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Abstract. In [1] we presented the logic P=PML, a formalism suitable

for the speci�cation and construction of Real{Time systems. The main

algebraic result, namely, the interpretability of P=PML into an equa-

tional calculus based on !-closure fork algebras (which allows to reason

about Real{Time systems in an equational calculus) was stated but not

proved because of the lack of space.

In this paper we present a detailed proof of the interpretability theorem,

as well as the proof of the representation theorem for !-closure fork alge-

bras which provides a very natural semantics based on binary relations

for the equational calculus.

1 Introduction

1.1 Motivations

The motivation for this work is the need to describe industrial processes as part

of a project for a telecommunications company. We want to be able to give formal

descriptions of such processes so as to be able to analyze such descriptions. For

example, we want to be able to calculate critical paths for tasks in processes,

throughput times of processes, etc. We also want to demonstrate correctness of

process descriptions in relation to their speci�cations (where this is appropriate),

derive implementations of process speci�cations in terms of the available concrete

apparatus in the factory, validate (using formal techniques) an implementation

against its abstract description, and so on. Available languages for describing

processes are unsuitable for various reasons, most having to do with the nature

of the formalization of such processes being used in the project.

The method used in the project for describing industrial processes (the method)

is based on the ideas presented in [12]. This method sees the world as being mod-

eled in terms of two (and only two) kinds of entities: products and processes. A

product is a description of an entity in the real world (a referent) in terms of

measurable attributes. (Here, we use measure and measurable in the traditional

sense of science and engineering. See [3][12][18].) A product instance is charac-

terized by the values (measures) associated with its attributes (and, implicitly,

by the theory of the product, i.e., the de�ned relationships between the potential

measured values of its attributes). Hence, such a product instance may be seen



as a model, in the sense of logic, of the product. We may see products as being

characterized by data types in �rst order logic, for example.

The distinguishing characteristic of products is that they exist `indepen-

dently' at an instant in time, where time is used here in its normal scienti�c

sense. (Independence here means that a product is de�ned without recourse

to any other referent or only in terms of other (sub)products. Products of the

former kind are called atomic products.) In fact, all products have a time at-

tribute whose value in a product instance indicates the time instant at which the

values of the attributes were (co)determined, presumably by some appropriate

measurement procedures. On the other hand, processes are distinguished enti-

ties which do not exist at a time instant, but which have time duration. Further,

processes are not independently de�nable, but are de�ned in terms of their input

and output products.

Processes also model entities of the real world and again are de�ned in terms

of attributes. The method imposes a very restrictive notion of process, namely

one in which all processes have a single input and a single output. (The rea-

sons for this restriction need not detain us here, except to say that they are

methodologically very well motivated. The restriction clearly will have a pro-

found inuence on the nature of the language we de�ne below.) Distinguished

attributes of a process include the transfer function(s) `computed' by the pro-

cess (i.e., how the input product is transformed into the output product), upper

and lower bounds on the time taken for the process to execute, a ag indicat-

ing whether the process is `enabled', and so on. The transfer function may be

described in terms of an underlying state machine used to organize phases of

the process being de�ned and to `sense' important external state information re-

quired to control the execution of the process. Like products, processes may be

de�ned in terms of `sub-processes' and we now turn to this language of processes.

We can see an analogy between inputs/outputs and products and between

programs and processes. Both programs and processes are intended to model

entities that de�ne families of executions on the machine used to execute the

program/process. This is exactly how we want to understand processes, i.e., as

de�ning a class of potential executions over some (abstract) machine. We do not

envisage a single abstract machine which will underpin all potential processes.

Rather, we assume that our abstract machine is provided by an object, in the

sense of object oriented programming.

1.2 The Results

In [1], the logic P=PML was de�ned by extending �rst order dynamic logic with a

parallel combinator and the ability to express real time constraints. The seman-

tics of dynamic logic uses a notion of transition system that is used to represent

the underlying abstract machine capable of executing the atomic processes. The

logic was extended with variables over processes so that we can specify abstractly

the processes we are interested in building. There is a notion of re�nement associ-

ated with such speci�cations, allowing us to demonstrate that a process satis�es

its speci�cation.

In this paper we demonstrate, using techniques developed in [8][9], how to

algebraize this logic and thus obtain an equational proof system for our pro-

cess formalism. In order to algebraize the logic we will use omega closure fork



algebras (!CFA). These algebras are extensions of relation algebras [17] with

three new operators, a pairing operator called fork [7][6], a choice operator [15]

and the Kleene star. A consequence preserving function mapping formulas of

the logic to equations in the language of !CFA will be de�ned. The use of the

mapping enables the use of equational inference tools in the process of systems

construction. Even though having the possibility of using an equational calculus

is interesting by itself, this calculus has the particularity of being complete with

respect to a very insightful and clean semantics based on binary relations. The

last is guaranteed by the proof of a representation theorem for the class !CFA.

In order to simplify the reading of the paper, the logic and the classes of

algebras (already presented in [1]) are presented here once more. The reader in-

terested in more comprehensive motivations and examples is strongly encouraged

to read the paper [1].

