Visualization of 3-dimensional bargaining problems

Laura Sánchez\(^{(1)}\), Silvia Castro\(^{(2)}\), Luis Quintas\(^{(3)}\)

\(^{(1)}\)Dpto. Informática y Estadística, UNC, Neuquén, Argentina
lsanchez@uncoma.edu.ar

\(^{(2)}\)Dpto. Cs.de la Computación, UNS, Bahía Blanca, Argentina
uscastro@criba.edu.ar

\(^{(3)}\)Dpto.Matemática, UNSL, San Luis, Argentina
lquintas@unsl.edu.ar

Abstract

This paper presents a visualization in three dimensions of the classical solutions of the bargaining problem for 3 agents. It provides a helpful tool for game theorists, economists and other researchers and professionals in these areas in order to visualize and compare the solutions over a wide family of bargaining problems and gain intuition about general results.

The theory of bargaining, a branch of the Cooperative Game Theory, tries to find reasonable solutions when two or more agents have to decide over a wide variety of possible agreements among a family of conflictive situations.

There are a lot of parameters entering in the description of the problem and also a large number of appealing solutions that have been defined in the literature. In order to compare and analyze the behavior of different solutions for the different situations, it is very important to have a visualization tool.
1 Introduction

The theory of bargaining, a branch of the Cooperative Game Theory, tries to find reasonable solutions when two or more agents have to decide over a wide variety of possible agreements among a family of conflictive situations. The basis of Bargaining Theory can be found in the paper by Nash ([Nash 50]). He developed a formal model of the following situation: Two agents having a feasible set of alternatives can agree on a particular one. In this case, this one will be the solution to the bargaining problem; otherwise, they end up at a prespecified feasible alternative representing the disagreement (disagreement point). Nash developed a theory attempting to predict how the agents should establish a compromise of their preferences over a family of conflictive situations. He analyzed a restricted natural class of bargaining problems and formulated axioms which solutions should satisfy. He also established the existence of a unique solution that satisfies all the axioms. In this way, Nash established the bases of the axiomatic theory of bargaining. His solution was regarded as the solution until the seventies, when other solutions were introduced. Since then there has been many activities in this field and numerous solutions have been proposed in the literature. There are a lot of parameters entering in the description of the problem and it is not easy to compare and analyze the behavior of different solutions for the different situations without an automatic tool.

First we give the theoretical background for the bargaining theory. Then we describe briefly the work made on bargaining problem visualization until now. After that, we detail the motivation for our work and give an overview of the implementation of the visualization. Finally, we give the conclusions and some directions on future work.

2 Theoretical Background

2.1 Domains

We consider now the fundamental points on the theoretical formulation of the bargaining problem. An n-agent Bargaining Problem, is a pair (S,d) where S is a subset of the n-dimensional Euclidean space (\mathbb{R}^n) and d is a point of S. Let \sum_d^n be the class of problems such that

- S is convex, bounded and closed (contains its boundary)
- $d \in S$ being d a strictly dominant point
- It exist $p \in S$ with $p > d$ (1)

The existence of at least one $p \in S$ with $p > d$ is postulated to avoid the somewhat degenerate case when only some of the agents stand to gain from the
agreement. Given $p, p' \in \mathbb{R}^n$, $p \geq p'$ means $p_i \geq p_i'$ for all i and $p \neq p'$; the relation $p > p'$ means $p_i > p_i'$ for all i.

S is the feasible set, i.e., each point $p \in S$ is a feasible alternative and the coordinates of p give the utility profits (measured in von Neumann–Morgenstern utilities) for each one of the n agents. d is the disagreement point. Additionally, we said that a pair $(S, d) \in \sum^n_d$ is d–comprehensive if $p \in S$ and $p \geq q \geq d$ implies that $q \in S$.

