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Abstract

This article presents the confluence of two general ideas: Defeasible Logic Programming (DeLP, an argu-
mentation based formalism for representing knowledge and reasoning) and Abduction in logic. In first place,
we introduce a framework that formally states the problem of doing abduction (obtaining abductive explana-
tions) in the particular case that the abductive theory is a DeLP Program. In the reminder of this work we face
that problem, providing a formal characterization of the notion of abductive explanation, in such a way that we
could then easily calculate the explanations from this formal characterization. An important advantage of this
approach is that by proving the correctness of the characterization, we ensure the correctness of the method for
obtaining explanations.
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1 INTRODUCTION

In this work we will present the confluence of two general ideas. Firstly, Defeasible Logic Program-
ming (DeLP) is a formalism for representing knowledge and reasoning, that combines results of Logic
Programming and Defeasible Argumentation. This formalism will be briefly introduced in section 2.
Secondly, Abduction in logic represents a form of reasoning where, given a (logic) theamyg a
sentencé-, we try to find a set of sentencégabductive explanation for G) such that ¢ + G and

T U @ is consistent.

Here, we face the problem of doing abduction in the particular case that the abductive theory
is a (restricted) DeLP program, and the sentence to be explained is a literal in the language of
P. In order to formally state the problem, in section 3 we introduce the notion of Abductive-DeLP
framework, and we present a notion of abductive explanation slightly adapted for that framework.

In particular, we will focus on the problem of obtaining abductive explanations (for a literal h in
an Abductive-DeLP frameworK F). The strategy adopted consists in providing a formal character-
ization of the notion of abductive explanation, in such a way that we could then easily calculate the
explanations from this formal characterization. An important advantage of this approach is that by
proving the correctness of the characterization (not done in this work for space reasons), we ensure
the correctness of the method for obtaining explanations.

The formal characterization of the notion of explanation involves two parts. From the definition of
abductive explanation, and considering the reasoning mechanism of DeLP, we know that the incorpo-
ration of an abductive explanation for a given literal to the abductive theory (DeLP program), causes
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theemergencer activationof new arguments (and possibly, the deactivation of existent ones), which

in turn causes the literal to be accepted. Then in section 4 we formalize which information should be
present in an explanation (and which should not) in order to activate a given argument. On the other
hand, in section 5 we formally state which arguments must the explanation activate and which must
not in order to effectively explain the acceptance of the literal. Finally, combining both, we will have

a formal characterization of the notion of abductive explanation.

2 DELP OVERVIEW

Defeasible Logic Programming (DeLP) combines results of Logic Programming and Defeasible Ar-
gumentation. The system is fully implemented and is available online [1]. A brief explanation is
included below (see [2]for full details). A DeLP progrdhms a set of facts, strict rules and defeasible

rules.Factsare ground literals representing atomic information or the negation of atomic information

using strong negation~” (e.g, chicken(little) or ~scared(little)). Strict Rulesrepresent non-

defeasible information and are denoted «— L, ..., L,, whereL, is a ground literal and L; };~o
Is a set of ground literal®e(g, bird < chicken or ~innocent « guilty). Defeasible Rulesepre-
sent tentative information and are denofgd—< L, ..., L,, whereL, is a ground literal ang L, },~o

is a set of ground literalse(g, ~ flies — chicken or flies — chicken, scared).

When requireds is denotedTl, A) distinguishing the subsét of facts and strict rules, and the
subsetA of defeasible rules (see Ex. 2.8trong negatioris allowed in the head of rules, and hence
may be used to represent contradictory knowledge. From a pro@iam) contradictory literals
could be derived. Nevertheless, the Bgwhich stands for non-defeasible information) must possess
certain internal coherenceg., no pair of contradictory literals can be derived from

A defeasible rule is used to represent tentative information that may be used if nothing could be
posed against it. Observe that strict and defeasible rules are ground. However, following the usual
convention [3], some examples use “schematic rules” with variables.