The paper is organized as follows: in Section 2 we will present a �rst order

formalization of objects. In Section 3 will be presented the logic we propose

for specifying and reasoning about the properties of processes. In Section 4 we

introduce the class of omega closure fork algebras and prove the representation

theorem. In Section 5 we present the algebraization and prove the interpretability

theorem. Finally, in Section 6 we present our conclusions about this work.

2 Objects

The �rst problem we confront when trying to formalize the previous concepts

is that of characterizing the `abstract machine' over which our processes will be

de�ned. These processes are meant to use the underlying capabilities of the or-

ganization, as represented by the behaviors displayed by individual components

within the organization. (Such individual components may be people, groups,

manufacturing machines, etc.) These behaviors are organized (at least in some

abstract sense) into a joint behavior which IS our `abstract machine'. We will

assume as given some object (which may be very complex and built as a system

from less complex components [4][5]), which represents the potential behaviors of

the organization as an abstract machine. The de�nitions below give a somewhat

non standard account of objects in terms of the underlying transition system

de�ning the object's allowed behaviors. However, the standard parts of such

descriptions (i.e., methods, state variables, etc) are easily distinguishable.

De�nition 1. An object signature is a pair hA;� i in which � = hS; F; P i is

a many-sorted �rst-order signature with set of sorts S, set of function symbols

F and set of predicate symbols P . Among the sorts, we will single out one sort

called the time sort, denoted by T . A is a set of action symbols. To each a 2 A is

associated a pair hs

1

; s

2

i 2 (S

�

)

2

called its arity. We will denote the input arity

of a by ia(a) and the output arity of a by oa(a).

De�nition 2. Given an object signature S = hA; hS; F; P i i, an object struc-

ture for S is a structure A = hS;A;F;P i in which S is an S-indexed family

of nonempty sets, where the set T is the T -th element in S. In general, the

set corresponding to sort s will be denoted by s. A is an A-indexed family

of binary relations satisfying the typing constraints of symbols from A, i.e., if

ia(a) = s

1

: : : s

m

2 S

�

and oa(a) = s

0

1

: : : s

0

n

2 S

�

, then a

A

(as we will denote



the a-th element from A) is contained in (s

1

� � � � � s

m

) � (s

0

1

� � � � � s

0

n

). To

each f : s

1

: : : s

k

! s in F is associated a function f

A

: s

1

� � � � � s

k

! s 2 F.

To each p of arity s

1

: : : s

k

in P is associated a relation p

A

� s

1

� � � � � s

k

2 P.

Regarding the domain T associated to the time sort T , we will not deepen on

the di�erent possibilities for modeling time, but will rather choose some adequate

(with respect to the application we have in mind) representation, as for instance

the �elds of rational or real numbers, extended with a maximum element1. We

will distinguish some constants, as 0, �, etc.

3 The Logic, the Relational Variables and the Time

In this section we will present the Product/Process Modeling Logic (P=PML). In

order to achieve this goal we will extend a standard notation for specifying and

reasoning about programs, namely dynamic logic.

An important aspect of P=PML is the real{time aspect. We adapt a real{

time logic developed in [2] which presents an extension of the logic presented

in [4]. Each basic action is supplemented with a speci�cation of lower and up-

per time bounds for occurrences of that action. These bounds may have various

interpretations, amongst which we have the following: the lower bound is inter-

preted as the minimum time that must pass before which the action's e�ects are

committed to happen and the upper bound gives a maximum time by which the

action's e�ects are committed to happen. Speci�cations of processes will also

have associated lower and upper bounds, and re�nements will be expected to

provably meet these bounds.

Consider the formula '(x) := [xAx]�(x) where A is an action term (a bi-

nary or n-ary relation) and the notation [xAx]� means that \all executions of

action A establish the property �". According to our previous discussion about

processes and products, we read ' as stating that � is a truth of the system

A, then proving the truth of ' can be seen as the veri�cation of the property

� in the system described by A. Opposed to the previous view, is the notion

of an implicit speci�cation of a system, in which A is not a ground term, but

rather may contain some relational variables that represent subsystems not yet

fully determined. In what follows we will denote by RelVar the set of relational

variables fR;S; T; : : :g.

De�nition 3. Given an object signature S = hA; hS; F; P i i, the sets of rela-

tional terms and formulas on S are the smallest sets RT (S) and For(S) such

that

1. a 2 RT (S) for all a 2 A [ RelVar [ f 1

,

t

: t 2 S

�

g.

2. If r 2 RT (S) and ia(r) = oa(r), then r

�

2 RT (S). We de�ne ia(r

�

) =

oa(r

�

) = ia(r).

3. If r; s 2 RT (S), ia(r) = ia(s) and oa(r) = oa(s), then r+s 2 RT (S)

and r �s 2 RT (S). We de�ne ia(r+s) = ia(r �s) = ia(r) and oa(r+s) =

oa(r �s) = oa(r).

4. If r; s 2 RT (S) and oa(r) = ia(s), then r ;s 2 RT (S). We de�ne ia(r ;s) =

ia(r) and oa(r ;s) = oa(s).



