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Abstract. In this paper, we present a modified version of an algorithm
inspired on the T-Cell model, it is an artificial immune system (AIS),
based on the process that suffers the T-Cell. The proposed algorithm is
called TCEC (T-Cell Epsilon Constrained) due to it is increased with
epsilon constrained method, for solving constrained (numerical) opti-
mization problems. We validate our proposed approach with a set of
36 test functions provided for the CEC 2010 competition. We indirectly
compare our results with respect to a version of the differential evolution
algorithm. Our results show that TCEC can found feasible solutions on
almost test functions with 10 and 30 decision variables.

Keywords: Artificial Immune System, Constrained Optimization Problem,
Epsilon Constrained Method.

1 Introduction

Over the last years, a bio-inspired system has called the attention of some re-
searchers, the Natural Immune System (NIS) and its powerful capacity of infor-
mation processing. The NIS is a very complex system with several defense mech-
anisms against foreign organisms. The main purpose of the NIS is recognize all
cells of the host and categorize them in order to induce the appropriate immune
response. The NIS learns through the evolution to distinguish between self and
non-self. Besides, it has many desirable characteristics from the computational
point of view, such as: uniqueness, pattern recognition, diversity, fault toler-
ance, learning and memory, self-organization, robustness, cooperation between
different layers, among others [12]. Thus, these characteristics and a well-known
about the functionality of the NIS are excellent motivations to develop Artificial
Immune Systems (AIS) to handle constrained problems. Besides, this kind of
heuristic has not been frequently used for solving constrained problems.

The main motivation of the work presented in this paper is to verify the
behavior of this new version of T-Cell Model [2] which eliminates the binary
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representation present in its original version and also includes the e constrained
method in order to find in a faster way feasible solutions for a set of test functions.

The remainder of the paper is organized as follows. Section 2, defines the
problem we want to solve. Section 3 presents a brief revision of the artificial
immune systems existing. In Section 4 describes the proposed algorithm. Section
5 shows our experimental setup and results, for last in Section 6 our conclusions
and some possible paths for future work are presented.

2 Statement of the Problem

In a general way, a minimization problem can be expressed as:
minimize

f(X) 1)
here f designates the objective function and X = (x1,z2,...,2,)” the design
variables vector (:cﬁ < z; <a¥). f is restricted for some functions. They are in-
equality constraints (g;(X) <0, j =1,...,m), equality constraints (hy(X) =0,
k = 1,...,1) and side constraints with lower and upper limits indicated by
the superscripts | and u, respectively. These functions, which can be solved an-
alytically or numerically, may be linear or non-linear and contain the design
variables in an explicit or a non-explicit form. We called ¢(X) to the maxi-

mum value of all constraints the problem has for X solution, i. e., ¢(X) =
maz{max;{0, g;(X)}, maxy | hi(X) |}.

2.1 The € Constrained Method

The e constrained method converts a constrained optimization problem into
an unconstrained one by replacing the order relation in direct search methods
with the e level comparison. In this paper, these comparisons are defined as
a lexicographic order in which the maximum value of all constraints is more
important than the objective value, i. e., the feasibility of an solution X is more
important than the minimization of f(X) [14]. Thus, the problem is redefined
as:

minimize

F(X) (2)
subject to P(X) <e

3 Previous Work

According to [7] the main Artificial Immune System models are: Negative Se-
lection [6], Clonal Selection [11] and Immune Network Models [8] and [7]. These
STA models have been used in several types of problems, but particularly, the
use of artificial immune systems to solve constrained (numerical) optimization
problems is scarce. Besides, we could not find in current literature an artificial
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immune system which has been hybridizing with the well known method epsilon
constrained. Even when some others approaches have been hybridizing with this
techniques as [13], [14] and [10], among others.

4 Proposed Algorithm Based on TCELL

Here, an immune algorithm based on the immune responses mediated by the T
cells is developed. It is inspired on the TCELL model [1]. It is called TCEC (Con-
strained T-Cell with Epsilon Constrained) and modified and add to it the well
known epsilon constrained method to solve constrained optimization problems.

First approaches based on TCELL model were used to solve static opti-
mization problems, dynamic problems, constrained problems and dynamic con-
strained problems [3], [1] and [4]. Basically, TCEC considers many of the pro-
cesses that T cells suffer from their origin in the hematopoietic stem cells in
the bone marrow until they become memory cells. It means, the cells go through
positive and negative selection and then they will be activated (proliferation and
differentiation processes). Each of these processes are defined next.