Example 2.1. Consider the DeLP progrartil, ;, A1) where:
bird(X) « chicken(X)

; : flies(X) —< bird(X)
M2 = hiekentiin) Ag1={ flies(X) —< chicken(X), scared(X)
chicken(little) Frine(X)  ehichom( %)
scared(tina) tes chicken

This program has three defeasible rules representing tentative information about the flying ability
of birds in general, and about regular chickens and scared ones. It also has a strict rule expressing
that every chicken is a bird, and three facts: ‘tina’ and ‘little’ are chickens, and ‘tina’ is scared.

Given a DeLP progrart?, adefeasible derivatiofor a literal L from P is a (tentative) proof for
L involving strict and defeasible rules in the program. The reason for using the term defeasible is that
it is possible to derive contradictory literals frofh For example, fromIly 1, Asy) in Ex. 2.1 it is
possible to derivglies(tina) and~ flies(tina).

For the treatment of contradictory knowledge DeLP incorporates a defeasible argumentation for-
malism. This formalism allows the identification of those pieces of knowledge that are in contradic-
tion, and adialectical processs used for deciding which information prevails as warranted. This
dialectical process (see below) involves the construction and evaluation of arguments that either sup-
port or interfere with the query under analysis. As we will show next, arguments supporting the
answer for a given query will be shown in a particular way udgingectical trees The definition
of dialectical tree will be included below, but first, we will give a brief explanation of other related
concepts (for the details see [2]).
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Definition 2.1 (Argument Structure). Let (II, A) be a DeLP program. . We will say théa#, «)
is an argument structure (or just argument) for a literalfrom (II, A), if A is the minimal set of
defeasible rules{CA), such that: (1) there exists a defeasible derivationddromII U A, and (2)
the setll U A is non-contradictory.

Example 2.2. From the DeLP prograntll, ;, A, ;) the following arguments can be obtained:
(Aq, flies(tina)),  whereA; = {flies(tina) —< bird(tina)}

(A, ~flies(tina)),  whereAy = {~ flies(tina) < chicken(tina)}

(As, flies(tina)),  whereAs = { flies(tina) — chicken(tina), scared(tina)}

A literal L is warrantedif there exists a non-defeated argumgnsupportingl. To establish if
(A, a) is a non-defeated argumenlefeaterdor (A, a) are considered,e., counter-arguments that
by some criterion are preferred {a@l, o). In DeLP, the comparison criterion is usuafjgneralized
specificity but in the examples given in this paper we will abstract away from this particular criterion,
since in this work it introduces unnecessary complications. Since defeaters are arguments, there
may exist defeaters for them, and defeaters for these defeaters, and so on. Thus, a sequence of
arguments calledlialectical lineis constructed, where each argument defeats its predecessor. In
order to avoid undesirable sequences that may represent circular or fallacious argumentation lines, in
DeLP a dialectical line isicceptablef it satisfies certain constraints (see [2]).

Example 2.3. From Ex. 2.2, we have that argume,, ~ flies(tina)) defeats(A,, flies(tina)),
argument(As, flies(tina)) is a defeater for(A,, ~ flies(tina)), and the sequence of arguments
[(A1, flies(tina)), (Aq, ~flies(tina)), (As, flies(tina))] is an acceptable argumentation line.

Clearly, there might be more than one defeater for a particular argument. Therefore, many ac-
ceptable argumentation lines could arise from a given argument, leading to a tree structure. Be-
fore defining the notion oflialectical tree we need to introduce some terminology. Let=
[(Ao, ho), (A1, h1), ..., (A, h,)] be an acceptable argumentation line, dBd, ¢;) be a defeater of
(Ap, hy) such that\” = [(Ag, ho), (A1, hi), ..., (An, by, (B, ¢;)] is also acceptable. Then we will
say that{(B;, ¢;) extends\.

Definition 2.2 (Dialectical tree [2]). Let (Ao, ho) be an argument from a prografh. A dialectical
tree for (A, ho) from P, denotedl'p (Ao, ko)), is defined as follows:

(1) The root of the tree is labelled withi,, hy).