5. If � 2 For(S) is quanti�er free and has free variables x

1

; : : : ; x

n

with x

i

of

sort s

i

, then �? 2 RT (S) and ia(�?) = oa(�?) = s

1

: : : s

n

.

6. The set of �rst-order atomic formulas on the signature � is contained in

For(S).

7. If �; � 2 For(S), then :� 2 For(S) and � _ � 2 For(S)..

8. If � 2 For(S) and x is an individual variable of sort s, then (9x : s)� 2

For(S).

9. If � 2 For(S), t 2 RT (S) with ia(t) = s

1

: : : s

m

and oa(t) = s

0

1

: : : s

0

n

,

!

x

= x

1

; : : : ; x

m

with x

i

of sort s

i

,

!

y

= y

1

; : : : ; y

n

with y

i

of sort s

0

i

and l, u

are variables of sort T , then

D

!

x

l

t

u

!

y

E

� 2 For(S).

De�nition 4. Let R 2 RT (S) with ia(R) = s

1

: : : s

m

and oa(R) = s

0

1

: : : s

0

n

,

!

x

= x

1

; : : : ; x

m

with x

i

of sort s

i

,

!

y

= y

1

; : : : ; y

n

with y

i

of sort s

0

i

, and l, u

variables of sort T . An expression of the form

!

x

l

R

u

!

y

is called a timed action

term.

We will assume that a lower and an upper bound are assigned to atomic

actions, namely l

a

2 T and u

a

2 T for each action a 2 A. From the bounds of

the atomic actions it is possible to de�ne bounds for complex actions in a quite

natural way.

De�nition 5. Let S be an object signature. The functions l and u from RT (S)[

For(S) to T are de�ned as follows

1

:

1. If a 2 A, then l(a) = l

a

and u(a) = u

a

.

2. If R = X 2 RelVar , then l(X) = 0 and u(X) =1.

3. If R = 1

,

t

, with t 2 S

�

, then l(R) = 0 and u(R) = � (� being a constant of

sort T ).

4. If R = S

�

, then l(R) = 0 and u(R) =1.

5. If R = S+T , then l(R) = min f l(S); l(T ) g and u(R) = max f u(S); u(T ) g.

6. If R = S �T , then l(R) = max f l(S); l(T ) g and u(R) = max f u(S); u(T ) g.

7. If R = S ;T , then l(R) = l(S) and u(R) = u(S) + u(T ).

8. If R = �? with � 2 For(S) quanti�er free and with free variables

!

x

, l(R) =

l(�) and u(R) = u(�).

9. If � = p(t

1

; : : : ; t

k

), then l(�) = l

p

2 T and u(�) = u

p

2 T, with l

p

� u

p

.

10. If � = :�, then l(�) = l(�) and u(�) = u(�).

11. If � = �op with op 2 f_;^;!g, then l(�) = min f l(�); l() g and u(�) =

max f u(�); u() g.

12. If � =

D

!

x

l

R

u

!

y

E

�, then l(�) = l(R) and u(�) = u(R) + u(�).

Given a set of sorts S = f s

1

; : : : ; s

k

g and domains S = f s

1

; : : : ; s

k

g for

these sorts, by a valuation of the individual variables of sort s

i

we refer to a

function � : IndVar

s

i

! s

i

. A valuation of the relational variables is a function

� : RelVar ! P (S

�

� S

�

).

1

We will only consider quanti�er-free formulas, since these are the ones used for

building actions of the form �?.



De�nition 6. Given a valuation of the individual variables � and an array of

variables

!

x

= x

1

; : : : ; x

n

, by �(

!

x

) we denote the tuple h�(x

1

); : : : ; �(x

n

)i.

Let A be an object structure and � a valuation of the relational variables.

Given valuations of the individual variables � and �

0

and a timed action term

!

x

l

R

u

!

y

, by �

�

!

x

l

R

u

!

y

�

�

0

we denote the fact that:

D

�(

!

x

); �

0

(

!

y

)

E

2 R

A

�

(the denotation of the relational term R, formally de�ned in Def. 7), for every

variable z not occurring in

!

y

, �

0

(z) = �(z), and, �(l) � l(R) and �(u) � u(R).

The semantics of formulas is now de�ned relative to valuations of individ-

ual variables and relational variables. In the following de�nition, the notation

A j=

P=PML

�[�][�], is to be read \The formula � is satis�ed in the object struc-

ture A by the valuations � and �".

De�nition 7. Let us have an object signature S = hA; hS; F; P i i and an object

structure A = hS;A;F;P i. Let � be a valuation of individual variables and �

a valuation of relational variables. Then:

1. If a 2 A then a

A

�

is the element with index a in A.

2. If R 2 RelVar , then R

A

�

= �(R).

3. If R = 1

,

t

with t = s

1

: : : s

k

, R

A

�

= f hha

1

; : : : ; a

k

i ; ha

1

; : : : ; a

k

ii : a

i

2 s

i

g.

4. If R = S

�

, with S 2 RT (S), then R

A

�

is the reexive-transitive closure of

the binary relation S

A

�

.

5. If R = S+T , with S; T 2 RT (S), then R

A

�

= S

A

�

[ T

A

�

.

6. If R = S �T , with S; T 2 RT (S), then R

A

�

= S

A

�

\ T

A

�

.

