
A first approach to Abductive Defeasible Logic Programming:
formalization and properties

Mauro J. Gómez Lucero Alejandro J. Garćıa Carlos I. Ches̃nevar Guillermo R. Simari
Consejo Nacional de Investigaciones Cientı́ficas y T́ecnicas (CONICET)

Laboratorio de Investigación y Desarrollo de Inteligencia Artificial (LIDIA)
Departamento de Ciencias e Ingenierı́a de la Computación

Universidad Nacional del Sur
Bah́ıa Blanca, B8000CPB, Argentina
{mjg, ajg, grs, cic}@cs.uns.edu.ar

Abstract

This article presents the confluence of two general ideas: Defeasible Logic Programming (DeLP, an argu-
mentation based formalism for representing knowledge and reasoning) and Abduction in logic. In first place,
we introduce a framework that formally states the problem of doing abduction (obtaining abductive explana-
tions) in the particular case that the abductive theory is a DeLP Program. In the reminder of this work we face
that problem, providing a formal characterization of the notion of abductive explanation, in such a way that we
could then easily calculate the explanations from this formal characterization. An important advantage of this
approach is that by proving the correctness of the characterization, we ensure the correctness of the method for
obtaining explanations.

Keywords: Defeasible Reasoning, Abduction, Knowledge Representation and Reasoning.

1 INTRODUCTION

In this work we will present the confluence of two general ideas. Firstly, Defeasible Logic Program-
ming (DeLP) is a formalism for representing knowledge and reasoning, that combines results of Logic
Programming and Defeasible Argumentation. This formalism will be briefly introduced in section 2.
Secondly, Abduction in logic represents a form of reasoning where, given a (logic) theoryT and a
sentenceG, we try to find a set of sentencesΦ (abductive explanation for G) such thatT ∪Φ ` G and
T ∪ Φ is consistent.

Here, we face the problem of doing abduction in the particular case that the abductive theory
is a (restricted) DeLP programP, and the sentence to be explained is a literal in the language of
P. In order to formally state the problem, in section 3 we introduce the notion of Abductive-DeLP
framework, and we present a notion of abductive explanation slightly adapted for that framework.

In particular, we will focus on the problem of obtaining abductive explanations (for a literal h in
an Abductive-DeLP frameworkAF). The strategy adopted consists in providing a formal character-
ization of the notion of abductive explanation, in such a way that we could then easily calculate the
explanations from this formal characterization. An important advantage of this approach is that by
proving the correctness of the characterization (not done in this work for space reasons), we ensure
the correctness of the method for obtaining explanations.

The formal characterization of the notion of explanation involves two parts. From the definition of
abductive explanation, and considering the reasoning mechanism of DeLP, we know that the incorpo-
ration of an abductive explanation for a given literal to the abductive theory (DeLP program), causes

Partially financed by CONICET (PIP 5050), Universidad Nacional del Sur (PGI 24/ZN11) and Agencia Nacional de
Promocíon Cient́ıfica y Tecnoĺogica (PICT 2002 Nro 13096).

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

VIII Workshop de Agentes y Sistemas Inteligentes

1573

theemergenceor activationof new arguments (and possibly, the deactivation of existent ones), which
in turn causes the literal to be accepted. Then in section 4 we formalize which information should be
present in an explanation (and which should not) in order to activate a given argument. On the other
hand, in section 5 we formally state which arguments must the explanation activate and which must
not in order to effectively explain the acceptance of the literal. Finally, combining both, we will have
a formal characterization of the notion of abductive explanation.

2 DELP OVERVIEW

Defeasible Logic Programming (DeLP) combines results of Logic Programming and Defeasible Ar-
gumentation. The system is fully implemented and is available online [1]. A brief explanation is
included below (see [2]for full details). A DeLP programP is a set of facts, strict rules and defeasible
rules.Factsare ground literals representing atomic information or the negation of atomic information
using strong negation “∼” (e.g., chicken(little) or ∼scared(little)). Strict Rulesrepresent non-
defeasible information and are denotedL0 ← L1, . . . , Ln, whereL0 is a ground literal and{Li}i>0

is a set of ground literals (e.g., bird ← chicken or∼innocent ← guilty). Defeasible Rulesrepre-
sent tentative information and are denotedL0 —< L1, . . . , Ln, whereL0 is a ground literal and{Li}i>0

is a set of ground literals (e.g., ∼flies —< chicken or flies —< chicken, scared).
When required,P is denoted(Π, ∆) distinguishing the subsetΠ of facts and strict rules, and the

subset∆ of defeasible rules (see Ex. 2.1).Strong negationis allowed in the head of rules, and hence
may be used to represent contradictory knowledge. From a program(Π, ∆) contradictory literals
could be derived. Nevertheless, the setΠ (which stands for non-defeasible information) must possess
certain internal coherence,i.e., no pair of contradictory literals can be derived fromΠ.