(2) Let N be a node of the tree labellgdi,,, h,,), and A = [(Ao, ho), (A1, h1), ..., (A, h,)] De the
(acceptable) argumentation line corresponding to the sequence of labels of the path from the root to
N. Let{ (Bi,q1), (Ba,q2), ---» (Bx,qr) } be the set of all arguments extending Then for each
argument(B,, ¢;), the nodeN has a childN; labelled(B;, ¢;). If there exist no argument extending

A, thenN is a leaf.

In a dialectical tree, every node (except the root) represents a defeater of its parent, and leaves
correspond to non-defeated arguments. Each path from the root to a leaf corresponds to a different
acceptable argumentation line. A dialectical tree provides a structure for considering all the possible
acceptable argumentation lines that can be generated for deciding whether an argument is ultimately
defeated. We call this tredialectical because it represents an exhaustive dialectical analysis for the
argument in its root.

Given a literalh and an argumentA, h) from a program®, to decide whether a literdl is
warranted, every node in the dialectical tfBg((A, )) is recursively marked asD” (defeatedl or
“U” (undefeatep] obtaining a marked dialectical tré’gj(ul, h)) as follows:
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1. Allleaves inT5,((A, b)) are marked asU”s, and

2. Let N be an inner node df;,((A, h)). ThenN will be marked as U iff every child of IV is
marked as D”. The nodeN will be marked as D" iff it has at least a child marked ag/".

Given an argumentA, ) obtained front?, if the root of 7%, ((A, 1)) is marked asUU”, then we
will say thatT?3,((A, 1)) warrantsh and that is warrantedfrom P (that will be notedP |~ h).

In this paper, an argumer#, ») will be depicted as a triangle, whose upper vertex is labelled
with the conclusiorh, and the set of defeasible rulédsare associated with the triangle itself. Marked
dialectical trees will be depicted as shown in figure 1.

Figure 1: Dialectical trees foflies(tina).

Example 2.4. (Extends Ex. 2.3) Figure 1 shows the marked dialectical tfgem((fll,f)) (the

leftmost tree), which has only one argumentation line. Observe that the argument f) in-
terferes with the warrant of ‘flies(tina)’ and the argumets, f) reinstates(A;, f). The root of
Py ((A1, f)) is marked as U and therefore the literal ‘flies(tina)’ is warranted.

3 ABDUCTIVE DELP FRAMEWORK

In this section we will introduce a framework for doing abduction in a (restricted) version of DelLP
without strict rules. Before, we need to introduce certain distinguished sets of literals associated with
any set of defeasible rules. LAtbe a set of defeasible rules. Then we will ugelits(A) to denote

the set of all literals appearing in defeasible ruleainAlso, we will usehead_lits(A) to denote the

set of all literals that are heads of defeasible rules iine., head_lits(A) = {H|H —< By, Bs, ..., B, €

A}). Finally, we will usebody_lits(A) to denote the set of all literals that appear in the body of a
defeasible rule in\. (i.e, body_lits(A) = {B;|H —< By, ..., Bi, ..., B, € A}).

Definition 3.1 (A-DeLP Framework). An A-DeLP framework is a paifill; U A, A) where

e II; UA, the theory, is a DeLP program without strict rules, I&; is a consistent set of literals
(called facts) and\ is a set of defeasible rules.

e Ais a set of distinguished literals in the languagdlgpfu A, called abducibles, such that
body_lits(A)\(heads(A) UTI; UTI;) € A C (all_lits(A) U all_lits(A))\(I1; U TI;)
Given a literal@, an abductive explanation f@p w.r.t. the abductive framework, is defined as a
set of abducible® (¢ C A) such that:
o [;UAU? |~, Qand
e II; U ® is consistent.

VIl Workshop de Agentes y Sistemas Inteligentes 1576



XIll Congreso Argentino de Ciencias de la Computacion

The setA associated with an A-DelLP framework constitutes the domain of the explanations in
that frameworkj.e., A is the set of literals (abducibles) that can integrate the explanations. THe set
must be specified when defining the A-DeLP framework and it could be any set of literals satisfying
the restrictions stated by the previous definition. The election of a specific set of abducddpsnds
on the application domain.