We usually work with a normalized domain where the disagreement point is the origin of coordinates and some additional restrictions are imposed on the domains. The bargaining problems are then restricted to the class of problems \sum^n_0, i.e., the subclass of \sum^n_d consisting of the pairs (S, d) such that they fulfill the conditions given in (1) and also the following:

- $d = 0$
- $S \subseteq \mathbb{R}^n$
- if $p \in S$ then any $q \in \mathbb{R}^n$ with $0 \leq q \leq p$ is also in S (ie, $q \in S$)

If these three conditions (2) are also satisfied we say that S is 0–comprehensive, or just comprehensive. In summary, we usually deal with the subclass (\sum^n_0) of problems S, that constitutes an important class for economic applications.

2.2 Solutions

Given a bargaining problem, a solution is a function from the domain to a particular point in the domain and represents the agreement reached by the agents.

We formally state that a solution is a function $F : \sum^n \to \mathbb{R}^n$ such that $F(S, d) \in S$ (see [Thompson 94]).

The boundary BS of S, could be defined as:

$$BS = \{p \in S \mid \exists p' \in S \quad \text{with} \quad p' > p\}$$

Then, the solution associates with each element (S, d) of the domain an unique point of S interpreted as a recommendation for that problem, and that point will be on the boundary, also defined like the convex and comprehensive convex hull (CCH).

2.3 Typical Solutions

Three solutions play a central role in the theory as it appears today. The first one was the Nash Solution. Nash gave a list of axioms that characterized his solution (see [Thompson 94]) and tried to capture some properties of fairness and optimality. In the case of \sum^n_2 his solution, $N(S, d)$, is obtained maximizing the area of the rectangle included in the Bargaining Set (Fig. 1(a)).
Besides the fact that the Nash solution seemed to be very reasonable for most bargaining problems, in some cases it did not take into account the aspirations of the agents (see [Thompson 94]). It was in the 70’s when Kalai-Smorodinsky ([Kalai 75]) proposed an alternative solution (\(KS(N, d)\)). It chooses the most preferred feasible alternative in the line going from the origin of coordinates to the point consisting of the maximum aspiration of each agent (Fig 1(b)). This is perhaps the second more accepted solution.

The third solution, the Egalitarian, \(E(S, d)\), ([Thompson 94]) gives the maximum equal utility alternative to each agent (Fig. 1(c)). This idea of equal gains is central to many theories of social choice and welfare economics.

Thompson presents in his comprehensive survey ([Thompson 94]) other typical solutions. There are also other class of solutions favoring one agent at the expense of the others, but much work should be done to extend this solutions when the number of agents is greater than 2.

![Figure 1: Typical solutions to the bargaining problem (a) Nash (b) Kalai-Smorodinsky (c) Egalitarian](image)

3 Related Work

Besides the analytical studies mentioned above, there is very few said about how solutions perform over different sets of Bargaining Problems. This is a very interesting problem, but at the same time very difficult. It is not easy to foresee general properties, but if we hope to be successful in finding those properties, it would be helpful to have a tool for solving a wide set of problems. With this aim Cavalie, Quintas and Welch ([Cavalie 97]) provided a computational tool for 2-agents bargaining problems. It was helpful in providing a wide family of bargaining problems and also has proved to be a very useful tool for teaching.

4 Extension to 3D

In this article we provide a description of a visualization tool for approaching the problem in 3-Dimensions. A solution for a three dimensional bargaining problem
will be usually a point in the 3D Comprehensive Convex Hull (CCH) of a certain set (Fig. 2). In this case we can model the interaction of three agents for different sets of \((S,d)\) pairs. This certainly enriches the discussion on the solutions, giving an extra complexity to the analysis, and allowing an approach to a larger set of real situations.

![Figure 2: Example](image)

Solutions

- Nash
 1.000, 4.000, 4.000

- Kalai-Smorodinsky
 1.375, 3.437, 2.887

- Egalitarian
 1.762, 1.762, 1.762

4.1 Comprehensive Convex Hull Representation and Generation

The feasible set for the three dimensional case (three agents) will be represented by the volume enclosed by the comprehensive convex hull (CCH). This CCH, that represents the space where the three agents could obtain optimal profits, will be represented by a triangulated surface denoted by \(SF\) or shell of a set of points, in the positive octant of the three dimensional space.