A defeasible rule is used to represent tentative information that may be used if nothing could be
posed against it. Observe that strict and defeasible rules are ground. However, following the usual
convention [3], some examples use “schematic rules” with variables.

Example 2.1.Consider the DeLP program(Π2.1, ∆2.1) where:

Π2.1 =





bird(X) ← chicken(X)
chicken(tina)
chicken(little)
scared(tina)





∆2.1=





flies(X) —< bird(X)
flies(X) —< chicken(X), scared(X)
∼flies(X) —< chicken(X)





This program has three defeasible rules representing tentative information about the flying ability
of birds in general, and about regular chickens and scared ones. It also has a strict rule expressing
that every chicken is a bird, and three facts: ‘tina’ and ‘little’ are chickens, and ‘tina’ is scared.

Given a DeLP programP, a defeasible derivationfor a literalL from P is a (tentative) proof for
L involving strict and defeasible rules in the program. The reason for using the term defeasible is that
it is possible to derive contradictory literals fromP. For example, from(Π2.1, ∆2.1) in Ex. 2.1 it is
possible to deriveflies(tina) and∼flies(tina).

For the treatment of contradictory knowledge DeLP incorporates a defeasible argumentation for-
malism. This formalism allows the identification of those pieces of knowledge that are in contradic-
tion, and adialectical processis used for deciding which information prevails as warranted. This
dialectical process (see below) involves the construction and evaluation of arguments that either sup-
port or interfere with the query under analysis. As we will show next, arguments supporting the
answer for a given query will be shown in a particular way usingdialectical trees. The definition
of dialectical tree will be included below, but first, we will give a brief explanation of other related
concepts (for the details see [2]).

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

VIII Workshop de Agentes y Sistemas Inteligentes

1574

Definition 2.1 (Argument Structure). Let (Π, ∆) be a DeLP program. . We will say that〈A, α〉
is an argument structure (or just argument) for a literalα from (Π, ∆), if A is the minimal set of
defeasible rules (A⊆∆), such that: (1) there exists a defeasible derivation forα fromΠ ∪ A, and (2)
the setΠ ∪ A is non-contradictory.

Example 2.2.From the DeLP program(Π2.1, ∆2.1) the following arguments can be obtained:
〈A1, f lies(tina)〉, whereA1 = {flies(tina) —< bird(tina)}
〈A2,∼flies(tina)〉, whereA2 = {∼flies(tina) —< chicken(tina)}
〈A3, f lies(tina)〉, whereA3 = {flies(tina) —< chicken(tina), scared(tina)}

A literal L is warrantedif there exists a non-defeated argumentA supportingL. To establish if
〈A, α〉 is a non-defeated argument,defeatersfor 〈A, α〉 are considered,i.e., counter-arguments that
by some criterion are preferred to〈A, α〉. In DeLP, the comparison criterion is usuallygeneralized
specificity, but in the examples given in this paper we will abstract away from this particular criterion,
since in this work it introduces unnecessary complications. Since defeaters are arguments, there
may exist defeaters for them, and defeaters for these defeaters, and so on. Thus, a sequence of
arguments calleddialectical line is constructed, where each argument defeats its predecessor. In
order to avoid undesirable sequences that may represent circular or fallacious argumentation lines, in
DeLP a dialectical line isacceptableif it satisfies certain constraints (see [2]).

Example 2.3. From Ex. 2.2, we have that argument〈A2,∼flies(tina)〉 defeats〈A1, f lies(tina)〉,
argument〈A3, f lies(tina)〉 is a defeater for〈A2,∼flies(tina)〉, and the sequence of arguments
[〈A1, f lies(tina)〉, 〈A2,∼flies(tina)〉, 〈A3, f lies(tina)〉] is an acceptable argumentation line.

Clearly, there might be more than one defeater for a particular argument. Therefore, many ac-
ceptable argumentation lines could arise from a given argument, leading to a tree structure. Be-
fore defining the notion ofdialectical tree, we need to introduce some terminology. LetΛ =
[〈A0, h0〉, 〈A1, h1〉, . . . , 〈An, hn〉] be an acceptable argumentation line, and〈Bi, qi〉 be a defeater of
〈An, hn〉 such thatΛ′ = [〈A0, h0〉, 〈A1, h1〉, . . . , 〈An, hn〉, 〈Bi, qi〉] is also acceptable. Then we will
say that〈Bi, qi〉 extendsΛ.