The adjectiveabductives used to distinguish explanations in the abductive sense from the notion
of explanation in the context of DeLP (or dialectical explanations), where dialectical trees constructed
to answer a query can be seen as explanations for the answer obtained. From now on, when we use
the term explanation we mean abductive explanation.

After introducing the elements for performing abduction in DeLP, we have to deal with the prob-
lem of obtaining explanations. In what follows, we will present a formal characterization of the notion
of abductive explanation, in such a way that we could then easily calculate the explanations from this
formal characterization.

4 CHARACTERIZING THE NOTION OF (POTENTIAL) ARGUMENT AC-
TIVATION

As we have seen in section 2, the (state of) warrant of a given literal w.r.t. a DeLP program depends on
the arguments that can be computed from that program. Then in order to consideérmd abtucibles
as an explanation of the warrant of a given litefalmust cause thactivationof certain arguments
and, as we will see later, thren activationof others. In this section, we formally state the conditions
that a given sef of abducibles must satisfy in order to cause the activation of a certain argument.
More precisely, those conditions specify the presence of certain liter&lama the absence of others.

As we have seen in section 2, the notion of argument is defined with respecbiwieteDel P
program. On the other hand, when performing abduction we work withampleteDeLP program,
trying to find a set of facts (more precisely abduciblestaonpletethe DeLP program in order to
warrant a given literal. Then the notion of argument we introduced in section 2 is not suitable in the
context of abduction, and consequently we need to introduce a notjotefhtialargument. For the
next definition, we will usel( AF’) to denote the language associated withi.

Definition 4.1 (Potential Argument). Let AF' = (II; UA, A) be an A-DeLP framework. Let
Q) € L(AF). LetB C A. Then((B,Q)) is a potential argument w.rtAF iff there exists a non
contradictory set of literal$) C L(AF) such that(B, @) is an argument w.r.tQ2, A).

Example 4.1. Consider an A-DeLP framewotkF; = (H} U A, Ay, where:
I} = {b,~g},

Al = {(CL - b7 C)? (C_< d7 6), (f - ,(])7 (g —< h)}

Ay ={c,~c,d e, h}

Then the following are potential arguments w.AtE?:
{({(a—=<b,c),(c=<d,e)},a) (assuming for exampke = {b,d, e})
{({(a—=<b,c)},a)) (assuming for exampke = {b, c})
(0, gy (assuming for exampte = {g})
On the other hand{{(a —< b, ¢), (f < g)}, a)) is not a potential argument w.rti ¥, since
{(a<b,c),(f < g)},a) will not be an argument w.r.t2, A;), for any Q2 considered. Note that

the defeasible rulg’ < g will never be necessary to defeasibly deriyeviolating the minimality
condition in the definition of argument.
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The following definition formally introduces the notion of (potential) argument activation, that
was informally used at the beginning of this section.

Definition 4.2 (Potential Argument Activation). Let AF =(I1; U A, A) be an A-DeLP framework.
Let (B, Q)) be a potential argument w.r.tAF and let® C A. We say that(B, @) is activated

by ® in AF (or alternatively that® activates((B, Q))) iff & ¥ 1 and (B, Q) is an argument w.r.t.
(II; U, A).

Example 4.2. Consider the A-DeLP framework F; of example 4.1. Le{(B,a)) be a potential
argument w.rtAF;, whereB={(a < b, ¢), (c < d, e)}. The set of abducibleB, = {d, e, h} activates
(B, a)), becausdB, a) is an argument w.r.LI1}; U @, A, ). As can be seen in figure 2&; completes
H} with those additional facts needed to defeasibly dedv@sing rules inB). Furthermore, it
can be noted that the abduciblec ®, does not contribute to the activation @, a)). Note that
dy, = ¢\ {h} = {d, e} also activateg(B, a)).

On the other hand, the sét; = {d} does not activatéB, a)) (see figure 2b). Note thatdoes
not belong toH} U @3, and it is necessary to defeasibly derive a.

