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Abstract. The use of Local Search technique in combination with other
methods is often an effective way for increasing the efficiency of a global
optimization algorithm. In this paper we present an hybrid version
that integrates Differential Evolution with Local Search, applying the
Quadratic Interpolation formula for determining the neighborhood in
which to explore towards better solutions.

We present DE+LS(1) in which the closer neighborhood to the best
population individual is explored, and DE+LS(2) in which the neigh-
borhood of the two best population individuals is examined. The results
showed that with DE+LS(2) improvements are not significant, but using
DE+LS(1) an improvement is achieved, especially for large dimensions,
in terms of solutions quality and speed of convergence.

Keywords: Differential Evolution, Local Search, Quadratic Interpola-
tion, Optimization.

1 Introduction

Many optimization problems of real life are complex, expensive to solve and
sometimes become untreatable. In general, they can not be solved exactly in
a reasonable amount of time. Alternatively it is possible to use algorithms to
approximate the results to the exact solutions.

According to [10], metaheuristics represent a family of approximated
optimization techniques that provide good solutions to complex problems
computed in a reasonable time. In [3] they are defined as solutions methods that
implement an interaction between local improvement procedures and high level
strategies to create a process able to escape from local optimum and search in
the good solutions area. Osman and Kelly [8] consider them as a set of concepts
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that can be used to define heuristic methods applicable to a wide variety of
problems.

Metaheuristics family is divided into two categories formed according to the
number of solutions used: single solution based metaheuristics (also known as
trajectory metaheuristics) and population based metaheuristics. The first one
starts with a single solution that is perturbed to explore the search space of the
problem addressed. The latter is characterized by working with a set of solutions,
called population, represented by individuals who interact with each other to
make the search process. A simple and well-known single solution method is
Local Search, which is generally used in combination with other techniques.
Within population metaheuristics Differential Evolution can be found as a
method of common choice.

This paper presents a hybrid technique that combines two algorithms applied
to large scale optimization problems. We propose to use Local Search with
Quadratic Interpolation to improve the performance of a classical version of
a Differential Evolution algorithm.

The goal of this study is to demonstrate how Local Search scheme can
increase the performance of the Differential Evolution algorithm.

The rest of this paper is organized as follows: Sections 2 and 3 describe and
characterize the methods used to construct the proposed algorithm. Section 4 the
proposal is specified, stating all the components that interact in their execution.
Subsequently, the results analysis is presented, including non parametric statistic
tests. Finally, a conclusion of all the work done and future works is presented.

2 Local Search

Within single solution based methods, Local Search (LS) is possibly the oldest
and the most operationally simple [10]. Perhaps, this is the reason why it is
widely used in practice to solve optimization problems.

Local Search starts at a given initial solution. At each iteration, the current
solution is replaced by a neighbor that improves the objective function. The
search stops when all candidate neighbors are worse than the current solution,
meaning that a local optimum is reached. A basic scheme of Local Search is
illustrated in Algorithm 1.

Algorithm 1: Template of a Local Search algorithm.

s= s0 ; /* Generate initial solution s0 */
While not Termination Criterion Do

Generate (N (s)) ; /* Generation of candidate neighbors*/
If there is no better neighbor Then Stop ;
s = s’ ; /* Select a better neighbor s’ ∈ N (s) */

Endwhile
Output: Final solution found (local optima).

Although LS is simple and easy to code, one of the main disadvantages is
that it does not obtain good performance when the objective function has many
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local optima. If the function is highly multimodal, as in the case of the most
of the optimization problems, it is not an effective method to use. For this
reason, many applications use it in combination with other metaheuristics, in
order to exploit Local Search potentialities applied not only to single solution
based metaheuristics ([5], [4]), but also to population based metaheuristics such
as Particle Swarm Optimization ([15]) or Differential Evolution ([1]).

3 Differential Evolution

The Differential Evolution (DE) algorithm was proposed by Rainer Storn and
Kenneth Price in 1995 [9]. It is a population based optimizer that starts
generating a population of NP D-dimensional vectors whose initial values are
randomly obtained based on the limits defined by the inputs of the algorithm.

Each of the NP individuals belongs to a generation g, i.e., let Xi,g =
(x1

i,g, ..., x
D
i,g) a population individual, with i = 1, ...,NP where the index i

denotes i-th population individual and g determines the generation to which
the individual belongs.

The main idea of the method is to use difference vectors in order to modify the
population vector. This idea has been integrated into a recombination operator
of two or more solutions, and a self-referential mutation operator to guide the
search towards “good” solutions.

The main DE operators are explained below:

Mutation: After initialization, DE mutates and recombines the current
population to produce another one of NP individuals. The mutation process
begins in each generation selecting three random individuals Xr1,g, Xr2,g, and
Xr3,g. The i-th individual is perturbed using the following strategy:

“DE/rand/1” : Vi,g+1 = Xr3,g + F ∗ (Xr1,g–Xr2,g), (1)

where i = 1, ...,NP and r1 6= r2 6= r3 6= i. The constant F represents a scaling
factor and controls the difference amplification between individuals r1 and r2,
and it is used to avoid stagnation in the search process. The formula (1) is the
most general of the mutation strategies. Additionally, the original DE version
proposes four strategies:
“DE/best/1”:Vi,g+1 = Xbest,g + F ∗ (Xr1,g–Xr2,g)

“DE/rand-to-best/1”:Vi,g+1 = Xr1,g + F ∗ (Xbest,g–Xr2,g) + F ∗ (Xr3,g–Xr4,g)

“DE/best/2”:Vi,g+1 = Xbest,g + F ∗ (Xr1,g–Xr2,g) + F ∗ (Xr3,g–Xr4,g)

“DE/rand/2”:Vi,g+1 = Xr1,g + F ∗ (Xr2,g–Xr3,g) + F ∗ (Xr4,g–Xr5,g)

The indexes r1, r2, r3, r4, r5 are integers numbers different from each other,
randomly generated in the range [1, NP]. Xbest,g is the best individual, i.e., it
has the best value of the objective function evaluation among all individuals of
current generation g.

