliceCombined a b

These combinators prevent the user from mixing components belonging to the slice’s owner
with the ones not belonging to it. Note that in ownerCombined we used type contexts in a
similar way that in the Slice declaration: the Owned a o and Owned b o contexts ensure that
components from different owners are not combined, and that the resulting combination also
belongs to that owner. Note also that we provided infix versions of the combination functions.

Some other interesting functions are the ones used to build anchors, indexes, and single
attribute slices.

rmmAnchor :: (HLComponent 1) => a -> 1 -> RMM_Anchor a 1

rmmIndex :: (Component owner, HLComponent 1, Owned a owner) =>
(owner -> a) -> (owner -> 1) —> [owner] -> o —> RMM_Index a 1 o
att :: (c > a) >c > Att ac

Next, we show the HyCom based definition for the Researcher top M-Slice. We define a
function researcherTop, which takes a researcher entity, a 1ab entity and a list of projects,
and returns the Researcher top M-Slice. Note that we use functions att, which is used to
build attributes — attributes have a value, and also information about their owner entity —, and
linkTo, which is used to build a link given a destination slice. We do not show the definitions
for these functions here.

researcherTop researcher lab projects = slice fromOwner other researcher

where fromOwner = (att rank researcher) +-—+
(att photo researcher +--+
(researcherName researcher)

other (rmmAnchor (laboratoryLogo lab) linkToLab) —##-

(rmmIndex projectNameAtt linkToProject projects researcher)

linkToLab = linkTo (laboratoryTop lab)
linkToProject p = linkTo (projectTop p)

Compare the above code with the slice definition previously shown. Notice that the Hy-
Com/Haskell based version has not lost the original expressiveness. The fromOwner local decla-
ration corresponds to the upper part of the slice graphical notation, and the other declaration
corresponds to the lower part. Furthermore, using types prevents the user from defining ill-
formed slices.

The next step consists in defining how the M-Slice is going to be seen in the interface. That
can be done using HyCom UI Components and combinators. We define a function that takes
a researcherTop M-Slice, and returns an Ul component. In the following, we assume that we
have functions for retrieving the internal components of the slice, such as the name M-Slice,
the rank attribute, etc — those functions can be easily defined by pattern matching. We also
make use of some other Ul components, such as divisionLine, rmmIndexUI (UT for indexes),
researcherNameUI (UI for Researcher name M-Slice), for which we do not show the definitions.

researcherTopUI researcherTop = header /=\
personalData /=\

researchInterests
where header = laboratoryLogoUI logo /=\

divisionLine

personalData = researcherNameUI theName /=\
(textLabel rank <=< image photo) /=\
divisionLine

researchInterests = (textSize 4 (textLabel "Projects")) /=\
(rmmIndexUI index0fProjects)

nameSlice = getNameSlice researcherTop

projectIndex = getProjectIndex researcherTop

logo = getLogoSlice researcherTop

photo = getAttrContent (getPhotoAttr researcherTop)

rank = getAttrContent (getRankAttr researcherTop)

Again, notice that even when defining the UI, the original design constructs (slices, at-
tributes) are still present. The resulting Ul component can be compiled, automatically yielding
a prototype in HTML or other platform. The prototype HTML page corresponding to the Re-
searcher top M-Slice can be seen in Fig. 6 — notice that we have marked the Ul representations
of the RMM constructs, to allow easy comparison with the HyCom code.

“ Achivo Edicién Ver lra Faverter Apuda |] |

=
Laboratorio de Investigacion y Laboratory
Formacion en Informatica Avanzada
Lafiss —
Daniel Marcos
Eesearch Assistant
/////,
Projects -
ToJec
o HyCom Authoring Libraries. Reusing Domain-Specific Iodelling
Constructs =
e The Bedecipn of HyCormn Iriclsx
L I
I L [Ewirc 7

Figure 6: Web Page Corresponding to the Researcher Top M-Slice.

4 Related Work

Several works have faced the problem of the mapping of design primitives to implementation
environments. However, we claim that none of them embraces the high-level principles present
in HyCom. Most of the existing works emphasize implementation-oriented features, such as dy-
namic generation of web pages, but the expressiveness and abstraction level of those approaches
are often left unattended.

The WebComposition approach and its XML-based implementation, the WebComposition
Markup Language (WCML) [Gellersen et al., 1997, Gaedke et al., 1998] are in some way, an
object-oriented counterpart to HyCom. However, we believe that the object model adopted is
poor — objects support very limited functionality. Moreover, WCML lacks features like type
checking to avoid the definition of invalid constructs. HyCom also differentiates from WCML
for being an embedded language — which allows easy integration with existing DSELs.

Another approach is that of the OOHDM-Web [Schwabe and de Almeida Pontes, 1998] en-
vironment, that proposes mapping OOHDM design primitives to relational tables, HTML tem-
plates, and Lua scripts. We claim that the mapping of objects to tables as proposed by OOHDM-
Web still results in a loss of richness.

5 Conclusions and Future Work

The wide gap between high-level design primitives and implementation environments often re-
sults in a dramatic loss of expressiveness. Benefits obtained from the high-level models are
actually lost when performing the implementation. In this paper, we pointed out how this gap
can be reduced by means of HyCom, a DSEL for hypermedia. HyCom has a very high level of
abstraction, and allows design primitives to be mapped in a very expressive way. Moreover, the
resulting mapping benefits from type checking and prototyping facilities provided by HyCom.

Our current research lines include the development of solid authoring libraries. We plan
to build meta authoring-libraries for the most widely used hypermedia design methods, and
base the concrete authoring libraries on those methods. This would allow us to take advantage
of those engineering models for documenting the libraries. We also plan to take advantage of
hypermedia design patterns in designing the libraries.

