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Abstract 
 
Evolutionary Computation is an emergent field, which provides new heuristics to function 
optimization where traditional approaches make the problem computationally intractable. 
Exploration and exploitation of solution in the problem space are main issues affecting the 
performance of an evolutionary algorithm. Current enhancements attempt to balance exploitation and 
exploration to avoid premature convergence during the search process. 
Multiple parents multiple crossovers and incest prevention are three different techniques that when 
combined showed a substantial benefit: besides minimizing the risk of premature convergence, the 
final population is concentrated nearby the optimal solution. 
This behaviour is an important aid provided by the evolutionary process when applications require a 
set of alternative solutions to face system dynamics.  
This paper shows the design, implementation and partial performance results when incest prevention is 
combined with multiple crossovers on multiple parents for difficult multimodal optimization.  
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1. Introduction 
 
In the case of multimodal functions the problem space, also known as the fitness landscape, provides 
multiple suboptimal points. Depending on the type of operators used and their frequency of 
application, the convergence to these suboptimal points can arise. This effect, known as premature 
convergence, is mainly derived from a loss of population diversity before optimal, or at least 
satisfactory values, have been found. 
When searching for optimal solutions in the problem space extreme exploitation can lead to premature 
convergence but intense exploration can make the search ineffective [Michalew. 96]. 
 
Multiple crossovers per couple (MCPC) was recently introduced as a new crossover method [Esquivel 
97] attempting higher exploitation of previously found solutions. Allowing multiple crossovers per 
couple on a selected pair of parents provided an extra benefit in processing time and similar quality of 
solutions when contrasted against the conventional approach, which applies a single crossover operation 
per couple. These results, were confirmed when optimising classic testing functions and harder (non-
linear, non-separable) functions. 
 
Despite the above mentioned benefits, due to a reinforcement of selective pressure, MCPC showed in 
some cases an undesirable premature convergence effect and some adjustment were needed. Focussing 
on the exploitation versus exploration equilibrium problem, a previous proposal combined MCPC with 
an alternative selection method; Fitness Proportional Couple Selection (FPCS) which first, creates an 
intermediate population of couples where both individuals were chosen by proportional selection. 
Then a criterion is applied to establish the fitness of a couple and subsequently, couples are selected 
for crossing-over based on couple fitness [Esquivel 98].  
 
Also recently, Eiben [Eiben 94], [Eiben 95], [Eiben 97-1], [Eiben 97-2], proposed a multiparent 
approach, where offspring creation is based on a larger sample from the search space attempting to 
supply larger diversity in the population. Diversity can help to avoid premature convergence. 
 
Eshelman and Shaffer [Eshelman 91], under a different view proposed incest prevention, which also 
showed its benefits to avoid premature convergence. The method avoided mating of pairs showing 
similarities based on the parent’s hamming distance. 
 
In a previous work we showed an extended approach of incest prevention by maintaining information 
about ancestors within the chromosome and modifying the selection for reproduction in order to 
prevent mating of individuals belonging to the same “family”, for a predefined number (1 to 3) of 
generations. This novel approach was tested on a set of multimodal functions. Description of 
experiments and analyses of improved results can be seen in [Alfonso 98]. 
 
Lately, extending the Eiben’s multiparent proposal in a Pareto optimality study, we found that good 
results can be obtained by applying multiple crossovers per mating action (MCPMA), a natural 
extension of MCPC, on multiple parents [Esquivel 99-1]. Encouraged by these results an investigation 
was conducted to establish the raw effect in performance on a pair of selected optimization problems 
by using a new multiple crossovers on multiple parents (MCMP) method, which allows multiple 
recombination of multiple parents under uniform scanning crossover. Results under MCMP were 
better in quality and speed of convergence than previous approaches attempting improvements of 
MCPC and were published elsewhere [Esquivel 99-2]  
 
The present work indicates that allowing multiple crossovers between multiple parents preventing 
incest, improve the search process in an evolutionary algorithm. 
Next sections briefly describe the method experiments and analyses of improved results on two hard 
multimodal functions (Griewank’s and Branin’s Rcos). 
 