4.1.1 Data Structure

A polygonal decomposition can be unambiguously described as the collection of 3 primitive elements plus their mutual adjacency relations (see [Weiler 85],[Woo 85]). According to our problem, we represent the shell with a specific kind of polygonal
decomposition, i.e. a triangulation. The surface SF could be described without ambiguities like a collection of three primitive elements and their mutual adjacency relationships. The primitive elements are:

- Vertices (V)
- Edges (E)
- Faces (F)

From the nine pairwise ordered adjacency relations (Fig. 3), that can be defined over the three primitive topological elements, the Symmetric Data Structure (see [Woo 85]), encodes the three primitive elements of a 3D triangulation and four of their mutual adjacency relations representing the topology without ambiguities.

We use the Modified Symmetric Data Structure (see [de Floriani 87]) to built and manipulate the triangulation. This structure encodes the three basic elements of the triangulation plus three constant (relations FE, EV and EF) and one partial relations (relation VE^*). It is showed in (see [de Floriani 87]) that such a structure is optimal (up to a constant factor) with respect to both space and time complexity. The time complexity is evaluated in terms of the worst case complexity of those structure accessing algorithm, which retrieve partial relations, i.e. relations that are not stored in the data structure.

For each primitive element of the triangulation T, this data structure encodes the following relations:

- For each face f, a list of index to the surrounding edges, in counterclockwise order:
 Relation FE
 \[FE(f) = [e_1, e_2, e_3], \quad f \in F. \]
 F is the set of faces of T and $[e_1, e_2, e_3]$, the sequence of edges of T bounding f in counterclockwise order.
• For each edge e, indexes to the extreme points of e and to the two incident faces. In this case, the stored relations are:

Relation EV

$EV(e) = [v_1, v_2], e \in E$. E is the set of edges of T and $[v_1, v_2]$ the ordered pair of vertices of T, which are extremes of edge e.

Relation EF

$EF(e) = [f_1, f_2], e \in E$. E is the set of edges of T and $[f_1, f_2]$ the sequence of faces of T sharing the edge e. Following the edge orientation, f_1 is the left face and f_2 the right face of e.

• For each vertex, the geometry and an index to one of the incident edges on that vertex

Partial relation VE^*

$VE^*(v) = \{e_i\}, v \in V$. V is the set of vertices of T and $\{e_i\}$ is one edge of T, incident on v.

The topology of the triangulation is then represented without ambiguities with the three primitive elements (F, E, V) and the subset of the four adjacency relations. This subset of relations, gives a topological description of the triangulation T and assures the efficiency of the algorithms that access the data structure (see [Weiler 85],[Woo 85]).

4.1.2 Modified Convex Hull in 3D (CCH)

In order to generate our shell, we obtain the surface SF like a comprehensive convex hull, CCH of 3D points. The CCH is stored in a symmetric modified data structure detailed in the previous section. We calculate the CCH_k using an incremental algorithm, that allows a point to be added interactively without completely recalculate the shell. The addition of a point to a convex hull, is based in the algorithm given in ([de Berg 97]). The shell is in the positive octant and limited by the planes $x = 0$, $y = 0$ and $z = 0$. Given a point p, the shell CCH_k will be calculated as follows:

A set must be created with all the projections of p on each coordinated plane and on each coordinated positive axis.

• If $k = 0$, the CCH does not exist, and the initial shell must be created with p and all its projections.
• If $k > 0$, the CCH is the shell of k points and we have two different cases:
 1. If p is interior or belongs to this CCH_k, the CCH_k is not modified.
2. If \(p \) is exterior to the shell \(CCH_k \), we construct a set of points to be added to the \(CCH_k \) with \(p \) and all the projected points \(p_i \) that are exteriors to the \(CCH_k \). In order to do that, we look from \(p_i \) to the shell in the direction of the coordinated origin. From this point, some faces or all can be seen. These faces are the visible region of \(p_i \) and are limited by a closed curve: the horizon of \(p_i \) in the \(CCH_{k+i-1} \) (Fig. 4(a)). This horizon is the boundary between the visible and the invisible faces. The visible ones must be eliminated and replaced by the faces connecting \(p_i \) and its horizon (Fig. 4(b)).

