Game-based approach for modeling
dialectical analysis

Preliminary Report

Laura A. Cecchi*

Departamento de Informatica y Estadistica
Facultad de Economia y Administraciéon
UNIVERSIDAD NACIONAL DEL COMAHUE

e-mail:lcecchi@uncoma.edu.ar

Guillermo R. Simari

Grupo de Investigacién en Inteligencia Artificial
Departamento de Ciencias de la Computacién
UNIVERSIDAD NACIONAL DEL SUR
e-mail: grs@criba.edu.ar

KEYWORDS: Defeasible Logic Programming - Game Semantics - Logic Programming

Abstract

The operational semantics of Defeasible Logic Programming (justification process) is

based on a dialectical analysis of arguments and counterarguments.

In [Abramsky, 1997] and [Abramsky(b), 1997], a game semantics is introduced in order
to model a computation as a game between two players: the System and the Environment.

The main idea is to use a game to model the interaction between the participants.

The justification process can be seen as a game where a player proposes an argument
for a goal ¢ and tries to defend it while the other player tries to find counterarguments that
defeat it. Therefore we can model a dialectical system through the interaction between two

players: proponent and opponent.

The purpose of this paper is to introduce a model based on a game structure for the op-
erational semantics of Defeasible Logic Programming. The declarative semantics introduced,
models the justification process when there exists a preference relation between contradictory
arguments such that given two contradictory arguments it always determines which one is

better.

*Supported by a fellowship of the Universidad Nacional del Comahue.

1 Introduction

Logic programs are nowadays widely recognized as a valuable tool for knowledge representation
and commonsense reasoning. In order to increase the applicability of logic programming in many
fields, several extensions of the class of definite programs have been proposed. Normal programs
[Lloyd, 1987] add negation as failure in program clause bodies, basic programs [Gelfond, 1990]
allow strong negation not only in the clause bodies but in the clause heads as well and disjunctive
programs [Minker, 1982] allow disjunction as heads of program clauses.

Defeasible Logic Programming|Garcia, 1998|[Garcia, 1999][Dung, 1995], that allows both no-
tions of negation: default negation and strong negation, adds to basic normal programs a new
set of rules, the defeasible rules. Defeasible rules are added in order to represent tentative in-
formation. Even though the tentative information represented may be contradictory, Defeasible
Logic Programming (henceforth DLP) provides a criterion for deciding between contradictory
goals.

DLP operational semantics is based on a dialectical analysis of arguments and counter-
arguments. Thus, a query g will be successful if there exists an argument A of ¢ that is a
justification,i.e., there is no counterargument that defeats .A. Since defeaters are arguments
there may exit defeaters for the defeaters and so on.

The purpose of this paper is to introduce a model based on a game structure for the op-
erational semantics of a restricted DLP. In [Abramsky, 1997] and [Abramsky(b), 1997], a game
semantics is introduced in order to model a computation as a game between two players: the
System and the Environment. The main idea is to use a game to model the interaction between
the participants.

The justification process can be seen as a game where a player proposes an argument for a
goal g and tries to defend it while the other player tries to find counterarguments that defeat
it. Therefore we can model a dialectical system through the interaction between two players:
proponent and opponent.

The outline of this paper is as follows. In section 2 we briefly review some background
about DLP. Section 3 describes and illustrates game semantics showing how the interaction
between the system and the environment is defined. Section 4 introduces a formal definition of
a game-based semantics for the operational semantics of DLP. Finally in section 5, we give our
conclusions and mention some possible directions for future research.

2 Defeasible Logic Programming

DLP allows to represent not only certain knowledge but tentative knowledge as well. In order to
distinguish both kinds of knowledge, the logic programming language has been extended with a
set of defeasible rules. A defeasible rule Head —< Body is understood as expressing reasons to
believe in the antecedent Body provide reasons to believe in the consequence Head.

Although both notions of negation, default and strong negation, can be represented in DLP,
this work will be circumscribed to a language without default negation. Let’s define the language.

Definition 2.1. Strong and Defeasible Rules|Garcia, 1999]

A Strong Rule is an ordered pair Head <+ Body, whose first member Head is a literal’, and
whose second member Body is a finite set of literals. A strong rule with the head Ly and body
{L1, ..., Ly} can also be written as: Lo« L1, ..., L,. As usual, if the body is empty, then a
strong rule becomes L « true (or simply L) and it is called a fact.

A Defeasible Rule is an ordered pair Head — Body, whose first member Head is a literal,

1A literal L is an atom A or a negated atom ~ A.

and whose second member Body is a finite set of literals. A defeasible rule with head Lg and
body {L1, ..., Ln} can also be written as: Lo—< L1, ..., L,. If the body is empty, we write
Ly —<true and we call it a presumption. u

A defeasible logic program |Garcia, 1999 is a finite set of strong and defeasible rules. If P is
a defeasible logic program, we will distinguish the subset K of strong rules in P, and the subset
A of defeasible rules in P. When required we will denote P as (K,A). A defeasible query is a
defeasible rule with empty consequent denoted —< @1, ..., @y, where each @; (1 <i < n)isa
literal.