The setd, = {d, e, ~c} does also not activatéB, a)) (see figure 2c), this time becausgincor-
porates a fact{-c) that contradicts anntermediate conclusioaf (B, a)), violating the consistency
condition in the definition of argument.

Another interesting case 85 = {d, e, ¢}, which does not activatéB, a)) (see figure 2d). Note
that ®; incorporatesc, which coincides with the head of< d, ¢, one of the rules irB. In such
case,c < d, e iIs unnecessary for deriving, because as is a fact, we can directly introduce it in
the derivation. S@ is not minimal for deriving:, and then violates the minimality condition of the
definition of argument. Now, consider the potential arguménta)), whereC = {a < b,c} (i.e., C
is B withoutc — d, €). Then it holds thaf; effectively activate§C, a)) (see figure 2e).

The setbs = {e} activates the empty potential argumétit ¢)). In general, any set of abducibles
® containing a literal activates the empty potential arguméftt Q)).

Finally, consider the potential argumef{iD, f)), whereD = {(f —« g), (g < h)}, and let®; =
{h}. Then®; does not activat&D, f)) because of an inconsistency involving an intermediate con-
clusion and a fact (as previously showed with and (B, a))), but this time, the fact causing the
inconsistencyyg, belongs toH} (see figure 2f). So, there exists no set of abducibles activating

(D, 1)

Next, we will introduce a property which states certain necessary and sufficient conditions for a
potential argumen{(B, Q)) to be activated by a set of abduciblés More precisely, the property
states which literals mugt contain (and which must not) in order to activd{®, @))). Before intro-
ducing the property, we need to define two distinguished sets of literals associated with any potential
argument.

Definition 4.3. Let ((B, Q)) be a potential argument. We define two sets of literals associated with
(B,Q):
o heads({(B, Q) =des head_lits(B)

{Q}, if B=0;
all lits(B) \ head_lits(B), otherwise.

The reason for using of the terbasebecomes evident when considering the graphical represen-
tation we adopted for potential arguments in figure 4.2. That is, as a triangle with the conclusion on
the top, and expliciting inside the defeasible rules conforming it chained in a top-down derivation.
The following example, and the figures associated with it, illustrates what we are saying.

o base(((B,Q))) =der {

VIIl Workshop de Agentes y Sistemas Inteligentes 1578



XIll Congreso Argentino de Ciencias de la Computacion

} A
E = )i
\ -8 & £ 7
. S j_//_) ,,f/q)I
(a)

I

A

/X
/v
f / )\\\\

no acnva\ \

,r’_—“ﬁ%\
b } d \\
|
- /
S _ f:i///‘ o _)3
(b)

;no acnva XM
/J 1 (\)

|
< ~g ) 8.

\“‘H-ﬁ_ ‘__-ZJ///(I"

(d)

Figure 2: Potential Argument Activation

Example 4.3. Consider the A-DeLP frameworkF; of example 4.1. Le{(B,a)) be the poten-

b
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{//hi (_?\\\
’//

/ activa

(€)

tial argument of example 4.2BE{(a < b,¢), (c <d,e)}). Thenheads({(B,a))) = {a,c} and

base({(B,a))) = {b,d,e} (see figure 3a). Consider the empty potential arguméhtc)).
heads({(0, c))) = 0 andbase({(D, c))) =

Property 4.1. Let AF =(I1; U A, A) be an A-DeLP framework. L&B, ())) be a potential argument

{c} (see figure 3b).

Then

w.rt. AF and let® C A. Then® activates((B, Q)) iff ® L and the following conditions hold:

o base((B,Q)) C ;U d

e heads((B, Q) N(II; Ud) =10

o heads((B,Q)) N (I; U D)

=0

It can easily be verified that the property holds for each case considered in example 4.2.

particular, consider the potential arguméid, f)) defined in example 4.2I00= {(f —< e), (¢ < ¢)}).
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Figure 3: base and heads sets of a potential argument.

As we concluded before, there exists no set of abducibles activ@fing)). In fact, note thay €
heads({(D, f)) and~g € II%, and then the second condition in the previous property is violated
independently of the sd@t of abducibles considered.