 



2. Multiple crossovers on multiple parents (MCMP) 
Here we explain our multiplicity approach expressed as multiple mating of multiple contributing 
parents.  In his preliminary multiparent approach Eiben used, three scanning crossover methods; but the 
most promising was uniform scanning crossover. Here, each gene in the child is provided from any of 
the corresponding genes in the parents with equal probability.  By using a greater number n1

 

 of 
parents, offspring creation is based on a larger sample from the search space and consequently larger 
diversity is supplied. This can help to avoid premature convergence.  As reported in Eiben’s work, it 
was difficult to draw conclusions on the optimal number of parents, but it was determined that a better 
performance is attained when 2 to 4 parents are used and increasing the number of parents could 
deteriorate the performance. 

Multiple crossovers on multiple parents (MCMP), the method used here, allows multiple 
recombination of multiple parents under uniform scanning crossover, expecting that exploitation and 
exploration of the problem space be adequately balanced. 
As an extension of MCPC, MCPMA provides a means to exploit good features of more than two parents 
selected according to their fitness by repeatedly applying the selected crossover method (in this case 
uniform scanning). Once selected, the parents undergo crossover a number n2 of times specified as an 
argument, and generates n2
 

 children (one per crossover operation). 

3. General description of extended incest prevention (EIP) 
 
In EIP the concept of incest is highly related to the concept of mating members of the same family. To 
prevent incest EIP allows only recombination of individuals without common ancestors. To build the 
new population in EIP, individuals are randomly chosen from the previous one according to the 
conventional fitness proportional selection, but they are allowed to crossover only if no common 
ancestors are detected in earlier generations. In this way exchange of similar genetic material is 
reduced and population diversity is maintained up to some convenient degree. Persistent high 
population diversity has also a detrimental effect slowing down the search process. 
To make this point clearer we have to notice that by allowing crossover only on some non-relative 
individuals, we modify the effect of the selection mechanism on the population. Moreover, selection is 
the only operator of an EA where the fitness of an individual affects the evolution process. In such a 
process two important, strongly related, issues exist: population diversity and selective pressure 
enforced by the mechanism. They are the sides of the same coin: exploration of the searching space 
versus exploitation of information gathered so far. Selection plays an important role here because 
strong selective pressure can lead to premature convergence and weak selective pressure can make the 
search ineffective. 
 
In this work we address the issue by fixing the number of generations to determine the ancestry 
relationship between individuals. The following pseudo-code delineates a procedure to prevent incest 
between members of the same or consecutive generations (brother-sister and parent-offspring) when only 
two parents are involved. 
 
procedure parent selection 
 begin 
  for 1 to sizepop 
   select indiv-1 C(t) //C(t) previous generation 
   select indiv-2 C(t) 
   while  ((parent(indiv-1)=parent(indiv-2)) OR 
        (indiv-1=parent(indiv-2)) OR 
        (indiv-2=parent(indiv-1))) 
    select indiv-2 C(t) 
   end while 
   recombine and mutate individuals in C(t) building C’(t);//C’(t) next generation 

end for 
 end 



 
When a number of n1
 

 > 2 parents are used, the above pseudo code is modified as follows. 

procedure multiple  parent selection 
begin 
 int mating_pool[cant_parents]  //array to store selected parents// 
 int children_pool[cant_cross] //array to store created offspring// 
 for 1 to popsize 
  select indiv-1 C(t) 
  mating_pool[1] = indiv-1 
  i=2 
  while (i <= cant_parent) 
   repeat 
    select indiv-i C(t) 

until(is_relative(mating_pool, indiv-i)) // control of no common          ancestry 
and uniqueness of parents in the mating pool// 

   matting_pool[i] = indiv-i 
   i=i+1 
  end while 
  recombine using MCPMA and mutate individuals from mating_pool to  

                                                                                       children_pool 
  select the best individual from children_pool building C'(t) 
 end for 
end procedure 
 
As can be observed when MCPMA and bit flip mutation is applied, obtaining n2

 

 offspring, a subsequent 
selection choose the fittest child for insertion in the next generation. 

4. Experiments description 
 
For this report, we choose contrasting results on two multimodal functions of varying difficulty: 
 
f1: Griewangk's Function  
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f2: Branins's Rcos Function 
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When optimizing the above indicated functions the following experiments were performed: 
 

1. Multiple Parents (MP) 
2. Multiple Parents with Incest Prevention (MPIP) 
3. Multiple Crossover on Multiple Parents  (MCMP) 
4. Multiple Crossover on Multiple Parents with Incest Prevention (MCMPIP). 
 

EIP was implemented as above described, carrying the ancestors history to prevent incest of 
individuals with common ancestors in the last two consecutive generations. 