Example 2.1. We would like to represent the following sentences. Generally an elephant is
not a gray elephant. Real elephants generally are gray but real elephants whose mother is gray,
usually tend not to be gray . Every real elephant is an elephant. Clyde is an elephant and Trici
is its mother who is gray. The following program encodes the above intended meaning.

K = {e(X)—r(X); r(cdyde); m(trici, clyde); gray(trici)}

A = {~g(X)=<e(X); g(X)—=r(X); ~g(X)—=<r(X),m(Y,X),gray(Y)}

When considering the query —< g(clyde), we find a conflict between the rules of A. u
Briefly?,the operational semantics can be described as follows: when answering a query g,
we must build an argument that supports the query. An argument A for ¢ [Garcia, 1999], that
we will denote (A, q), is a subset of ground instances of defeasible rules of P, such that: (1)
There exists a defeasible derivation for g from KU A, (2) K U A is non-contradictory, and (3) A
is minimal with respect to set inclusion. Once an argument for ¢ has been built, we must find
every argument (A’ h') such that there exists a subargument® (B, h) of (A,q) and K U {h/, h}
is contradictory. Those arguments are called rebuttals or counterarguments. Counterarguments
for the rebuttals found are considered and so on. The complete dialectical analysis can be
described through a dialectical tree. Informally, the dialectical tree’s root is an argument for
the query and all the counterarguments of the parent node are considered in every level of the
tree. A path from the root to a leaf in a dialectical tree is called “an argumentation line”.

A query ¢ will succeed if the supported argument for it is not defeated. Such an argument
will be called a justification for q.

Since contradictory information can be represented in DLP, a way to decide between argu-
ments should be found. Let (A1, q1) and (A, g2) be two arguments. Several ways exists in order
to determine which argument is better. For instance, specification [Simari, 1992], and fixed
priorities [Prakken, 1996]. Some approaches allow incomparable elements, so they consider two
cases:

e (Ay, q) is better than (Ay, qo), then (A1, q1) is a proper defeater of (As, qa).

e (A, q1) and (As, go) are unrelated with respect to a preference order, then (A1, q) is a
blocking defeater of (Asg, q2).

Example 2.2. Let’s consider again example 2.1. Applying the preference approach based on
specification [Garcia, 1998], we can build an argument for the query —< g(clyde):

A = {g(clyde) —< e(clyde) }, g(clyde)).

2The reader interested in a more detailed discuss is advised to read [Garcfa, 1999].
3An argument (B, h) is a subargument of (A4, q) if B C A

Nevertheless, there exists a counterargument
Az = ({~ g(clyde) —= r(clyde)}, ~ g(clyde))
that is a proper defeater. But we can find a defeater to the above rebuttal:

As = ({g(clyde) —< r(clyde), m(clyde, trici), gray(trici) }, g(clyde))

Since this argument has no counterargument then 4, is a justification. u

Our work deals with certain kind of preference relations over the set of argument. Henceforth,

the way we decide between an argument and one of its counterarguments is defined through a
preference relation R, such that:

e For every pair of contradictory arguments A, B:
R(A,B) &*R(B,A)
Thus our discuss has been restricted to proper defeaters.

e If B is a subargument of A and there exists an argument C such that R(C, B) then it will
be the case that R(C,.A). This condition avoids reciprocal defeaters and therefore cycles.

Intuitively, given an argument A and one of its counterarguments B, R(.A, B) means that A
is better than B and therefore A defeats B. In section 4 we formalize the operational semantics
defined through the dialectical analysis described above in a game structure.

3 Game semantics

In [Abramsky, 1997] and [Abramsky(b), 1997], a game semantics is introduced in order to model
computation as a game between two participants. One of the players in the game represents
the System and is referred to as Proponent (P); the other represents the FEnvironment and
is referred to as Opponent (O). Thus, a single “computation” or “run” involving interaction
between Proponent and Opponent is represented by a sequence of moves, made alternately by
P and O.

Before turning to a formal definition of game semantics, we should fix the notation we will
use. Let s and 7 be sequences, a an element and X a set, then

e st denotes the concatenation of sequences s and t.

e sa denotes the sequence obtained by adding the element a to the sequence s in the last
position.

we write |s| for the length of a finite sequence s, and s; for the ith element of s, 1 <i <|s].

e X" is the set of finite sequences over X.

e denotes the empty sequence.