As we have already shown in the previous examples, given an A-DeLP framework, there may
exist potential arguments that could not be activated in such framework. That is the same to say, as
we have just seen, that they violate at least one of the three conditions of property 4.1, for any set
® of abducibles considered. So, given an A-DelLP framework, we could ignorensurchctivable
potential argument, concentrating only on the others, that we wilbcaiNablepotential arguments.

Next, we will formally define the notion of activable potential argument.

Definition 4.4 (Activable Potential Argument). Let AF =(II; U A, A) be an A-DeLP framework.
Let (B, Q)) be a potential argument w.rA F'. We say that(B, ())) is activable inAF' iff there exists
a subsetb of A such thatP activates((B, ).

Now that we have formally defined the notion of activable potential argument, we will present,
through the next property, a more practical (directly implementable) characterization of that notion.
More precisely, it states the restrictions that must satisfy a given potential argument, in terms of it's
base and heads sets, in order to be activable.

Property 4.2. Let AF =(I1; U A, A) be an A-DeLP framework. L&tB, ())) be a potential argu-
ment w.r.t. AF. Then((B,Q)) is activable inAF (noted as({(B, Q))™") iff it satisfies the following
conditions:

e base(((B,Q)) CII;UA
e heads({(B,Q)) NIl =0
e heads({(B,Q)) NIy =10

Consider the three arguments that appear in example 4.2. Note that the potential akgDm@ent
(D ={(f < e),(e—=g)}), which was identified as non-activable, violates indeed the third condition
of this property. The other twd(B, a)) (B={(a —< b,¢), (c < d,e)}) and((C,a)), (C = {a < b, c}),
are activable (see figures 2a and 2e respectively) and then as it can be easily verified, they both satisfy
the three conditions of the property.
Finally, we will present a new version of property 4.1, specific for activable potential arguments.

Property 4.3. Let AF =(I1; U A, A) be an A-DeLP framework. L&tB, Q)" be an activable po-
tential argument w.rtAF and let® C A. Then® activates((B, Q)" iff ® L and the following
conditions are satisfied:
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o base((B,Q)") \II; C @
o heads({(B,QN)N® =10

e heads((B,QN)N® =10

5 CHARACTERIZING WARRANT EXPLANATIONS

As we have said in section 3, our purpose is to provide a formal characterization of the notion of
abductive explanation, in such a way that we could then easily calculate the explanations from this
formal characterization. In the previous section, we presented patrtially this characterization, focusing
only on the conditions under which a given gebf abducibles activates a given (activable) potential
argument. In this section we will complete the characterization. More specifically, we will provide
a logical formalization in First Order Logic that captures the notion of which (activable) potential
arguments must a given setof abducibles activate, and which must not, in order to explain the
warrant of a given literakh.

As a first step, we will define a specific notation for denoting nodes in a dialectical tree. At first
sight, it seems that to univocally identify a certain node it is sufficient to name the argument labelling
it. But that is wrong because two nodes in a dialectical tree could be labelled with the same argument.
An effective way of identifying a node is making reference not only to the argument labelling it, but
also to the argumentation line conformed by the (arguments labelling the) ancestors of the node in the
tree.

Consider a dialectical treg((A, h)), let N be a node ofl ((A, h)) labeled with(B, k) and let
L be the argumentation line corresponding to the path from the rddt(of, /1)) to the father ofV
inclusively. Then we will usé€B, k), read agB, k) with ancestors lind., to refer to the nodeV
(see figure 4a). Additionally, lek = [(Ay, k1), (As, ha), ..., (A, hy,)] be an arbitrary argumenta-

h \

/A

s
f n——

|

|

|

|

|

|

|'.
s

x_’ \ I|I f
\\ l [ 1R a\
\.___‘ B /| 4 B \ {‘-.\ [‘) . /1.},: j‘_
l']I [, ]’
/\ <\ [g. /1?_:} L ‘ P
B ffC \ C. J / L f

@ (b)

Figure 4: Notation for nodes in a dialectical tree.