7. If R = S ;T , with S; T 2 RT (S), then R

A

�

is the composition of the binary

relations S

A

�

and T

A

�

.

8. If R = �? with � 2 For(S) quanti�er free and with free variables

!

x

=

x

1

; : : : ; x

n

, then R

A

�

=

nD

�(

!

x

); �(

!

x

)

E

: A j=

P=PML

�[�][�]

o

.

9. If ' = p(t

1

; : : : ; t

n

) with p 2 P , A j=

P=PML

'[�][�] if




t

1

A

�

; : : : ; t

n

A

�

�

2 p

A

.

10. If ' = :�, then A j=

P=PML

'[�][�] if A 6j=

P=PML

�[�][�].

11. If ' = �_ �, A j=

P=PML

'[�][�] if A j=

P=PML

�[�][�] or A j=

P=PML

�[�][�].

12. If ' = (9x : s)�, then A j=

P=PML

'[�][�] if there exists a 2 s such that

A j=

P=PML

�[�

a

x

][�] (�

a

x

, as usual, denotes the valuation that agrees with �

in all variables but x, and satis�es �

a

x

(x) = a).

13. If ' =

D

!

x

l

R

u

!

y

E

�, then A j=

P=PML

'[�][�] if there exists a valuation �

0

such that �

�

!

x

l

R

u

!

y

�

�

0

and A j=

P=PML

�[�

0

][�].

4 Omega Closure Fork Algebras

Equational reasoning based on substitution of equals for equals is the kind of

manipulation that is performed in many information processing systems. The

role of equational logics in development of formal methods for computer science

applications is increasingly recognized and various tools have been developed

for modeling user's systems and carrying through designs within the equational

framework (Gries and Schneider [11], Gries [10]).



In this section we present the omega calculus for closure fork algebras (!CCFA),

an extension of the calculus of relations (CR) and of the calculus of relations with

fork [6]. Because of the non enumerability of the theory of dynamic logic, an in-

�nitary equational inference rule will be required in !CCFA. From the calculus

we de�ne the class !CFA of the omega closure fork algebras and a representa-

tion theorem is presented, showing that the Kleene star as axiomatized, indeed

characterizes reexive-transitive closure.

In the following paragraphs we will introduce the Omega Calculus for Closure

Fork Algebras (!CCFA).

De�nition 8. Given a set of relation symbols R, the set of !CCFA terms on R is

the smallest set T!CCFA(R) satisfying: R [RelVar [ f 0; 1; 1

,

g � T!CCFA(R).

If x 2 T!CCFA(R),then f �x; x

�

; x

�

g � T!CCFA(R). If x; y 2 T!CCFA(R),then

fx+y; x �y; x ;y; xry g � T!CCFA(R).

The symbol

�

denotes a choice function (see [15, x3]), which is necessary in

order to prove Thm. 2.

De�nition 9. Given a set of relation symbols R, the set of !CCFA formulas on

R is the set of identities t

1

= t

2

, with t

1

; t

2

2 T!CCFA(R).

De�nition 10. Given terms x; y; z; w 2 T!CCFA(R), the identities de�ned by

the following conditions are axioms:

Identities axiomatizing the relational calculus [17],

The following three axioms for the fork operator:

xry = (x ; (1

,

r1)) � (y ; (1r1

,

)) ; (Ax. 1)

(xry) ;(zrw)�= (x ; �z) � (y ; �w) ; (Ax. 2)

(1

,

r1)�r(1r1

,

)�� 1

,

: (Ax. 3)

The following three axioms for the choice operator, taken from [15, p. 324]:

x

�

;1;

�

x

�

� 1

,

; (Ax. 4)

�

x

�

;1;x

�

� 1

,

; (Ax. 5)

1; (x �x

�

) ;1 = 1;x ;1: (Ax. 6)

The following two axioms for the Kleene star:

x

�

= 1

,

+ x ;x

�

; (Ax. 7)

x

�

;y � y + x

�

; (y � x ;y) : (Ax. 8)



Let us denote by 1

,

U

the partial identity Ran

�

1r1

�

. Then, the following

axiom is added

1;1

,

U

;1 = 1; (Ax. 9)

which states the existence of a nonempty set of non splitting elements (that we

will call urelements).

Theorem 1. The following properties are derivable in the calculus !CCFA.

1.

�

is a monotonic operator, i.e., if x � y, then x

�

� y

�

.

2. If x is reexive and transitive, then x

�

= x.

3. If y is reexive and transitive and x � y, then x

�

� y.

The proof of Thm. 1 requires simple equational manipulations.

Notice that from Thm. 1, x

�

is the smallest reexive and transitive rela-

tion that includes x. The rules of inference for the calculus !CCFA are those of

equational logic adding the following inference rule

2

:

` 1

,

� y x

i

� y ` x

i+1

� y

` x

�

� y

De�nition 11. We de�ne the class of the omega closure fork algebras (!CFA)

as the models of the identities provable in !CCFA.

The standard models of the !CCFA are the Proper Closure Fork Algebras

(PCFA for short). In order to de�ne the class PCFA, we will �rst de�ne the class

�PCFA.