To obtain experimental results series of many runs, each with randomised initial population, were 
performed for each experiment on each function, using proportional selection, binary coded 
representation, elitism, uniform scanning crossover and bit flip mutation.  
For those experiments without incest prevention the population size was fixed to 70 individuals. When 
incest prevention was implemented, in order to find subsets of n1

The number of generations was fixed to 500 and probabilities for crossover and mutation were fixed to 
0.5 and 0.005 for f1 and f2. 

 parents for mating with no common 
ancestors, the size of the population was augmented to 170 individuals. 

 
As an indication of the performance of the algorithms the following relevant performance variables 
were chosen: 
 
Ebest = (Abs(opt_val - best value)/opt_val)100 
It is the percentile error of the best found individual when compared with the known, or estimated, 
optimum value opt_val. It gives us a measure of how far are we from that opt_val.  
 
Epop = (Abs(opt_val- pop mean fitness)/opt_val)100 
It is the percentile error of the population mean fitness when compared with opt_val. It tells us how far the 
mean fitness is from that opt_val. 
 
Gbest: Identifies the generation where the best value (retained by elitism) was found. 

 
5. Results 
 
The following tables show the results obtained under each method on the selected testing functions. 
 
5.1. Griewangk's function  
 
Method 3 parents 4 Parents # Cross.  Method 3 Parents 4 Parents # Cross. 

MP 0,09139 0,06516 1  MP 5 10 1 
MPIP 0,05178 0,03241 1  MPIP 5 5 1 

MCMP 

0,03010 0,02904 2  

MCMP 

50 60 2 
0,03009 0,02359 3  65 55 3 
0,01233 0,01477 4  70 65 4 
0,02480 0,01488 5  70 70 5 

MCMP 
IP 

0,00000 0,01005 2  
MCMP 

IP 

80 80 2 
0,00739 0,00739 3  100 90 3 
0,04040 0,01773 4  95 90 4 
0,02719 0,00739 5  85 95 5 

  

Table 1. Best values found under each
              method

            

Table 2. Percentage of the population with
               Ebest under 0.1%.

 
 
Tables 1 and 2 show an increased improvement on performance from pure multiparent approach (MP) 
to the multiplicity-incest-prevention (MCMPIP) method. In this minimizing problem, best values 
found range from 0.09 to 0.0, specially when multiple crossovers are applied. And globally, the 
percentage of the population with Ebest values under 0.1% (that means a difference of 0.01 with the 
optimum value) also increases ranging from 5% to 100%. 



 
Method 3 Parents 4 Parents # Cross.  Method 3 Parents 4 Parents # Cross. 

MP 0.19623 0.28100 1  MP 4.28554 5.13019 1 
MPIP 0.25447 0.28744 1  MPIP 4.80552 5.07019 1 

MCMP 

0.11549 0.09671 2  

MCMP 

0.21196 0.11797 2 
0.10694 0.12366 3  0.12717 0.12382 3 
0.07768 0.08540 4  0.07768 0.08725 4 
0.08111 0.07191 5  0.08149 0.07191 5 

MCMP 
IP 

0.06567 0.06122 2  
MCMP 

IP 

0.08685 0.08594 2 
0.04576 0.06443 3  0.04639 0.06508 3 
0.04402 0.05710 4  0.04654 0.05718 4 
0.05636 0.05297 5  0.05636 0.05297 5 

 
 
 
 
 
In table 3, it can be seen that mean Ebest values are improved also when multiple crossovers are 
applied on multiple parents. When incest prevention is added enhancements are noticed for both 
numbers of parents used for experimentation. 
 
All methods including multiple crossovers combined with multiple parents behave better than pure 
multiparent (MP). In particular when using incest prevention, MCMPIP show a substantial 
improvement, reducing Ebest up to a half of the corresponding value of MCPM which not uses incest 
prevention. In fact MCMPIP was the only approach that succeeded in finding the optimum many 
times, showing slight differences on Ebest values for any combination (n1,n2
Nevertheless, at this point we cannot be conclusive about neither the optimal (n

 ). 
1,n2) combination nor 

about a clear effect of increasing n2 for a constant n1
 

 on the quality of results. 

When looking table 4, a noticeable effect can be observed when MCMP and MCMPIP are applied: All 
the Epop values are, when no identical, similar to the Ebest values. 
This indicates a singular property of the methods using multiple crossovers; they tend to group the 
population around the best-valued individual, and this individual is always quite near optimal, or 
optimal. 
 