Definition 2.2 (Dialectical tree [2]). Let 〈A0, h0〉 be an argument from a programP. A dialectical
tree for〈A0, h0〉 fromP, denotedTP(〈A0, h0〉), is defined as follows:

(1) The root of the tree is labelled with〈A0, h0〉.
(2) LetN be a node of the tree labelled〈An, hn〉, andΛ = [〈A0, h0〉, 〈A1, h1〉, . . . , 〈An, hn〉] be the
(acceptable) argumentation line corresponding to the sequence of labels of the path from the root to
N . Let { 〈B1, q1〉, 〈B2, q2〉, . . ., 〈Bk, qk〉 } be the set of all arguments extendingΛ. Then for each
argument〈Bi, qi〉, the nodeN has a childNi labelled〈Bi, qi〉. If there exist no argument extending
Λ, thenN is a leaf.

In a dialectical tree, every node (except the root) represents a defeater of its parent, and leaves
correspond to non-defeated arguments. Each path from the root to a leaf corresponds to a different
acceptable argumentation line. A dialectical tree provides a structure for considering all the possible
acceptable argumentation lines that can be generated for deciding whether an argument is ultimately
defeated. We call this treedialecticalbecause it represents an exhaustive dialectical analysis for the
argument in its root.

Given a literalh and an argument〈A, h〉 from a programP, to decide whether a literalh is
warranted, every node in the dialectical treeTP(〈A, h〉) is recursively marked as “D” (defeated) or
“U ” (undefeated), obtaining a marked dialectical treeT∗

P
(〈A, h〉) as follows:

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

VIII Workshop de Agentes y Sistemas Inteligentes

1575

1. All leaves inT∗
P
(〈A, h〉) are marked as “U ”s, and

2. Let N be an inner node ofT∗
P
(〈A, h〉). ThenN will be marked as “U ” iff every child of N is

marked as “D”. The nodeN will be marked as “D” iff it has at least a child marked as “U ”.

Given an argument〈A, h〉 obtained fromP, if the root ofT∗
P
(〈A, h〉) is marked as “U ”, then we

will say thatT∗
P
(〈A, h〉) warrantsh and thath is warrantedfrom P (that will be notedP |∼

W
h).

In this paper, an argument〈A, h〉 will be depicted as a triangle, whose upper vertex is labelled
with the conclusionh, and the set of defeasible rulesA are associated with the triangle itself. Marked
dialectical trees will be depicted as shown in figure 1.

Figure 1: Dialectical trees forflies(tina).

Example 2.4. (Extends Ex. 2.3) Figure 1 shows the marked dialectical treeT∗
P 2.1

(〈A1, f〉) (the

leftmost tree), which has only one argumentation line. Observe that the argument〈A2,∼f〉 in-
terferes with the warrant of ‘flies(tina)’ and the argument〈A3, f〉 reinstates〈A1, f〉. The root of
T∗
P 2.1

(〈A1, f〉) is marked as “U ” and therefore the literal ‘flies(tina)’ is warranted.

3 ABDUCTIVE DELP FRAMEWORK

In this section we will introduce a framework for doing abduction in a (restricted) version of DeLP
without strict rules. Before, we need to introduce certain distinguished sets of literals associated with
any set of defeasible rules. Let∆ be a set of defeasible rules. Then we will useall lits(∆) to denote
the set of all literals appearing in defeasible rules in∆. Also, we will usehead lits(∆) to denote the
set of all literals that are heads of defeasible rules in∆ (i.e., head lits(∆) = {H|H —< B1, B2, ..., Bn ∈
∆}). Finally, we will usebody lits(∆) to denote the set of all literals that appear in the body of a
defeasible rule in∆. (i.e., body lits(∆) = {Bi|H —< B1, ..., Bi, ..., Bn ∈ ∆}).
Definition 3.1 (A-DeLP Framework). An A-DeLP framework is a pair〈Πf ∪∆, A〉 where

• Πf ∪∆, the theory, is a DeLP program without strict rules, ie.Πf is a consistent set of literals
(called facts) and∆ is a set of defeasible rules.

• A is a set of distinguished literals in the language ofΠf ∪∆, called abducibles, such that

body lits(∆)\(heads(∆) ∪ Πf ∪ Πf) ⊆ A ⊆ (all lits(∆) ∪ all lits(∆))\(Πf ∪ Πf)

Given a literalQ, an abductive explanation forQ w.r.t. the abductive framework, is defined as a
set of abduciblesΦ (Φ ⊆ A) such that:

• Πf ∪∆ ∪ Φ |∼
W

Q and

• Πf ∪ Φ is consistent.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

VIII Workshop de Agentes y Sistemas Inteligentes

1576

The setA associated with an A-DeLP framework constitutes the domain of the explanations in
that framework,i.e., A is the set of literals (abducibles) that can integrate the explanations. The setA
must be specified when defining the A-DeLP framework and it could be any set of literals satisfying
the restrictions stated by the previous definition. The election of a specific set of abduciblesA depends
on the application domain.