De�nition 12. Let E be a binary relation on a set U , and let R be a set of

binary relations. A �PCFA is a two sorted structure with domains R and U

hR;U;[;\;

{

; ;; E; ;; Id;�; r ;

�

;

�

; ? i such that

1.

S

R � E,

2. ? : U � U ! U is an injective function when its domain is restricted to the

set E,

3. If we denote by Id the identity relation on the set U , then ;, E and Id belong

to R,

4. R is closed under set choice operator de�ned by the condition:

x

�

� x and jx

�

j = 1 () x 6= ;:

5. R is closed under set union ([), intersection (\), complement relative to

E (

{

), composition of binary relations (;), converse (�), reexive-transitive

closure (

�

) and fork, the last being de�ned by the formula

SrT = f hx; ?(y; z)i : xSy and xT z g :

Note that x

�

denotes an arbitrary pair in x. That is why x

�

is called a choice

operator. We will call the set U in Def. 12 the �eld of the algebra, and will denote

the �eld of an algebra A by U

A

. We will also denote the set of urelements of A

by Urel

A

.

2

Given i > 0, by x

i

we denote the relation inductively de�ned as follows: x

1

= x, and

x

i+1

= x;x

i

.



De�nition 13. We de�ne the class PCFA asRd�PCFA whereRd takes reducts

to structures of the form hR;[;\;

{

; ;; E; ; ; Id;�; r ;

�

;

�

i.

Notice that given A 2 PCFA, the terms (1

,

r1)� and (1r1

,

)� denote respec-

tively the binary relations f ha ? b; ai : a; b 2 A g and f ha ? b; bi : a; b 2 A g. Thus,

they behave as projections with respect to the injection ?. We will denote these

terms by � and �, respectively.

From the operator fork we de�ne x
y = (� ;x) r (� ;y). The operator 


(cross), when interpreted in an proper closure fork algebra behaves as a parallel

product: x
y = f ha ? b; c ? di : ha; ci 2 x ^ hb; di 2 y g.

A relation R is constant if it satis�es:

�

R ;R � 1

,

, 1;R = R, and R ;1 = 1.

Constant relations are alike constant functions, i.e., they relate every element

from the domain to a single object

3

. We will denote the constant whose image

is the value a by C

a

.

De�nition 14. We denote by FullPCFA the subclass of PCFA in which the re-

lation E equals U � U for some set U and R is the set of all binary relations

contained in E.

Similarly to the relation algebraic case, where every proper relation algebra

(PRA) A belongs to

4

ISPFullPRA, it is easy to show that every PCFA belongs

to ISPFullPCFA. We �nally present the representation theorem for !CFA.

Theorem 2. Given A 2 !CFA, there exists B 2 PCFA such that A is isomor-

phic to B.

Proof. Let us consider the fork algebra reduct A

0

of the algebra A. By the

representation theorem for fork algebras [7] there exists a proper fork algebra

C

0

such that A

0

is isomorphic to C

0

(we will denote by r the fork operation

in C

0

). Let h : A

0

! C

0

be an isomorphism. Let us consider the structure

C = hC

0

;

�

;

�

i, where

�

and

�

are de�ned by the conditions:

x

�

= h

�

�

h

�1

(x)

�

�

�

and x

�

= h

�

�

h

�1

(x)

�

�

�

for each x 2 C

0

:

It is easy to check that h : A ! C is an !CFA isomorphism. It is also easy

to check using the in�nitary rule that for x 2 A, x

�

= lub

�

x

i

: i 2 !

	

. Thus,

using the isomorphism h, we can prove that for each x 2 C,

x

�

= lub

�

x

i

: i 2 !

	

: (1)

Notice that it is not necessarily the case that for x 2 C, x

�

equals the

reexive-transitive closure of x, since in�nite sums may not correspond to the

in�nite union of the binary relations

5

.

3

This comment is in general a little strong and applies to simple algebras, but is

nevertheless useful as an intuitive aid for the non specialist.

4

By I, S and P we denote the closure of an algebraic class under isomorphic copies,

subalgebras and direct products, respectively.

5

Examples of proper relation algebras in which lubA does not agree with

S

A (for

some set A) are given in [13][14] and elsewhere.



Let D be C RA reduct. Since D is point-dense (see [15][16] for details on

point-density), by [15, Thm. 8] D has a complete representation D

0

. Let g :

D! D

0

be an isomorphism satisfying g

�

P

i2I

x

i

�

=

S

i2I

g (x

i

).

Let B = hD

0

;r ;

�

;

�

i, where r ,

�

and

�

are de�ned as follows:

xry = g

�

g

�1

(x)rg

�1

(y)

�

;

x

�

= g

�

�

g

�1

(x)

�

�

�

;

x

�

= g

�

�

g

�1

(x)

�

�

�

:

Then, g : C ! B is also an isomorphism. That r as de�ned is a fork

operation on B follows from the fact the relations g(�) and g(�) are a pair of

quasi-projections [15][19] in B. Since

�

satis�es Ax. 4{Ax. 6, it is easy to prove

that it is a choice operator. Finally, let us check that x

�

is the reexive-transitive

closure of x, for each x 2 B.

x

�

= g

�

�

g

�1

(x)

�

�

�

(by Def. x

�

)

= g

0

@

X

i�0

�

g

�1

(x)

�

i

1

A

(by (1))

=

[

i�0

g

�

�

g

�1

(x)

�

i

�

(g complete representation)

=

[

i�0

�

g

�

g

�1

(x)

��

i

(g homomorphism)

=

[

i�0

x

i

: (g one-to-one)

The last union computes the reexive-transitive closure of the relation x, as

was to be proved.