TCEC works over three populations, corresponding to the groups in which
the T-cells are divided: (1) Virgin Cells (VC), (2) Effector Cells (EC) and (3)
Memory Cells (MC). Each population is composed by a set of T-cells, where each
cell is composed by: 1) a TCR,. (represented by a vector of real numbers, they
identify the decision variables of the problem), 2) a proliferation level (number of
clones assigned to the cell when it has to proliferate) and 3) a differentiation level
(number of decision variables that will be changed when it has to differentiate).

Virgin Cells (VC) do not suffer an activation process. The goal of effector
cells (EC) and the memory cells (MC) are to explore in a global way the search
space and to explore the neighborhood of the best found solutions, respectively.

Positive selection eliminates 10% of the worst effector cells and negative
selection eliminates effector cells that are similar between them (keeping the
best from them). This mechanism works in the following way: for each effector
cell, we search inside its population the closer cell (using Euclidean distance)
and the worst between them is eliminated. This process reduces the effector’s
population size.

The constraint-handling method needs to calculate, for each cell (solution),
regardless of the population to which it belongs, the following: 1) the sum of
constraint violations (sum_res)! and 2) the value of the objective function (only
if the cell is feasible).

Only effector cells use epsilon constrained method, on equality constraints,
in order to not remove some infeasible solutions from population.

In this work we control the € level according to [14].

€(0) = ¢(xq) 3)

! This is a positive value determined by g;(x)™ for i = 1,...,m and |hg(x)| for k =
1,...,p.
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where z¢ is the 6-th cell from EC. € level is adjusted to be a small value (0.0001)
at iteration 1000. Before EC be activated € for EC is updated as follow:

ep = (=5 — log(epsilon(0))/log(0.05) (4)
epc = epsilon(0) x (1.0 — (iteration/1000.0))? (5)
ep=0.3*%cp+ (0.7 3.0) (6)

term cp, proposed by [14], is decreased in order to search better objective values.

We consider a ce; cell is better than a ce; cell if 1) TCR,’s ce; is feasible
and TCR,’s ce; is infeasible, 2) both cells have feasible TCR,s but objective
function value’s ce; is lower than objective function value’s ce; and 3) both cells
have infeasible TCR,s but sum_res’ ce; is lower than sum_res’ ce;. This criterion
is used to perform population sort.

4.1 Effector Cells Activation

Only some effector cells through activation process per iteration (U(1,] EC| /2)
23 In order to not bias the search to the best found solutions on each iteration,
with a 80% of probability the best solutions are chosen randomly.

Now, when an effector cell is chosen to be activated, called ce;, this implies
the random selection of a set of potential activator (or stimulating) cells, this
set is composed by some members, given by U(| EC| /2,|] EC|), this means at
least half of cells are chosen to be potential activator of ce;.

The closest or farthest cell to ce;, according to the TCR,. in the set, is chosen
to become the stimulating cell, say ce;. Then, ce; proliferates and differenti-
ates. The proliferation level of each stimulated cell, ce;, depends on its stimu-
lating cell. If ce; is the farthest cell to ce; then ce; will receive, as clones, U(L,
MAX_CLONES), otherwise ce; will receive MAX_CLONES. Even when all this
clones are assigned to each cell, proliferation process stops when, after the differ-
entiation of a clone, this is better than its original cell and this clone is inserted
into the effector population. This is aimed by not consume so many function
evaluations per one cell, if it is possible.

By the other hand, the differentiation level for cell ce; too is related to its
stimulating cell (ce;). If ce; is the farthest to ce; then this level is U(30% dv,
50% dv), otherwise is U(10% dv, 30% dv). *

These level combination are motivated to modify less clones in an intense
way, when they are far from the original cell, and more clones in a soft way,
when they are close to the original cell. In order to explore the search space but
exploit the promising solutions found with the aid of the epsilon constrained
method.