The adjectiveabductiveis used to distinguish explanations in the abductive sense from the notion
of explanation in the context of DeLP (or dialectical explanations), where dialectical trees constructed
to answer a query can be seen as explanations for the answer obtained. From now on, when we use
the term explanation we mean abductive explanation.

After introducing the elements for performing abduction in DeLP, we have to deal with the prob-
lem of obtaining explanations. In what follows, we will present a formal characterization of the notion
of abductive explanation, in such a way that we could then easily calculate the explanations from this
formal characterization.

4 CHARACTERIZING THE NOTION OF (POTENTIAL) ARGUMENT AC-
TIVATION

As we have seen in section 2, the (state of) warrant of a given literal w.r.t. a DeLP program depends on
the arguments that can be computed from that program. Then in order to consider a setΦ of abducibles
as an explanation of the warrant of a given literal,Φ must cause theactivationof certain arguments
and, as we will see later, thenon activationof others. In this section, we formally state the conditions
that a given setΦ of abducibles must satisfy in order to cause the activation of a certain argument.
More precisely, those conditions specify the presence of certain literals inΦ and the absence of others.

As we have seen in section 2, the notion of argument is defined with respect to aconcreteDeLP
program. On the other hand, when performing abduction we work with anincompleteDeLP program,
trying to find a set of facts (more precisely abducibles) tocompletethe DeLP program in order to
warrant a given literal. Then the notion of argument we introduced in section 2 is not suitable in the
context of abduction, and consequently we need to introduce a notion ofpotentialargument. For the
next definition, we will useL(AF) to denote the language associated withAF .

Definition 4.1 (Potential Argument). Let AF = 〈Πf ∪∆, A〉 be an A-DeLP framework. Let
Q ∈ L(AF). Let B ⊆ ∆. Then〈〈B, Q〉〉 is a potential argument w.r.t.AF iff there exists a non
contradictory set of literalsΩ ⊆ L(AF) such that〈B, Q〉 is an argument w.r.t.(Ω, ∆).

Example 4.1.Consider an A-DeLP frameworkAF1 = 〈Π1
f ∪∆1, A1〉, where:

Π1
f = {b,∼g},

∆1 = {(a —< b, c), (c —< d, e), (f —< g), (g —< h)}
A1 = {c,∼c, d, e, h}

Then the following are potential arguments w.r.t.AF1:

〈〈{(a —< b, c), (c —< d, e)}, a〉〉 (assuming for exampleΩ = {b, d, e})
〈〈{(a —< b, c)}, a〉〉 (assuming for exampleΩ = {b, c})
〈〈∅, g〉〉 (assuming for exampleΩ = {g})

On the other hand,〈〈{(a —< b, c), (f —< g)}, a〉〉 is not a potential argument w.r.t.AF , since
〈{(a —< b, c), (f —< g)}, a〉 will not be an argument w.r.t.(Ω, ∆1), for any Ω considered. Note that
the defeasible rulef —< g will never be necessary to defeasibly derivea, violating the minimality
condition in the definition of argument.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

VIII Workshop de Agentes y Sistemas Inteligentes

1577

The following definition formally introduces the notion of (potential) argument activation, that
was informally used at the beginning of this section.

Definition 4.2 (Potential Argument Activation). LetAF =〈Πf ∪∆, A〉 be an A-DeLP framework.
Let 〈〈B, Q〉〉 be a potential argument w.r.t.AF and letΦ ⊆ A. We say that〈〈B, Q〉〉 is activated
by Φ in AF (or alternatively thatΦ activates〈〈B, Q〉〉) iff Φ 0⊥ and 〈B, Q〉 is an argument w.r.t.
(Πf ∪ Φ, ∆).

Example 4.2. Consider the A-DeLP frameworkAF1 of example 4.1. Let〈〈B, a〉〉 be a potential
argument w.r.t.AF1, whereB={(a —< b, c), (c —< d, e)}. The set of abduciblesΦ1 = {d, e, h} activates
〈〈B, a〉〉, because〈B, a〉 is an argument w.r.t.(Π1

f ∪ Φ1, ∆1). As can be seen in figure 2a,Φ1 completes
Π1

f with those additional facts needed to defeasibly derivea (using rules inB). Furthermore, it
can be noted that the abducibleh ∈ Φ1 does not contribute to the activation of〈〈B, a〉〉. Note that
Φ2 = Φ1 \ {h} = {d, e} also activates〈〈B, a〉〉.

On the other hand, the setΦ3 = {d} does not activate〈〈B, a〉〉 (see figure 2b). Note thate does
not belong toΠ1

f ∪ Φ3, and it is necessary to defeasibly derive a.
The setΦ4 = {d, e,∼c} does also not activate〈〈B, a〉〉 (see figure 2c), this time becauseΦ4 incor-

porates a fact (∼c) that contradicts anintermediate conclusionof 〈〈B, a〉〉, violating the consistency
condition in the definition of argument.