tion line, and let(B, k) be an argument. Then will use: (B, k) to denote the argumentation line
[(A1, h1), (Ao, ha), ..., (An, ha), (B, k)], that results from addingB, k) at the end ofL. Finally, if
(B, k), denotes a node and it has a child labeled withj), then combining both notations intro-
duced, we can usg, j) (p.xy 1O denote the child node (see figure 4b).
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Next we will present the analysis that lead us to the first logic formula.Afet= (P, A) be an
A-DelLP framework, letd C A be a consistent set of abducibles andidie a literal. Then from
the definition of warrant presented in Section 2 and from our previous discussion we can state the
following:

h will be warranted w.r.t. the DeLP prograthU @ (1)
iff
there exist an argumen#, k) in P U & (2)
and

T(T U (I))((A, h)), the dialectical tree foK.A, h), has its root undefeated.

But the statement (1) is the same to say thatill be an explanation for the warrant df. Also,
the statement (2) is in turn the same to say thate exist an activable potential argume(i, 1)) ™
in AF such that® activates((A, h))". By rephrasing statements (1) and (2) into the equivalent
formulation given before, we can define the notion of explanation as follows:

® will be an explanation for the warrant df iff there exists an activable potential argument
(A, h)T in AF such that® activates((A, h))* and T(T U ®) ((A, h)) has its root undefeated.

Let PotArgs} be the set of all activable potential arguments wA.f’. Then the previous
sentence is captured by the following formula:

exp-warrant(®, h) =ger (4 py+c PotArgs’, . act(®, (A, h)") N U(®, (A, h)() (a)

Now, consider an argumer#, ») w.r.t. P U @, let ‘T(j) U @)((A, h)) be the dialectical tree for
(A, h)andlet{N, k), be anode o‘]T(g; U ) ((A, h)). Then according to the criterion used for marking
a dialectical tree (section 2), we can say that:

(N, k) will be defeatedff there exists a childM, q) 1...nx) Of (N, k) (3)
such that(M, ¢) .k is undefeated

But, by definition of dialectical tree, the nod®/, k), has a childM, g) ..y iff there exists an
argumentV, ¢) w.r.t. PU® which extends the argumentation lihe (N, k). Moreover, that is equiv-
alent to say tha® activates some potential argumé(, ¢))* w.r.t. AF which extends. : (N, k).
Below is the statement that results from transcribing (3) according to de last analysis:

(N, k), will be defeatedff there exists an activable potential arguméii(, ¢)) ™ w.r.t. AF which
extendsl : (N, k) such that® activates(M, ¢))* and (M, ¢) ..on .y IS undefeated.

OBSERVATION: We could restrict(M, ¢)) ™ to be a non-empty argument without changing the
meaning of the sentence. The reason is thatlif= (), we can ensure thatM, ¢))* will not be
activated byd 1.

Let L be an argumentation line. We will ug®&t Args Ext’ (L) to denote the set of all non-empty
activable potential arguments w.r4F" which extendL. Then the previous sentence is captured by
the following formula:

D<q)7 <N7 k>L) —def \/((M,q>>+€ PatArgsEmtXF(L:<N,k>) act(CI), <<M7 Q>>+> A U((I)a <M7 Q>L2<N,k)) (ﬁ)

Making a similar analysis, but this time for thmdefeatedstatus of a node in a dialectical tree,
we reach to the following sentence:

INote that sincéN, k) is an argument w.r.tP U ®, by consistency condition of the definition of argument, we know
that there is no strong information (#u®) contradicting{N, k), which in turn implies that there exist no empty argument
(0, q) in P U ® contradicting(N, k).
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(N, k)1, will be defeatedff for all (non empty) activable potential argumefiM, ¢)) ™ w.r.t. AF
which extendd. : (N, k), it holds thateither ® does not activatéM, ¢)) ™ or
P does activaté(M, ¢)) " and also(M, ¢) ...n.xy iS defeated.