Definition 3.1. [Abramsky, 1997] A game G is a structure (Mg, Ag, Pg), where

e Mg is the set of moves of the game;

4The @ operator stands for “exclusive disjunction”.

[] [
8 ” /\bj)
c2

1

Figure 1: Game tree of the example 3.1

e \¢ : Mg — {P,0O} is a labeling function designating each move as by Proponent or
Opponent,

e P C M gft7 Fg is a non-empty, prefix-closed subset of M, gft7 the set of alternating sequences
of moves in M. More formally, Mgft is the set of all s € M} such that

Vi: 1<i<]|s, even(i) then A\g(s;) = P
A odd(i) then Ag(s;) = O

P represents the game tree.

| |
Example 3.1. Let’s consider the following game:
G = ({a17a27b17b27b3701702}7
{A(al) =P, A(QQ) =P, A(bl) - 07 A(bQ) - 07 A(b?)) - 07 A(Cl) =P, A(CQ) - P}7
{€,a1,az,a1b1, azbz, azbz, arbicy, asbaca}
| |

(i represents the tree in figure 1.

Games classify behaviors, thus Programs will be modeled by strategies,i.e., rules specifying
how the System should actually play. Formally, [Abramsky, 1997] we define a strategy ¢ on a
game G to be non-empty prefix-closed subset, o C PE’" 5 satisfying:

sab, sac €0 = b=c

We can regard a sequence sab € o as saying: “when given the stimulus a in the context
s, respond with b”. Note that for every stimulus a strategy defines a unique response, therefore
a strategy is deterministic. Abramsky classifies strategies as winning if every possible move of
the opponent has some response. Thus the system must always be prepared to respond to any
stimulus from the environment.

The next section defines the formalization of game semantics to capture a declarative se-
mantics for a restricted set of defeasible logic programs.

4 DLP game semantics

Games have an analogy with argument-based reasoning. A dialectical tree can be seen as a game
where in an alternating way, the player P proposes an argument for a literal and the player O
tries to defeat it. A game for a literal h will be denoted Gy,.

®0 C PZ*™ means: € € ¢ and if sab € o then s € 0.

Thus, informally, if P wins a game G, whose first move is an argument for a literal h in a
defeasible program DP, then h will belong to DP’s semantics. In order to capture this game-
based semantics, we define the set of moves Mg as a set of arguments. In particular, Mg, will
be a subset of the set Arg4p), where (A, h) is an argument of h:

Arglay = (AR} U {(A~h)} ‘

Argiany = {(A)] there exists I —<1y,..In € A" where (A", h') € Arg@’lm} U
{({A, ~)| there exists | —<1,...I, € A" where (A", 1) € Arg@’lm} U

Argiany = Ui Argian

Argia,p contains all possible attack points (argument and counterargument) for the argu-

ment (A, h) of h.

Definition 4.1. Let DP = (K,A) be a defeasible logic program, h a literal and (A, h)
an argument for h. A game for h with respect to DP, that we denote G is a structure
(MGh7 >\Gh7 PGh)7 where

o Mg, C Argian;
L4 >\Gh : MGh _>{P7O} 7

o Pq, C]\4%157 Pg, is a non-empty, prefix-closed subset of]\4%1}‘:7 the set of alternating
sequences of moves in Mg, . Formally, Mgl;: is the set of all s € M¢, such that
Vi: 1<i<]|s, even(i) then A\g(s;) = O
A odd(i) then Ag(s;) = P

Every sequence s of Pg, satisfies:
(3s" s = (A h)s)V (s =€)

where a = (A, h).
|

Note that unlike the original game definition, the first move in a game G}, is always done
by the proponent. Furthermore, we require that every game begins with an argument for the
literal h.

Every move is required to capture supporting or interfering arguments of the initial argument,
depending on the player. For this reason we are only interested on move sequences of certain
kind: those which capture a dialectical tree. Before defining a legal sequence in a game let’s
introduce some notation. We denote the projection of the first element of s; as sg‘\ and we will
denote the projection of the second element of s; as slf-‘.

Definition 4.2. Let (K, A) be a defeasible program where a preference relation holding the
conditions discussed in section 2 is defined. A sequence s is legal in a game if it satisfies the
following conditions:

e Players alternate: i.e., if s = symnsy then Ag(m) # Ag(n)

e Avoiding inconsistency between moves of the same player: 1 <i <|s]

ku | sl Aku | st EL

even(i) odd(i)

e Every move is a counterargument of the precedent move: Vi 1 <i < (|s| — 1)

Ku Sstgil =L
||

By the way we have restricted the preference relation that should be used in order to decide
between contradictory information, it is not possible to find reciprocal defeaters and therefore
cycles® in sequences are avoid.

As we would like to use game semantics to model DLP without default negation, we should
find a condition to determine whether a game models a justification or not.