Another interesting case isΦ5 = {d, e, c}, which does not activate〈〈B, a〉〉 (see figure 2d). Note
that Φ5 incorporatesc, which coincides with the head ofc —< d, e, one of the rules inB. In such
case,c —< d, e is unnecessary for derivinga, because asc is a fact, we can directly introduce it in
the derivation. SoB is not minimal for derivinga, and then violates the minimality condition of the
definition of argument. Now, consider the potential argument〈〈C, a〉〉, whereC = {a —< b, c} (i.e., C
is B withoutc —< d, e). Then it holds thatΦ5 effectively activates〈〈C, a〉〉 (see figure 2e).

The setΦ6 = {e} activates the empty potential argument〈〈∅, e〉〉. In general, any set of abducibles
Φ containing a literalQ activates the empty potential argument〈〈∅, Q〉〉.

Finally, consider the potential argument〈〈D, f〉〉, whereD = {(f —< g), (g —< h)}, and letΦ7 =
{h}. ThenΦ7 does not activate〈〈D, f〉〉 because of an inconsistency involving an intermediate con-
clusion and a fact (as previously showed withΦ4 and 〈〈B, a〉〉), but this time, the fact causing the
inconsistency,∼g, belongs toΠ1

f (see figure 2f). So, there exists no set of abducibles activating
〈〈D, f〉〉.

Next, we will introduce a property which states certain necessary and sufficient conditions for a
potential argument〈〈B, Q〉〉 to be activated by a set of abduciblesΦ. More precisely, the property
states which literals mustΦ contain (and which must not) in order to activate〈〈B, Q〉〉. Before intro-
ducing the property, we need to define two distinguished sets of literals associated with any potential
argument.

Definition 4.3. Let 〈〈B, Q〉〉 be a potential argument. We define two sets of literals associated with
〈〈B, Q〉〉:

• heads(〈〈B, Q〉〉) =def head lits(B)

• base(〈〈B, Q〉〉) =def

{ {Q}, if B= ∅;
all lits(B) \ head lits(B), otherwise.

The reason for using of the termbasebecomes evident when considering the graphical represen-
tation we adopted for potential arguments in figure 4.2. That is, as a triangle with the conclusion on
the top, and expliciting inside the defeasible rules conforming it chained in a top-down derivation.
The following example, and the figures associated with it, illustrates what we are saying.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

VIII Workshop de Agentes y Sistemas Inteligentes

1578

(a) (b) (c)

(d) (e) (f)

Figure 2: Potential Argument Activation

Example 4.3. Consider the A-DeLP frameworkAF1 of example 4.1. Let〈〈B, a〉〉 be the poten-
tial argument of example 4.2 (B={(a —< b, c), (c —< d, e)}). Thenheads(〈〈B, a〉〉) = {a, c} and
base(〈〈B, a〉〉) = {b, d, e} (see figure 3a). Consider the empty potential argument〈〈∅, c〉〉. Then
heads(〈〈∅, c〉〉) = ∅ andbase(〈〈∅, c〉〉) = {c} (see figure 3b).

Property 4.1. LetAF =〈Πf ∪∆, A〉 be an A-DeLP framework. Let〈〈B, Q〉〉 be a potential argument
w.r.t. AF and letΦ ⊆ A. ThenΦ activates〈〈B, Q〉〉 iff Φ 0⊥ and the following conditions hold:

• base(〈〈B, Q〉〉) ⊆ Πf ∪ Φ

• heads(〈〈B, Q〉〉) ∩(Πf ∪ Φ) = ∅
• heads(〈〈B, Q〉〉) ∩ (Πf ∪ Φ) = ∅
It can easily be verified that the property holds for each case considered in example 4.2. In

particular, consider the potential argument〈〈D, f〉〉 defined in example 4.2 (D= {(f —< e), (e —< g)}).

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

VIII Workshop de Agentes y Sistemas Inteligentes

1579

〈〈B, a〉〉 〈〈∅, c〉〉
(a) (b)

Figure 3: base and heads sets of a potential argument.

As we concluded before, there exists no set of abducibles activating〈〈D, f〉〉. In fact, note thatg ∈
heads〈〈D, f〉〉 and∼g ∈ Π1

f , and then the second condition in the previous property is violated
independently of the setΦ of abducibles considered.

As we have already shown in the previous examples, given an A-DeLP framework, there may
exist potential arguments that could not be activated in such framework. That is the same to say, as
we have just seen, that they violate at least one of the three conditions of property 4.1, for any set
Φ of abducibles considered. So, given an A-DeLP framework, we could ignore suchnon activable
potential argument, concentrating only on the others, that we will callactivablepotential arguments.
Next, we will formally define the notion of activable potential argument.