2 U(x,y) returns a random number with a uniform distribution in the range (z,y).
3 | EC| means EC size.
4 dv means the number of decision variables of the problem.
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Once different levels are settled the decision variables to be changed are
chosen in a randomly way. In this step we consider which cell is better(ce; or
cej), in order to drive the search to the best explore areas. Thus, each variable
to be changed is modified (with 95% probability) according to add or subtract a
random value r, 2 = z 47 where z and z_ are the original and the differentiated
decision variables, respectively. Otherwise, a random number with a uniform
distribution is signed to 2. In order to determine if r will be added or subtracted
to x, the following criteria are considered: if ce; is better than ce; and the
decision variable value of ce; is less than the value of ce;, or if ce; is better than
ce; and the decision variable value of ce; is less than the value of ce;, then r =
U(0, (z—1l,)* factor) is subtracted from x; otherwise, r = U(0, (lu, —x)* factor)
is added to x. lu, and [l are the upper and lower bounds of z, respectively.
factor = 1 — % regulated how much is influenced the stimulated from
the stimulating, dist is the Euclidean distance between the cells and maz_dist
is the maximum distance between two points into the search space. If, after add
or subtract r to z, & is not in the allow range then U(ll, — z) or U(z — lu,) is
assigned to x', respectively.

4.2 Memory Cells Activation

Memory cells proliferate according to a maximum number of clones and their
differentiation level is given by random[1, dv]. Both levels are independent from
the other memory cells. All clones are evaluated in order to find the best of them
to replace its original cell if it is better than this.

Here, each variable to be changed is chosen in a random way and it is modified

U(0,1)
U(0,lug—1ly) ’
iter+1 ) » & and

using the following equation: 2" = x & r where r = (
z are the original and the differentiated decision variables, respectively. lu, and
ll,, are the upper and lower bounds of x, respectively. iter indicates the number
of iterations until reaching the maximum number of evaluations for a change.
In a random way, we decide if r will be added or subtracted to x. If, after add
or subtract r to , & is not in the allow range then U(lly — z) or U(z — lug) is
assigned to a?/, respectively.

The general structure of our proposed algorithm for constrained optimization
problems is given next.

TCEC Algorithm

Initialize VCQ);

Calculate_Constraint_VC();

Calculate_Epsilon0_VC(Q)

Evaluate_VCQ);

Sort_VC();

Assign_Proliferation();

Inserte_VC_into_EC();

Positive_Selection();// eliminate the worst cells
Negative_Selection();// eliminate the most similar cells



6 An Immune Artificial Algorithm with Epsilon Constrained

while (A number of evaluations has not been performed) do
for i=1 to repl
Update_Epsilon_ECQ);
Activate_EC(Q);
Sort_EC();
endfor
Insert_CDs_en_MCQ);
for i=1 to rep2
Activate_MCQ);
endfor
Sort_MCQ);
od
Statistics();

The algorithm works in the following way. At the beginning, the TCR,. from
the virgin cells are initialized in a random way. Thus, for each TCR,. of a virgin
cell the constraints are calculated. Then, €(0) is calculated according to Eq. 3
and virgin cells are evaluated and sorted. The proliferation levels are assigned.
The best virgins cells are inserted into EC. Each effector cell will inherit the
proliferation level of the virgin cell which received the TCR.

The negative and positive selections are applied to effector population.

A maximum number of objective function evaluations is allowed. Then the
actions are: update epsilon for EC according to Eq. 4 to 6, to activate the EC
population repl times; in other words, to perform proliferation and differenti-
ation of selected cells from EC. The first clone better than the original cell is
passed to the next iteration. Then, these cells are sorted.

If MC is empty the best solutions from EC are inserted in MC. Otherwise,
best solution from EC is used to replace the worst solution in MC. In any case,
first, the solutions are reevaluated with epsilon=0.0001. Next, the cells from MC
are activated a certain (predefined) number of times, rep2.

Main differences between the original version of the algorithm based on
TCELL model and TCEC include: 1) TCEC eliminates a population called CD4
which uses binary representation for its TCRs and 2) TCEC incorporates epsilon
constrained method.

5 Numerical Experiments and Results

In order to validate TCEC we test it with 36 constrained problems. They were
proposed on CEC 2010 [9]. Eighteen test problems have 10 decision variables
(10D) and the others eighteen have 30 decision variables (30D). In problems with
equality constraints, these are relaxed and converted to inequality constraints
according to | hi(X) |< e. Some preliminary runs were performed. We used
the following parameters: population sizes, | VC| = 100, | EC | = 5, | MC|
=2. rep=10 and repl=100 (for 10D problems C05, C06, C09, C10, C11 and
C17 repl=1000 was required and, for C11 and C17 | MC| =5 was used). 30
independents runs were performed for each test problem. Measures reported are
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taken only with respect to the runs in which a feasible solution was reached
at the end. These measures are best, worse and average values. The maximum
number of functions evaluations is 2 x 10* for 10D problems and 6 x 10* for 30D
problems. Our results, are indirectly compared with respect to jDE-Mut [5], It
performs 25 independent runs and the same number of function evaluations. It is
worth noting that jDE-Mut calculates the average measure according to feasible
and infeasible solutions. The results are showed in tables 1 and 2.