Other interesting aspects for research involve the development of software-based development
environments. Our primary target is the development of authoring assistants, to complement
the authoring libraries. An interesting possibility is that of designing a CASE tool based in
hypermedia design methods, using HyCom as the underlying language to describe designs.

References

[Augustsson, 1984] L. Augustsson. A compiler for lazy ML. In Proceedings of the ACM Symposium on Lisp and
Functional Programming, Austin, pages 21827, August 1984.

[Balasubramanian et al., 1996] V. Balasubramanian, Michael Bieber, and Tomds Isakowitz. Systematic Hyper-
media Design. October 1996.

[Bichler and Nussler, 1996] Martin Bichler and Stefan Nussler. Modular Design of Complex Web-Applications
with W3DT. In Proceedings of the 5th Workshop of Enabling Technologies: Infrastructure of Collaborative
Enterprises (WET ICE ’96), Stanford. IEEE Computer Press, 1996.

[Bieber and Isakowitz, 1995] M. Bieber and T. Isakowitz, editors. Communications of the ACM, volume 38 (8).
ACM Press, August 1995.

[Fro, 1999] FrontPage Home Page, Microsoft Corporation. URL: http://www.microsoft.com/FrontPage/. 1999.

[Gaedke et al., 1998] M. Gaedke, M. Beigl, and H. W. Gellersen. Mobile Information Access: Catering for
Heterogeneous Browser Platforms. In Proceedings of the International Workshop on Mobile Data Access in
Congunction with 17th International Conference on Conceptual Modelling (ER98), Singapore, 1998.

[Gellersen et al., 1997] H. W. Gellersen, R. Wicke, and M. Gaedke. WebComposition: An Object-Oriented
Support System for the Web Engineering Lifecycle. In Computer Networks and ISDN Systems 29, Special
Issue of the 6th World-Wide Web Conference, Santa Clara, CA, USA, 1997.

[Hudak, 1996] Paul Hudak. Building Domain-Specific Embedded Languages. 1996.
[Hughes, 1989] J. Hughes. Why Functional Programming Matters. Computer Journal, 32(2):98-107, 1989.

[Isakowitz et al., 1995] T.Isakowitz, E. A. Stohr, and P. Balasubramaninan. RMM: A Methodology for Structured
Hypermedia Design. [1995], pages 34—44.

[Isakowitz et al., 1997a] T. Isakowitz, A. Kamis, and M. Koufaris. Extending The Capabilities of RMM: Russian
Dolls and Hypertext. In Proceedings of the 30th Annual Hawaii International Conference on System Sciences,
1997.

[Isakowitz et al., 1997b] T. Isakowitz, A. Kamis, and M. Koufaris. Reconciling Top-Down and Bottom-Up Design
Approaches in RMM. In Proceedings of the Workshop on Information Technologies and Systems (WITS-97),
Atlanta, GA, December 1997.

[Isakowitz et al., 1998] T. Isakowitz, A. Kamis, and M. Koufaris. The Extended RMM Methodology for Web
Publishing. 1998. Working Paper [S-98-18, Center for Research on Information Systems.

[Landin, 1966] Peter Landin. The Next 700 Programming Languages. Communications of the ACM, 9(3):15-164,
February 1966.

[Leijen and Meijer, 1999] Daan Leijen and Erik Meijer. Domain Specific Embedded Compilers. Submitted to
2nd USENIX Conference on Domain-Specific Languages, 1999.

[Marcos et al., 1997] Daniel H. Marcos, Pablo E. Martinez Lépez, and Walter A. Risi. Expresando Hypermedia en
Programacién Funcional. In Proceedings of the Second Latin American Conference on Functional Programming
(CLAPF97), La Plata, Buenos Aires, Argentina, 1997.

[Marcos et al., 1998] Daniel H. Marcos, Pablo E. Martinez Lépez, and Walter A. Risi. A Functional Programming
Approach to Hypermedia Authoring (Poster). In Proceedings of ACM International Conference on Functional
Programming (ICFP98), Baltimore, Maryland, USA, 1998.

[Net, 1999] NetObjects Home Page. URL: http://www.NetObjects.com. 1999.

[Pauen and Voss, 1998] Peter Pauen and Josef Voss. The HyDev Approach to Model-Based Development of Hy-
permedia Applications. In HyperTezt 98 Workshop, 1st International Workshop on Hypermedia Development:
Process, Methods and Models, 1998.

[Peyton Jones and Hughes, 1999] Simon Peyton Jones and John Hughes. Report on the Program-
ming Language Haskell ’98. Technical report, Yale University, February 1999. Available online:
http://www.haskell.org/report.

[Rossi et al., 1997] G. Rossi, D. Schwabe, and A. Garrido. Design Reuse in Hypermedia Design Application
Development. In Proceedings of the ACM International Conference on Hypertezt (HT97), Southampton. ACM
Press, April 1997.

[Schwabe and de Almeida Pontes, 1998] Daniel Schwabe and Rita de Almeida Pontes. OOHDM-WEB: Rapid
Prototyping of Hypermedia Applications in the WWW. Technical report, Dept. of Informatics, PUC-Rio,
1998.

[Schwabe and Rossi, 1995] D. Schwabe and G. Rossi. The Object-Oriented Hypermedia Design Model. [1995],
pages 45—46.

[Turner, 1985] D. A. Turner. Miranda - a non-strict functional language with polymorphic types. In J. P.
Jouannaud, editor, Conference on Functional Programming Languages and Computer Architecture, Nancy,
pages 1-16. Springer, 1985.