Definition 4.4 (Activable Potential Argument). Let AF =〈Πf ∪∆, A〉 be an A-DeLP framework.
Let 〈〈B, Q〉〉 be a potential argument w.r.t.AF . We say that〈〈B, Q〉〉 is activable inAF iff there exists
a subsetΦ of A such thatΦ activates〈〈B, Q〉〉.

Now that we have formally defined the notion of activable potential argument, we will present,
through the next property, a more practical (directly implementable) characterization of that notion.
More precisely, it states the restrictions that must satisfy a given potential argument, in terms of it´s
base and heads sets, in order to be activable.

Property 4.2. Let AF =〈Πf ∪∆, A〉 be an A-DeLP framework. Let〈〈B, Q〉〉 be a potential argu-
ment w.r.t.AF . Then〈〈B, Q〉〉 is activable inAF (noted as〈〈B, Q〉〉+) iff it satisfies the following
conditions:

• base(〈〈B, Q〉〉) ⊆ Πf ∪ A

• heads(〈〈B, Q〉〉) ∩ Πf = ∅
• heads(〈〈B, Q〉〉) ∩ Πf = ∅
Consider the three arguments that appear in example 4.2. Note that the potential argument〈〈D, f〉〉

(D = {(f —< e), (e —< g)}), which was identified as non-activable, violates indeed the third condition
of this property. The other two,〈〈B, a〉〉 (B={(a —< b, c), (c —< d, e)}) and〈〈C, a〉〉, (C = {a —< b, c}),
are activable (see figures 2a and 2e respectively) and then as it can be easily verified, they both satisfy
the three conditions of the property.

Finally, we will present a new version of property 4.1, specific for activable potential arguments.

Property 4.3. Let AF =〈Πf ∪∆, A〉 be an A-DeLP framework. Let〈〈B, Q〉〉+ be an activable po-
tential argument w.r.t.AF and letΦ ⊆ A. ThenΦ activates〈〈B, Q〉〉+ iff Φ 0⊥ and the following
conditions are satisfied:

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

VIII Workshop de Agentes y Sistemas Inteligentes

1580

• base(〈〈B, Q〉〉+) \ Πf ⊆ Φ

• heads(〈〈B, Q〉〉+) ∩ Φ = ∅
• heads(〈〈B, Q〉〉+) ∩ Φ = ∅

5 CHARACTERIZING WARRANT EXPLANATIONS

As we have said in section 3, our purpose is to provide a formal characterization of the notion of
abductive explanation, in such a way that we could then easily calculate the explanations from this
formal characterization. In the previous section, we presented partially this characterization, focusing
only on the conditions under which a given setΦ of abducibles activates a given (activable) potential
argument. In this section we will complete the characterization. More specifically, we will provide
a logical formalization in First Order Logic that captures the notion of which (activable) potential
arguments must a given setΦ of abducibles activate, and which must not, in order to explain the
warrant of a given literalh.

As a first step, we will define a specific notation for denoting nodes in a dialectical tree. At first
sight, it seems that to univocally identify a certain node it is sufficient to name the argument labelling
it. But that is wrong because two nodes in a dialectical tree could be labelled with the same argument.
An effective way of identifying a node is making reference not only to the argument labelling it, but
also to the argumentation line conformed by the (arguments labelling the) ancestors of the node in the
tree.

Consider a dialectical treeT(〈A, h〉), let N be a node ofT(〈A, h〉) labeled with〈B, k〉 and let
L be the argumentation line corresponding to the path from the root ofT(〈A, h〉) to the father ofN
inclusively. Then we will use〈B, k〉L, read as〈B, k〉 with ancestors lineL, to refer to the nodeN
(see figure 4a). Additionally, letL = [〈A1, h1〉, 〈A2, h2〉, ..., 〈An, hn〉] be an arbitrary argumenta-

(a) (b)

Figure 4: Notation for nodes in a dialectical tree.

tion line, and let〈B, k〉 be an argument. Then will useL : 〈B, k〉 to denote the argumentation line
[〈A1, h1〉, 〈A2, h2〉, ..., 〈An, hn〉, 〈B, k〉], that results from adding〈B, k〉 at the end ofL. Finally, if
〈B, k〉L denotes a node and it has a child labeled with〈C, j〉, then combining both notations intro-
duced, we can use〈C, j〉L:〈B,k〉 to denote the child node (see figure 4b).

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

VIII Workshop de Agentes y Sistemas Inteligentes

1581

Next we will present the analysis that lead us to the first logic formula. LetAF = 〈P, A〉 be an
A-DeLP framework, letΦ ⊆ A be a consistent set of abducibles and leth be a literal. Then from
the definition of warrant presented in Section 2 and from our previous discussion we can state the
following:

h will be warranted w.r.t. the DeLP programP ∪ Φ (1)
iff

there exist an argument〈A, h〉 in P ∪ Φ (2)
and

T(P ∪ Φ)(〈A, h〉), the dialectical tree for〈A, h〉, has its root undefeated.