Definition 4.3. A game G}, is legal if and only if:
e cvery sequence in Pg, 1s legal and

e all counterarguments are played: if s'(Ay, hy) € Pg,, s’ possibly empty, then there exists
a sequence s € Pg, such that s = §'(Aj, h1)(Ag, h) for every counterargument (Asz, h2)

of <./417 h1>
|

Definition 4.4. Let a be the first move of the proponent in the game. A sequence s is
complete if either s = a or if s = as1b then there is no move ¢ € Mg such that asibc € Pg. A
sequence s’ is total if every move of the opponent has a response from the proponent. Briefly, a
sequence s’ is total if |s'[is odd. u

A complete sequence means an argumentation line, i.e., a path from the first move to a move
that allows us to reach a leaf. A total sequence s’ captures the fact that s’ ends with a proponent
move.

Definition 4.5. We define a strategy ¢ on a game G to be a non-empty prefix-closed set of
total sequences of Pg.i.e., s € o if s is odd-length. u

Definition 4.6. Let G}, be a legal game for a literal h in a defeasible logic program DP
where a preference relation holding the conditions discussed in section 2 is defined. If the set of
complete legal sequences in P, is a strategy then h belongs to the game semantics. u

The above definition introduces a declarative way of analyzing a dialectical tree. By requiring
that every argumentation line ends with a proponent move, we are able to capture a line won
by the proponent. Let’s illustrate these definitions.

Example 4.1. Let (K, A) be the defeasible program introduced in 2.1. We define the game
G, = (Mg, A\a,, Pa,) for g(clyde), where

o MGg - {A17A27A3};
® \g, (A1) =P, \g,(A2) = O, \g,(A3) = P ;
o Pg, ={e, A1, A1Ag, A1 A2 A3}

The unique complete sequence is A;. 4243 and is a strategy, therefore g(clyde) belongs to the
game-based semantics. u

3 3 bt i b
SA sequence s contains a cycle if s = s's"'s”'s”s™.

5 Conclusion and Future Work

A game-based semantics for modeling a dialectical analysis has been introduced and formalized.
Games have an analogy with argument-based reasoning. A dialectical tree can be seen as a game
where in an alternating way, the player P proposes an argument for a literal and the player O
tries to defeat it.

Thus if P wins a game () whose first move is an argument for a literal A in a defeasible
program DP, then h belongs to DP’s semantics. Although the scope of this formalization
is circumscribed to preference relations where only proper defeaters are considered, we belive
that this approach is a fitting one to capture the operational semantics, even when considering
incomparable contradictory arguments.

DLP has been extended with default negation. A possible future work would be to decide
whether it is possible to capture the operational semantics for the “not” operator.

References

[Abramsky, 1997] Abramsky, S. (1997). Semantics of Interaction. In A.Pitts and Dibyer, P.,
editors, Semantics and Logic Computation. Cambridge.

[Abramsky(b), 1997] Abramsky, S. and McCusker, G. (1997). Game Semantics. In Proceedings
of Marktoberdorf’97 - Summer School.

[Dung, 1995] Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning annd logic programming and n-person games. Artificial Intelligence,
77:321-357.

[Garcia, 1999] Garcia, A. and Simari, G. R. (1999). Strong and Default Negation in Defeasible
Logic Programming. In 4th Dutch/German Workshop on Nonmonotonic Reasoning Tech-
niques and their applications, Amsterdam.

[Garcia, 1998] Garcia, A., Simari, G. R., and Chesnievar, C. (1998). An Argumentative Frame-
work for Reasoning with Inconsistent and Incomplete Information. In FCATI 98, Proceedings
de Workshop on Practical Reasoning and Rationality, 13th. Furopean Conference on Artificial
Intelligence, Brighton, England.

[Gelfond, 1990] Gelfond, M. and Lifschitz, V. (1990). Logic programs with classical negation.
In Warren, D. and Szeredi, P., editors, Logic Programming: Proceedings of the Seventh Inter-
national Conference, pages 579-H97.

[Lloyd, 1987] Lloyd, J. W. (1987). Foundations of Logic Programming. Springer-Verlag, New
York, second edition.

[Minker, 1982] Minker, J. (1982). On Indefinite Data Base and the Closed World Assumption.
In Loveland, D., editor, Proc. 6th Conf. on Automated Deduction (CADE’82), pages 292-308,
LNCS 138, New York. Springer.

[Prakken, 1996] Prakken, H. and Sartor, G. (1996). A dialectical model of assessing conflicting
arguments in legal reasoning. Artificial Intelligence and Law, 4:331-368.

[Simari, 1992] Simari, G. R. and Loui, R. (1992). A mathematical treatment of defeasible
reasoning and its implementation. Artificial Intelligence, pages 125-157.