We can see that our algorithm was able to reach feasible solutions for almost
all test function, except for C03 and C11 both with has 30D. It seems that TCEC
is not able to find feasible solutions when the objective function is non separable
or rotated and the constraint equality is non separable.

For 10D problems (see Table 1), comparing our performance with respect
to jDE-Mut our TCEC obtained better results in twelve test problems (C02,
C04 to C06, C11 to C18). But, TCEC was outperformed in remaining five test
problems. For C01, TCEC has a better performance considering the worst and
media values and jDE-Mut got a better value on best measure respect to TCEC,
though very small. It worth noting jDE-Mut got feasible solution on C03 when
TCEC can not do it. For 30D problems (see Table 2), comparing our performance
with respect to jJDE-Mut our TCEC obtained better results in nine test problems
(C02, C04 to C06, C12, C14, C16 to C18). TCEC was outperformed in seven test
problems (C01, C07 to C10, C13 and C15). Any algorithm could found feasible
solutions for C03 and C11.

Regardless of the number of decision variables jDE-Mut does not found any
feasible solutions for (C04 to C06, C11 and C12) while TCEC does, but TCEC
could not found feasible solutions on each run for these five functions, the same
happens for C02. Last, for C09, C10, C16, C17 and C18 (with 30D) TCEC could
not found feasible solutions on each run. Even when TCEC outperforms jDE-
Mut on 21 of the 36 problems our approach shows a big standard deviation on
some of the functions.

6 Conclusions and Future Work

This paper presents a modified version an Artificial Immune System based on
T-Cell Model for solving constrained optimization problems which includes the
epsilon constrained method in one of the three algorithm’s populations in order
to find feasible solutions. The algorithm is called TCEC.

Our proposed algorithm was found to be able to converge to feasible solutions
in almost all cases tested, only it fails in 2 of the 36 test functions. And it shows to
be competitive over the benchmark used when it is compared with a differential
evolution algorithm. Even, TCEC found feasible solutions in 10 test functions
when the algorithm we compare fails.

Obviously, a lot of work remains to be done in order to improve the quality
of the solutions found, so that the approach can be competitive with respect
to the algorithms representative of the state-of-the-art in the area. As future
work, we plan to improve the differentiation processes in order to find more
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Table 1. Function Values Achieves for 10D Problems. The values in bold indicate
which algorithm found the best value. RF% means percentaje of run where a feasible
solution was found. - indicates any feasible solution was found. NotRep means authors
do not report this value.

Problem TCEC jDE-Mut
Best Worst Mean Best Worst Mean
(RF%) (Std.) (RF%) (Std.)
Co1 -7.45e-01 -6.91e-01 -7.35e-01 -7.46e-01 -6.75e-01 -7.34e-01
(100%) (1.33e-02)  (100%) (1.58e-02)
C02 -2.20e+00 4.48¢+00 -3.33e-02 1.33e-01 - 1.45e4-00
(63.3%) (1.88¢+00) (NotRep) (1.27e400)
C03 - - - 1.56e-05 - 9.57e+00
(0%) (-) (NotRep) (4.20e+00)
Cco04 5.23e-02 1.40e+401 1.21e+01 - - -
(50%) (4.91e400) (0%) (-)
C05 -4.62e+02 1.49e+02 -2.89e+02 - - -
(33.3%) (2.33e+02) (0%) )
C06 -5.74e+02 -5.37e+02 -5.64e+02 - - -
(30%) ( 1.18e+01) (0%) (-)
co7 3.65e+01 3.77e4+03  5.80e+02 8.71le-02 1.92e+01 4.17e+00
(100%) (1 8.19e+02) (100%) (4.57e400)
Co08 7.32e+00 1.38¢e+03  1.86e+02 1.10e-04 1.08e+02 1.52e+01
(100%) (2.82e4+02)  (100%) (2.86e+01)
C09 1.42e4+02 3.45e+10 1.51e+09 1.85e-08 - 7.28e+03
(100%) (6.42e4+09) (NotRep) (3.62e404)
C10 2.00e+02 5.51e+10 2.23e+09 4.01e-06 - 7.79e+04
(100%) (1.01e4+10) (NotRep) (3.20e4-05)
C11 7.57e-05 1.39e-03 8.38e-04 - - -
(23.3%) (4.73e-04) (0%) )
Ci12 -5.644+02 4.064+02 -1.73+01 - - -
(96.6%) ( 1.46e+02) (0%) (-)
C13 -6.84e+01 -6.28e¢+01 -6.74e+01 -6.79¢+01 -5.97e+01 -6.59¢+01
(100%) (1.64e+00 ) (100%) (2.36e+4-00)
Cl4 4.24e4+00 3.88e+06 1.30e+05 1.90e+09 4.17e+12 3.40e+11
(100%) (7.08¢4+05)  (100%) (8.83e+11)
C15 3.35¢+09 4.10e+11 9.81e+10 4.33e+09 - 3.67e+13
(100%) (1.05e+11) (NotRep) (6.45e+13)
C16 7.46e-03 1.18e4+00 3.38e-01 6.69e-01 - 9.64e-01
(100%) ( 3.91e-01) (NotRep) (1.09e-01)
C17 6.23e-05 2.88e¢+00 1.02e+00 6.70e+01 - 2.65e+02
(100%) (9.58¢-01) (NotRep) (1.82e+02)
C18 1.16e-05 5.30e+02 5.73e+01 1.77e+03 - 7.93e+03