Finally, the mapping f : A! B, f(x) = g(h(x)), is an isomorphism between

the !CFA A and the PCFA B.

5 Interpretability of P=PML in !CCFA

In this section we will show how theories on P=PML can be interpreted as equa-

tional theories in !CCFA. This is very useful because allows to reason equation-

ally in a logic with variables over two di�erent sorts (individuals and relations).

De�nition 15. Let S, F and P be sets consisting of sort, function and relation

symbols, respectively. By !CCFA

+

(S;A; F; P ) we denote the extension of !CCFA

obtained by adding the following equations as axioms.

1. For each s; s

0

2 S (s 6= s

0

), the equations 1

,

s

+1

,

U

= 1

,

U

and 1

,

s

�1

,

s

0

= 0

(elements from types do not split, and di�erent types are disjoint).

2. For each a 2 A with ia(a) = s

1

: : : s

k

and oa(a) = s

0

1

: : : s

0

n

, the equation

(1

,

s

1


 � � � 
1

,

s

k

) ;a ;

�

1

,

s

0

1


 � � � 
1

,

s

0

n

�

= a.



3. For each f : s

1

: : : s

k

! s 2 F ,

�

f ;f + 1

,

s

= 1

,

s

and (1

,

s

1


 � � � 
1

,

s

k

) ;f = f ,

stating that f is a functional relation of the right sorts.

4. For each p of arity s

1

: : : s

k

in P , the equation (1

,

s

1


 � � � 
1

,

s

k

) ;p ;1 = p,

stating that p is a right-ideal relation expecting inputs of the right sorts.

De�nition 16. A model for the calculus !CCFA

+

(S;A; F; P ) is a structure A =


 


A; S

A

; A

A

; F

A

; P

A

�

;m

�

where: A 2 !CFA. S

A

is a set of disjoint partial

identities, one for each sort symbol in S. A

A

is a set of binary relations, one for

each action symbol a 2 A. Besides, if ia(a) = s

1

: : : s

k

and oa(a) = s

0

1

: : : s

0

n

, then

a

A

satis�es the condition in item 2 of Def. 15. F

A

is a set of functional relations,

one for each function symbol in F . Besides, if f : s

1

: : : s

k

! s, then f

A

satis�es

the conditions in item 3 of Def. 15. P

A

is a set of right ideal relations, one for

each predicate symbol p 2 P . Besides, if p has arity s

1

: : : s

k

, then p

A

satis�es

the conditions in item 4 of Def. 15. m : RelVar ! A.

Notice that the mapping m in a !CCFA

+

(S;A; F; P ) model extends homo-

morphically to arbitrary relational terms. For the sake of simplicity, we will use

the same name for both.

In the following paragraphs we will de�ne a function mapping formulas from

P=PML(S;A; F; P ) to !CCFA

+

(S;A; F; P ) formulas. In the next de�nitions, � is

a sequence of numbers increasingly ordered. Intuitively, the sequence � contains

indices of those individual variables that appear free in the formula (or term)

being translated. By Ord(n; �) we will denote the position of the index n in the

sequence �, by [��n] we denote the extension of the sequence � with the index

n, and by �(k) we denote the element in the k-th position of �. In what follows,

t

;n

is an abbreviation for t ; � � � ;t (n times). For the sake of completeness, t

;0

is

de�ned as 1

,

. We will denote by IndTerm(F ) the set of terms from P=PML built

from the set of constant and function symbols F . By RelDes(K) we denote the

set of terms from !CCFA that are built from the set of relation constants K.

De�nition 17. The function �

�

: IndTerm(F )! RelDes(F ), mapping individ-

ual terms into relation designations, is de�ned inductively by the conditions:

1. �

�

(v

i

) =

�

�

;Ord(i;�)�1

;� if i is not the last index in �;

�

;Length(�)�1

if i is the last index in �:

2. �

�

(f(t

1

; : : : ; t

m

)) = (�

�

(t

1

)r � � � r�

�

(t

m

));f for each f 2 F .

Given a sequence � such that Length(�) = l and an index n (n < !) such

that v

n

has sort s, we de�ne the term �

�;n

(n < !) by the condition

6

�

�;n

=

8

<

:

�

�

(v

�(1)

)r � � � r�

�

(v

�(k�1)

)r1

s

r�

�

(v

�(k+1)

)r � � � r�

�

(v

�(l)

)

if k = Ord(n; [� � n]) < l;

�

�

(v

�(1)

)r � � � r�

�

(v

�(l�1)

)r1

s

if Ord(n; [� � n]) = l:

Notation 1 Let � be a sequence of indices of individual variables of length

n. Let

!

x

= hx

1

; : : : ; x

k

i be a vector of variables whose indices occur in �. We

will denote by �

�;

!

x

the relation that given a tuple of values for the vari-

ables whose indices appear in �, projects the values corresponding to the vari-

ables appearing in

!

x

. For example, given � = h2; 5; 7; 9i and

!

x

= hv

2

; v

7

i,

6

By 1

s

we denote the relation 1;1

,

s

.