The first two methods MP and MPIP, with single crossovers, show Epop values between 4 and 5% 
indicating a greater dispersion of individuals. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Method 3 Parents 4 Parents # Cross. 
MP 436.4 439.8 1 

MPIP 371.9 377.2 1 
 
 

MCMP 

295.5 267.0 2 
278.6 235.6 3 
227.8 323.7 4 
200.0 251.4 5 

 
 

MCMPIP 

211.3 259.4 2 
258.1 181.2 3 
194.6 257.0 4 
121.8 155.8 5 

 
Table 5. Mean Gbest values found under
              each method

 

In table 5 it can be observed that the 
generation where the best valued 
individual is found decreases, non 
monotonically, when the number of 
crossovers are augmented and this is more 
remarkable when  incest prevention is 
also used. 
 

Table 4. Mean Epop values found
              under each method.

Table 3. Mean Ebest values found under
              each method



 
5.2. Branin’s Rcos  function  
 
This function resulted easier for diverse approaches of evolutionary computation and here it is not the 
exception. This fact can be appreciated in the mean Ebest values of table 6. 
 
In all cases it can be observed an slight improvement when incest prevention is applied. Under 
MCMPIP a general tendency to enhance the quality of results is observed when the number of 
crossovers increases. Slighter best results are obtained under MCMPIP with 4 parents. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Method 3 Parents 4 Parents # Cross. 
MP 0.00226 0.00229 1 

MPIP 0.00216 0.00215 1 
 
 

MCMP 

0.00232 0.00226 2 
0.00231 0.00229 3 
0.00228 0.00228 4 
0.00225 0.00228 5 

 
 

MCMPIP 

0.00218 0.00218 2 
0.00216 0.00216 3 
0.00216 0.00216 4 
0.00217 0.00215 5 

 
Table 6. Mean Ebest values found under
              each method

 

Method 3 Parents 4 Parents # Cross. 
MP 0.11485 0.19760 1 

MPIP 0.09687 0.13297 1 
 
 

MCMP 

0.00236 0.00228 2 
0.00231 0.00229 3 
0.00228 0.00228 4 
0.00225 0.00228 5 

 
 

MCMPIP 

0.00234 0.00235 2 
0.00216 0.00216 3 
0.00216 0.00216 4 
0.00217 0.00215 5 

 
Table 7. Mean Epop values found under
              each method

 

Method 3 Parents 4 Parents # Cross. 
MP 444.2 431.8 1 

MPIP 414.7 415.8 1 
 
 

MCMP 

186.5 201.2 2 
93.2 93.3 3 

109.2 135.1 4 
72.1 61.7 5 

 
 

MCMPIP 

182.2 194.1 2 
30.1 40.2 3 
28.9 25.0 4 
43.0 27.8 5 

 
Table 8. Mean Gbest values found under
              each method

 



When observing mean Epop values, at table 7, again the population is grouped around the best-valued 
individual, and this individual is always quite near optimal, or optimal when multiple crossovers are 
applied. This effect is not detected under MP and MPIP. 
 
In table 8, there is an indication that Gbest decreases as long as the number of crossovers augments 
and this effect is more strongly shown when MCMPIP is used. 
 
6. Conclusions 
 
In contrast with the single crossover per couple approach, Multiple crossover per couple (MCPC) permits 
more than one crossover operation for each mating pair exploiting features of previously found good 
solutions. The method showed its benefits and limitations, detailed in previous works. 
 
To overcome these limitation a variant MCMPIP, including recombination of multiple parents and 
incest prevention is presented here. 
 
Results indicate that this approach mitigates the possible loss of diversity generated by the application of 
multiple crossovers on a pair of parents and no extra adjustments, used before, seem to be necessary. 
Consequently the quality of results is at least as good as previous more complex approaches. Additionally, 
when observing the final population it was detected that all individuals are much more centred 
surrounding the optimum. This is an important issue when the application requires provision of multiple 
alternative near-optimal solutions confronting system dynamics as in most real world problems. Also 
speed of convergence, measured in number of generations, is augmented without increasing the risk of 
premature convergence. 
 
Although we cannot be conclusive, it seems that by means of this approach the searching space is 
efficiently exploited by the multiple application of crossovers, efficiently explored by the greater number 
of samples provided by the multiple parents and premature convergence is avoided by incest prevention. 
For future work, as a first step, it remains to find optimal (n1,n2

 

) combinations throughout of adaptive 
setting of parameters. 
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