(100%) ( 1.08¢+02) (NotRep) (5.38¢403)
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Table 2. Function Values Achieves for 30D Problems. The values in bold indicate
which algorithm found the best value. RF% means percentaje of run where a feasible
solution was found. - indicates any feasible solution was found. NotRep means authors
do not report this value.

Problem TCEC JDE-Mut
Best Worst Mean Best Worst Mean
(Std.) (Std.)
Co1 -7.89e-01 -6.98¢-01 -7.47e-01 -8.1e-01 -7.17e-01 -7.93e-01
(100%) (2.5e-02) (100%) (-7.93e-01)
C02 -1.34e+00 4.85e+00 1.28e+400 1.14e+00 - 3.72e+00
(100%) (2.06e4+00) (NotRep) (1.02e+00)
C03 - - - - - -
(0%) Q) (0%) )
Cc04 3.80e-04 1.93e+01 9.68e+00 - - -
(100%) ( 1.03e+01) (0%) -)
C05 -7.60e+00 5.51e+02 2.67e+02 - - -
(63.3%) (1.51e+02) (0%) -)
C06 -3.13e+02 5.78e+02 2.15e+02 - - -
(100%) ( 2.68e+02) (0%) (-)
co7 2.30e+02 1.79¢e+04 2.88e+03 1.25e+01 8.98e+01 4.12e+01
(100%) (15.10e+03)  (100%) (3.07e+01)
Co8 2.89e+01 1.33e+04 2.11e+03 2.05e+01 2.59e+01 1.43e+02
(100%) (3.442¢+03)  (100%) (2.49¢+02)
C09 2.77e+08 1.79e+11 2.63e+10 7.47e-01 - 6.88e-+09
(23.3%) (6.76e4+10) (NotRep) (3.44e+10)
C10 8.53e+08 4.82e+12 5.59¢e+11 3.14e+01 - 5.87e+01
(40%) ( 1.40e+12) (NotRep) )
Cl11 - - - - - -
(0%) ) (0%) )
Ci12 -1.97e-01 1.50e+01 1.12e+400 - - -
(80%) (3.46e4-00) (0%) (-)
C13 -6.49e+01 -5.55e+01 -5.95e+01 -6.51e+01 -5.94e+01 -6.22e+01
(100%) (2.47e4+00)  (100%) (1.44e+00)
Cl4 2.97e+01 3.56e+09 1.80e+08 1.58e+12 3.27e+13 1.07e+00
(100%) (6.71e4+08)  (100%) (8.12e+12)
C15 3.29e+11 5.24e+12 2.41e+12 3.99e+409 2.33e+13 2.16e+12
(100%) (1.29e+12)  (100%) (5.22e+12)
C16 1.70e-01 1.18e+00 8.93e-01 1.02e+00 - 1.02e+-00
(83.3%) (3.01e-01) (NotRep) (2.52e-02)
C17 2.79e-01 1.65e+02 5.37e+01 1.50e+03 - 1.59e+-03
(23.3%) (5.77e+01) (NotRep) (4.35e+02)
C18 1.77e+02 3.31e+04 6.80e+03 6.97e+403 - 3.28e+04

(100%) (1.02e404) (NotRep) (1.33e4-04)
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quickly feasible solutions and also to improve the quality of the found feasible
solutions. Besides, we wish to realize a statistical analysis about the influence of
the parameters over the performance of TCEC.
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