The next formula captures the meaning of the previous sentence:

U(®, (N, k)L) =dgey (7)
/\<<M,q>>+ePotArgsExt;F(L;m,k)) —act(®, (M, g)*) v (act((I), (M, q) ™) A D(@, (M, Q>L:<N,k>))

Finally, we will present an example illustrating how the previous formulas can be used.

Example 5.1. Consider an A-DeLP framewotkF; = <va U Ay, Ay), where
117 = {e, b}
Ay = {<a — b, C)? (Na - d)? (Na < g>’ (d - 6)7 (g < C)v (Nd <€ f)}
AZ = {Cv Ndv fa Ng}
Next, we list all the (non empty) activable potential arguments W Fb.
(A1, a) ™, whereA; = {a < b, c} (A3, ~d)*, whereA; = {~d < e, f}
((Ag, ~a)t, whereAd, = {(~a < d),(d <€)} ((Ag, ~a)t, whered, = {(~a < g),(g <)}

Suppose we want to explain the warranteoin AF,. Then we need first to instantiate (and
generate) the parametric formula) for AF; and takingh asa. The instantiated formula follows:

exp_warrant(®, a) = act(®, (A1, a) ) A U(P, (A, a)()

But the atoni/(®, (A1, a)(;) in the previous instantiated formula denotes also an entire formula,
that could be obtained instantiating). The resulting instantiated formula follows next:

U(®, (A, a);)) = —act(®, ((Az, ~a)™) V (act(®, (A2, ~a)*) A D(®, (As, ~a) 4, 4y))
A
nact(®, ((Ag, ~a) ) V (act(®, (Ag, ~a) ™) A D(®, (Ag, ~a) 4, 4y)))

Now two new atoms have been introduced, this time denoting formulas that can be obtained in-
stantiating formula(3). We keep on doing that until no more atoms are introduced. The remaining
instantiated formulae follows next:

D(®, (A2, ~a) 4, o) = act(®, (As, ~d)") A U(P, (A3, ~d) (4, 0y (Ap.~a)])

D(®, (A4, ~ > (Ar.a)] ) = false

U(®, (Ag, ~d) [<A1,a>,<A2,Na>}) = true

Finally, starting form the instantiated formula fetcp_warrant(®, a) and substituting eactd
andU atom by its definition, we obtain the following formula, in which only act/1 atoms occur:
expwarrant(®,a) = act(P®, (A1, a)™)

A
<ﬂact((1>, ((Ag, ~a)T) V (act(®, ((As, ~a))*)Aact(P, (A, Nd))*))) A —act(®, ((Ay, ~a)™)

That formula clearly specifies which activable potential arguments dhusttivate and which
must not in order to be an explanation for the warrantofLet’s analyze what is concretely saying.
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Note that thev in the formula reflect alternative restrictions. In fact, the formula describes two alter-
native situations on whictp constitutes an explanation far One is thatd activates((A4;, a))™ and
does not activaté& Ay, ~a))™ nor (A4, ~a))*. The other is tha activates((A;, a))*, (Az, ~a))™

and (A3, ~d))* and does not activaté A,, ~a))*. The dialectical trees warranting associated to
each alternative are shown in figures 5a and 5b.

(a) (b)

Figure 5: Alternative dialectical trees warranting

6 CONCLUSIONS AND FUTURE WORK

In this article, we presented the confluence of two general ideas: Defeasible Logic Programming and
Abduction in logic. Concretely, we introduced a framework that formally states the problem of doing
abduction (obtaining abductive explanations) in the particular case that the abductive theory is a DeLP
Program. In the reminder of this work, we faced that problem, providing a formal characterization
of the notion of abductive explanation, from which we could then easily calculate the explanations.
That characterization was presented in two parts. On the one hand, we formally stated the conditions
that must satisfy an explanation in order to activate a given argument. On the other hand, we formally
stated which arguments must an explanation activate and which must not in order to effectively explain
the warrant of a literal.

As future work, we will develop a procedure for efficiently calculating the explanations. That pro-
cedure will be tightly based on the formal characterization presented here. Then as we have outlined
in this article, by proving the correctness of the characterization, we cold ensure the correctness of
the procedure.
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