![Figure 4: Addition of a point \(p_i \) to the comprehensive convex hull (CCH)](image)

The \(CCH \) is stored in a symmetric modified data structure detailed in the previous section.

Algorithm Shell

IN: \(CCH_k \) being \(\{ \)

\[
k = 0 \quad \text{if the } CCH \text{ does not exist} \\
k > 0 \quad \text{if } CCH \text{ is a shell of } k \text{ points}
\]

\(p \) being the point to be incorporated to the \(CCH_k \)

OUT: \(CCH_{k'} \) being \(\{ \)

\[
k' = k \quad \text{if } p \text{ is interior or belongs to the input shell} \\
k' = k + n \quad \text{if } p \text{ and the } n - 1 \text{ points that generates } p \text{ are incorporated to the } CCH_k
\]

Generate all the projections of \(p \) on each plane \(x = 0, y = 0 \) and \(z = 0 \), and also on each axis \(x, y \) and \(z \), i.e.

\(Pr_{oj} \leftarrow \{ p_{x=0}, p_{y=0}, p_{z=0}, p_{x \text{ axis}}, p_{y \text{ axis}}, p_{z \text{ axis}} \} \)

If \(CCH_k \) is empty

then

Generate \(CCH \) with \(p \) and all the projections:

\(Pr_{oj} \leftarrow Pr_{oj} \cup \{ \bar{p} \} \)

IncorporatePoints(\(Pr_{oj}, CCH_k \))

else
if p is not interior and do not belongs to the CCH_k
for each $p_i \in Proj$
 if p_i is interior or belongs to the CCH_k
 then
 $$\text{Proj} \leftarrow \text{Proj} \setminus \{p_i\}$$
 $$\text{Proj} \leftarrow \text{Proj} \cup \{p\}$$
 IncorporatePoints(Proj, CCH_k)

Algorithm IncorporatePoints

IN: CCH_k being $\begin{cases} k = 0 \text{ if the } CCH \text{ do not exist} \\ k > 0 \text{ if } CCH \text{ is a shell of } k \text{ points} \end{cases}$

Proj being the set of points to be incorporated to the CCH_k

OUT: $CCH_{k'}$ being $k' = k + n$ where n is the amount of points stored in Proj

for each $p_i \in \text{Proj}$
 \{insert p_i in CCH_{k+i-1}\}
 VisFaces \leftarrow visibles faces from p_i
 Horizont \leftarrow List of edges forming the horizont of VisFaces
 Eliminate VisFaces of CCH_{k+i-1}
 for each edge \in Horizont
 Connect edge to p_i creating a triangular face
 Add the face the CCH_{k+i-1}

5 Conclusions and Future Work

There is very few written in the literature about the three dimensional case. The visualization we have presented has proved to be very useful for the visualization of different sets of bargaining problems and their solutions for 3-agents. Before this tool, it was very difficult to visualize different experimental sets because it is very tedious to obtain them and its solutions manually.

We hope that this visualization we have developed will also be very useful in order to gain insight about general properties for the solutions to the bargaining problems in the three dimensional case, as happened in the 2-dimensional case.

As future work we propose

• From the theoretical point of view, to extend the 2-dimensional solutions to the 3D case. In this situation, the extension of this visualization envisions to be of great help.

• From the visualization point of view, to construct a visualization tool for the cases we have presented here and for the extended cases. This tool will allow the visualization of different sets and solutions for the n-agents bargaining problems.
We also plan to use all these visualizations integrated in a visualization tool for teaching the courses including topics in Bargaining Theory.

6 Bibliography

References