�

�;

!

x

= f ha

1

? a

2

? a

3

? a

4

; a

1

? a

3

i : a

1

; a

2

; a

3

; a

4

2 A g. Similarly, Arrange

�;

!

x

denotes the relation that, given two tuples of values (one for the variables with

indices in � and the other for the variables in

!

x

), produces a new tuple of values

for the variables with indices in � updating the old values with the values in

the second tuple. For the previously de�ned � and

!

x

, we have Arrange

�;

!

x

=

f h(a

1

? a

2

? a

3

? a

4

) ? (b

1

? b

2

) ; b

1

? a

2

? b

2

? a

4

i : a

1

; a

2

; a

3

; a

4

; b

1

; b

2

2 A g. Note

that these two relations can be easily de�ned using the projections � and �

previously de�ned.

De�nition 18. The mappings M : RT (S) ! RelDes(A) and T

�

: For(S) !

RelDes(A [ F [ P ) are mutually de�ned by

M(a) = a for each a 2 A [ RelVar ; M(1

,

s

1

:::s

k

) = 1

,

s

1


 � � � 
1

,

s

k

;

M(R

�

) =M(R)

�

; M(R+S) =M(R)+M(S);

M(R �S) =M(R) �M(S); M(R ;S) =M(R);M(S);

M(�?) = T

�

�

(�) �1

,

;

T

�

(p(t

1

; : : : ; t

k

)) = (�

�

(t

1

)r � � � r�

�

(t

k

)) ;p; T

�

(:�) = T

�

(�);

T

�

((9v

n

: s)�) = �

�;n

;T

[��n]

(�); T

�

(� _ �) = T

�

(�)+T

�

(�);

T

�

�D

!

x

l

R

u

!

y

E

�

�

=

0

@

1

,

r

�

�;

!

x

;M(R)

1

A

;Arrange

�;

!

y

;T

�

(�) �

�

(v

l

; �) �C

l(R)

�

;1 �

�

(v

u

; �) �C

u(R)

�

;1.

Notation 2 We will denote by:

{ `

!CCFA

the provability relation in the calculus !CCFA.

{ j=

Full

the validity relation on the class of full !CCFA models.

{ j=

!CCFA

the validity relation on the class of !CCFA models.

Notation 3 Given an object structure A = hS;A;F;P i, a valuation of the

individual variables �, A 2 PCFA such that Urel

A

�

S

S, and a sequence of

indices �, by s

�;�

we denote the element a

1

? � � � ? a

i

? � � � ? a

n

2 U

A

such that:

1. n = Length(�),

2. a

i

= �(v

�(i)

) for all i, 1 � i � n.

In case � = hi, s

�;�

denotes an arbitrary element from U

A

. Given a formula or

term �, by �

�

we denote the sequence of indices of variables with free occurrences

in �, sorted in increasing order.

Throughout the next theorems we will assume S = hA; hS; F; P i i is a �xed

but arbitrary object signature.

Theorem 3. Let � 2 For(S), let � = �

�

, let A be an object structure for S

and let � be a valuation of the relational variables. Then there exists a model

B =


 


B; S

B

; A

B

; F

B

; P

B

�

;m

0

�

for !CCFA

+

(S;A; F; P ) such that

A j=

P=PML

�[�][�] () s

�;�

2 dom (m

0

(T

�

(�))) :

Proof. Assume A = hS;A;F;P i. Let us de�ne B as follows.

1. Let B be the FullPCFA with set of urelements

S

S,



2. For each sort s 2 S, 1

,

s

= f hx; xi : x 2 s g,

3. a

B

=

�

ha

1

? � � � ? a

m

; b

1

? � � � ? b

n

i : hha

1

; : : : ; a

m

i ; hb

1

; : : : ; b

n

ii 2 a

A

	

, for

each a 2 A,

4. f

B

=

�

ha

1

? � � � ? a

n

; bi : f

A

(a

1

; : : : ; a

n

) = b

	

, for each f 2 F ,

5. p

B

=

�

ha

1

? � � � ? a

n

; bi : p

A

(a

1

; : : : ; a

n

) and b 2 U

B

	

, for each p 2 P ,

6. m

0

(R) =

�

ha

1

? � � � ? a

m

; b

1

? � � � ? b

n

i : hha

1

; : : : ; a

m

i ; hb

1

; : : : ; b

n

ii 2 R

A

�

	

for all R 2 RelVar .

The proof follows by simultaneous induction on the structure of terms from

RT (S) and formulas from For(S).