But the statement (1) is the same to say thatΦ will be an explanation for the warrant ofh. Also,
the statement (2) is in turn the same to say thatthere exist an activable potential argument〈〈A, h〉〉+
in AF such thatΦ activates〈〈A, h〉〉+. By rephrasing statements (1) and (2) into the equivalent
formulation given before, we can define the notion of explanation as follows:

Φ will be an explanation for the warrant ofh iff there exists an activable potential argument
〈〈A, h〉〉+ in AF such thatΦ activates〈〈A, h〉〉+ andT(P ∪ Φ)(〈A, h〉) has its root undefeated.

Let PotArgs+
AF be the set of all activable potential arguments w.r.t.AF . Then the previous

sentence is captured by the following formula:

exp warrant(Φ, h) =def

∨
〈〈A,h〉〉+∈ PotArgs+

AF
act(Φ, 〈〈A, h〉〉+) ∧ U(Φ, 〈A, h〉[]) (α)

Now, consider an argument〈A, h〉 w.r.t. P ∪ Φ, let T(P ∪ Φ)(〈A, h〉) be the dialectical tree for

〈A, h〉 and let〈N, k〉L be a node ofT(P ∪ Φ)(〈A, h〉). Then according to the criterion used for marking
a dialectical tree (section 2), we can say that:

〈N, k〉L will be defeatediff there exists a child〈M, q〉L:〈N,k〉 of 〈N, k〉L (3)
such that〈M, q〉L:〈N,k〉 is undefeated.

But, by definition of dialectical tree, the node〈N, k〉L has a child〈M, q〉L:〈N,k〉 iff there exists an
argument〈M, q〉w.r.t.P∪Φ which extends the argumentation lineL : 〈N, k〉. Moreover, that is equiv-
alent to say thatΦ activates some potential argument〈〈M, q〉〉+ w.r.t. AF which extendsL : 〈N, k〉.
Below is the statement that results from transcribing (3) according to de last analysis:

〈N, k〉L will be defeatediff there exists an activable potential argument〈〈M, q〉〉+ w.r.t. AF which
extendsL : 〈N, k〉 such thatΦ activates〈〈M, q〉〉+ and 〈M, q〉L:〈N,k〉 is undefeated.

OBSERVATION: We could restrict〈〈M, q〉〉+ to be a non-empty argument without changing the
meaning of the sentence. The reason is that ifM = ∅, we can ensure that〈〈M, q〉〉+ will not be
activated byΦ 1.

LetL be an argumentation line. We will usePotArgsExt+AF (L) to denote the set of all non-empty
activable potential arguments w.r.t.AF which extendL. Then the previous sentence is captured by
the following formula:

D(Φ, 〈N, k〉L) =def

∨
〈〈M,q〉〉+∈ PotArgsExt+AF (L:〈N,k〉) act(Φ, 〈〈M, q〉〉+) ∧ U(Φ, 〈M, q〉L:〈N,k〉) (β)

Making a similar analysis, but this time for theundefeatedstatus of a node in a dialectical tree,
we reach to the following sentence:

1Note that since〈N, k〉 is an argument w.r.t.P ∪ Φ, by consistency condition of the definition of argument, we know
that there is no strong information (inP∪Φ) contradicting〈N, k〉, which in turn implies that there exist no empty argument
〈∅, q〉 in P ∪ Φ contradicting〈N, k〉.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

VIII Workshop de Agentes y Sistemas Inteligentes

1582

〈N, k〉L will be defeatediff for all (non empty) activable potential argument〈〈M, q〉〉+ w.r.t. AF
which extendsL : 〈N, k〉, it holds thateitherΦ does not activate〈〈M, q〉〉+ or

Φ does activate〈〈M, q〉〉+ and also〈M, q〉L:〈N,k〉 is defeated.

The next formula captures the meaning of the previous sentence:

U(Φ, 〈N, k〉L) =def (γ)
∧
〈〈M,q〉〉+∈PotArgsExt+AF (L:〈N,k〉) ¬act(Φ, 〈〈M, q〉〉+) ∨(

act(Φ, 〈〈M, q〉〉+) ∧ D(Φ, 〈M, q〉L:〈N,k〉)
)

Finally, we will present an example illustrating how the previous formulas can be used.