Corollary 1. Let � 2 For(S) without free variables over individuals, let A be

an object structure for S, and let � be a valuation of the relational variables. Then

there exists a full model B =


 


B; S

B

; A

B

; F

B

; P

B

�

;m

�

for !CCFA

+

(S;A; F; P )

such that

A j=

P=PML

�[�] () m

�

T

hi

(�)

�

= 1:

Notation 4 Given A 2 PCFA, s = a

1

? � � � ? a

k

(a

i

2 Urel

A

for all i, 1 � i � k)

and a sequence � of indices increasingly sorted and of length k, by �

s;�

we

denote the set of valuations of individual variables � satisfying �(v

�(i)

) = a

i

. In

case � = hi, for each s 2 U

A

�

s;�

denotes the set of all valuations. Given an

array of variables

!

x

of length n whose indices occur in �, (a

1

? � � � ? a

k

)

�;

!

x

=

b

1

? � � � ? b

n

where b

i

= a

Ord(j;�)

, with j the index of the individual variables x

i

.

By tuple (a

1

? � � � ? a

k

) we denote the tuple ha

1

; : : : ; a

k

i.

Theorem 4. Let � 2 For(S), � = �

�

and A =


 


A; S

A

; A

A

; F

A

; P

A

�

;m

�

be

a full !CCFA

+

(S;A; F; P ) model. Then there exists an object structure B and a

valuation of relational variables � such that

s 2 dom (m (T

�

(�))) () B j=

P=PML

�[�][�] for all � 2 �

s;�

:

Proof. Since A 2 FullPCFA, for each sort s, let s = f a 2 Urel

A

: a 2 1

,

s

g.

For each a 2 A, de�ne

a

B

= fhha

1

; : : : ; a

m

i ; hb

1

; : : : ; b

n

ii : ha

1

? � � � ? a

m

; b

1

? � � � ? b

n

i 2 m(a)g:

For each f : s

1

: : : s

k

! s 2 F ,

f

B

(a

1

; : : : ; a

k

) = b i� ha

1

? � � � ? a

k

; bi 2 f

A

:

For each p of arity s

1

: : : s

k

in P ,

ha

1

; : : : ; a

k

i 2 p

B

i� a

1

? � � � ? a

k

2 dom

�

p

A

�

:

For each R 2 RelVar with arity hs

1

: : : s

m

; s

0

1

: : : s

0

n

i,

�(R) = fhha

1

; : : : ; a

m

i ; hb

1

; : : : ; b

n

ii : ha

1

? � � � ? a

m

; b

1

? � � � ? b

n

i 2 m(R)g:

The remaining part of the proof follows by induction on the structure of the

formula �.



Corollary 2. Let � 2 For(S) without free variables over individuals and let

A =


 


A; S

A

; A

A

; F

A

; P

A

�

;m

�

be a full !CCFA

+

(S;A; F; P ) model. Then

there exists an object structure B and a valuation of the relational variables �

such that

B j=

P=PML

�[�] () m

�

T

hi

(�)

�

= 1:

Theorem 5. Let � [f' g be a set of P=PML(S;A; F; P ) formulas without vari-

ables over individuals. Then,

� j=

P=PML

' ()

�

T

hi

() = 1 :  2 �

	

j=

Full

T

hi

(') = 1:

Proof. In order to prove the theorem, it su�ces to show that

� 6j=

P=PML

' ()

�

T

hi

() = 1 :  2 �

	

6j=

Full

T

hi

(') = 1: (2)

Formula (2) follows from Cors. 1 and 2.

Theorem 6. Let V be the variety generated by FullPCFA. Then, V = !CFA.

Proof. From Thm. 2 and the fact PCFA = ISPFullPCFA, !CFA = ISPFullPCFA.

The next theorem states the interpretability of theories from P=PML as

equational theories in !CCFA.

Theorem 7. Let � [ f' g be a set of P=PML formulas without free individual

variables. Then, � j=

P=PML

' ()

�

T

hi

() = 1 :  2 �

	

`

!CCFA

T

hi

(') = 1.

Proof. By Thm. 5,

� j=

P=PML

' ()

�

T

hi

() = 1 :  2 �

	

j=

Full

T

hi

(') = 1: (3)

By Thm. 6,

�

T

hi

() = 1 :  2 �

	

j=

Full

T

hi

(') = 1

()

�

T

hi

() = 1 :  2 �

	

j=

!CCFA

T

hi

(') = 1: (4)

By the de�nition of the class !CFA and the de�nition of j=

!CCFA

,

�

T

hi

() = 1 :  2 �

	

j=

!CCFA

T

hi

(') = 1

()

�

T

hi

() = 1 :  2 �

	

`

!CCFA

T

hi

(') = 1: (5)

Finally, by (3), (4) and (5),

� j=

P=PML

' ()

�

T

hi

() = 1 :  2 �

	

`

!CCFA

T

hi

(') = 1:

6 Conclusions

In [1] we presented a logic (P=PML) for formal real{time systems speci�cation

and construction. In this paper we presented the proof of interpretability of

P=PML in an equational calculus (!CCFA), thus enabling the use of equational

inference tools in the process of systems construction. The calculus !CCFA de-

�nes the class of !-closure fork algebras, and the proof of the representability

theorem for !-closure fork algebras hereby presented provides a very insightful

and clean semantics based on binary relations for the calculus.
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