Example 5.1.Consider an A-DeLP frameworkAF2 = 〈Π2
f ∪∆2, A2〉, where

Π2
f = {e, b}

∆2 = {(a —< b, c), (∼a —< d), (∼a —< g), (d —< e), (g —< c), (∼d —< e, f)}
A2 = {c,∼d, f,∼g}
Next, we list all the (non empty) activable potential arguments w.r.t.AF2:

〈〈A1, a〉〉+, whereA1 = {a —< b, c} 〈〈A3,∼d〉〉+, whereA3 = {∼d —< e, f}
〈〈A2,∼a〉〉+, whereA2 = {(∼a —< d), (d —< e)} 〈〈A4,∼a〉〉+, whereA4 = {(∼a —< g), (g —< c)}

Suppose we want to explain the warrant ofa in AF2. Then we need first to instantiate (and
generate) the parametric formula(α) for AF2 and takingh asa. The instantiated formula follows:

exp warrant(Φ, a) = act(Φ, 〈〈A1, a〉〉+) ∧ U(Φ, 〈A1, a〉[])

But the atomU(Φ, 〈A1, a〉[]) in the previous instantiated formula denotes also an entire formula,
that could be obtained instantiating(γ). The resulting instantiated formula follows next:

U(Φ, 〈A1, a〉[]) = ¬act(Φ, 〈〈A2,∼a〉〉+) ∨ (
act(Φ, 〈〈A2,∼a〉〉+) ∧ D(Φ, 〈A2,∼a〉[〈A1,a〉])

)
∧

¬act(Φ, 〈〈A4,∼a〉〉+) ∨ (
act(Φ, 〈〈A4,∼a〉〉+) ∧ D(Φ, 〈A4,∼a〉[〈A1,a〉])

)

Now two new atoms have been introduced, this time denoting formulas that can be obtained in-
stantiating formula(β). We keep on doing that until no more atoms are introduced. The remaining
instantiated formulae follows next:

D(Φ, 〈A2,∼a〉[〈A1,a〉]) = act(Φ, 〈〈A3,∼d〉〉+) ∧ U(Φ, 〈A3,∼d〉[〈A1,a〉,〈A2,∼a〉])

D(Φ, 〈A4,∼a〉[〈A1,a〉]) = false

U(Φ, 〈A3,∼d〉[〈A1,a〉,〈A2,∼a〉]) = true

Finally, starting form the instantiated formula forexp warrant(Φ, a) and substituting eachD
andU atom by its definition, we obtain the following formula, in which only act/1 atoms occur:

exp warrant(Φ, a) = act(Φ, 〈〈A1, a〉〉+)
∧(

¬act(Φ, 〈〈A2,∼a〉〉+) ∨ (
act(Φ, 〈〈A2,∼a〉〉+)∧act(Φ, 〈〈A3,∼d〉〉+)

)) ∧¬act(Φ, 〈〈A4,∼a〉〉+)

That formula clearly specifies which activable potential arguments mustΦ activate and which
must not in order to be an explanation for the warrant ofa. Let´s analyze what is concretely saying.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

VIII Workshop de Agentes y Sistemas Inteligentes

1583

Note that the∨ in the formula reflect alternative restrictions. In fact, the formula describes two alter-
native situations on whichΦ constitutes an explanation fora. One is thatΦ activates〈〈A1, a〉〉+ and
does not activate〈〈A2,∼a〉〉+ nor 〈〈A4,∼a〉〉+. The other is thatΦ activates〈〈A1, a〉〉+, 〈〈A2,∼a〉〉+
and〈〈A3,∼d〉〉+ and does not activate〈〈A4,∼a〉〉+. The dialectical trees warrantinga associated to
each alternative are shown in figures 5a and 5b.

(a) (b)

Figure 5: Alternative dialectical trees warrantinga.

6 CONCLUSIONS AND FUTURE WORK

In this article, we presented the confluence of two general ideas: Defeasible Logic Programming and
Abduction in logic. Concretely, we introduced a framework that formally states the problem of doing
abduction (obtaining abductive explanations) in the particular case that the abductive theory is a DeLP
Program. In the reminder of this work, we faced that problem, providing a formal characterization
of the notion of abductive explanation, from which we could then easily calculate the explanations.
That characterization was presented in two parts. On the one hand, we formally stated the conditions
that must satisfy an explanation in order to activate a given argument. On the other hand, we formally
stated which arguments must an explanation activate and which must not in order to effectively explain
the warrant of a literal.

As future work, we will develop a procedure for efficiently calculating the explanations. That pro-
cedure will be tightly based on the formal characterization presented here. Then as we have outlined
in this article, by proving the correctness of the characterization, we cold ensure the correctness of
the procedure.

REFERENCES

[1] Delp web page: http://lidia.cs.uns.edu.ar/delp.

[2] A. Garćıa and G. Simari. Defeasible logic programming: An argumentative approach.Theory
Practice of Logic Programming, 4(1):95–138, 2004.

[3] Vladimir Lifschitz. Foundations of logic programs. In G. Brewka, editor,Principles of Knowledge
Representation, pages 69–128. CSLI Pub., 1996.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

VIII Workshop de Agentes y Sistemas Inteligentes

1584