Crossover : After the mutation phase, the perturbed individual Vi,g+1 =
(v1i,g+1, ..., v

D
i,g+1) and the individual Xi,g = (x1

i,g, ..., x
D
i,g) are involved in
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the crossover operation, generating a new vector Ui,g+1 = (u1
i,g+1, ..., u

D
i,g+1),

denominated “trial vector”, and obtained in the following way:

U j
i,g+1 =

{
vji,g+1 if randj ≤ Cr or j = k

xj
i,g in other case,

where j = 1, ..., D, and k ∈ {1, ..., D}. The latter is a randomly generated index
chosen for each individual. The constant Cr, denominated crossover factor, is a
parameter of the algorithm defined by the user. Cr belongs to the range [0, 1]
and is used to control the values fraction that are copied from the mutant vector
V . randj is the output of a uniformly distributed random number generator. If
this random number is less or equal to Cr the trial vector component is inherit
from the mutated vector Vi,g+1; if not, this value is copied from the vector Xi,g.

It can be seen that the value k is taken from the mutated vector to ensure
that the trial vector is not exactly equal to its source vector Xi,g.

Each method mentioned before is associated to a specific crossing type,
according to the mechanism by which the mutation is performed. These are
binomial or exponential crossover operators. The former integrates only some of
the vector components, while in the second all the individual components are
integrated.

Selection: This phase determines which element will be part of the next
generation. The objective function of each trial vector Ui,g+1 is evaluated and
compared with the value of the objective function for its counterpart Xi,g in
the current population. If the trial vector has less or equal objective function
target value (for minimization problems) it will replace the vector Xi,g in the
population of next generation. The scheme followed is:

Xi,g+1 =

{
Ui,g+1 if f(Ui,g+1) ≤ f(Xi,g)
Xi,g in other case.

The three stages mentioned above are repeated from generation to generation
until the specified termination criterion is satisfied.

Due to the potentialities provided by the DE utilization for optimization
problems, in recent years it have been proposed numerous variations and
methods that attempt to improve the performance of the classic technique.
Among them are those trying to adapt DE parameters such as self-adjusting
([12],[16], [14], [2]); others using different mechanisms to optimize the individuals
selection for the mutation and selection phases ([6]), and some combining both
methods ([13]).

It has also been investigated the utilization of Differential Evolution in
conjuction with other methods, conforming hybrid algorithms. One of them
combines DE with single solution based metaheuristics ([1] [7]).

4 The proposed algorithm

The proposed algorithm is based on [1], in which two Local Search strategies are
used for the neighborhood generation. One of them, named Interpolated Local
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Search, has its foundations in the Quadratic Interpolation mathematical formula.
It consists of obtaining the parabolic curve determined by three different,
randomly selected points in the plane. The point located at the minimum of
that curve is evaluated in the following way:

Y =
1

2

(X2
r1 −X2

r2)f(Xr3) + (X2
r2 −X2

r3)f(Xr1) + (X2
r3 −X2

r1)f(Xr2)

(Xr1 −Xr2)f(Xr3) + (Xr2 −Xr3)f(Xr1) + (Xr3 −Xr1)f(Xr2)
, (2)

where Xr1 , Xr2 and Xr3 are different each other; and f is the function to
approximate.

Then, it was decided to apply the formula component by component as
follows: Let Yg = (y1g , .., y

D
g ) , Xr1,g = (x1

r1,g, .., x
D
r1,g), Xr2,g = (x1

r2,g, .., x
D
r2,g)

and Xr3,g = (x1
r3,g, .., x

D
r3,g). Each component yig is calculated using the following

formula:

y
i
g =

1

2

((xi
r1,g)

2 − (xi
r2,g)

2)f(Xr3,g) + ((xi
r2,g)

2 − (xi
r3,g)

2)f(Xr1,g) + ((xi
r3,g)

2 − (xi
r1,g)

2)f(Xr2,g)

(xi
r1,g − xi

r2,g)f(Xr3,g) + (xi
r2,g − xi

r3,g)f(Xr1,g) + (xi
r3,g − xi

r1,g)f(Xr2,g)

(3)

It can be observed that the main idea is based on trying to approximate each
of the vector dimensions. The selection of the individuals Xr1,g, Xr2,g and Xr3,g

was done with the goal of guiding the search close to the neighborhood of the
best population individual.

The proposal developed applies two selection schemes in Local Search. The
formula (3) is applied with the following individuals:

– DE+LS(1): Randomly selecting two individuals, in combination with the
best individual found.

– DE+LS(2): Randomly selecting one individual, in combination with the two
best population individuals found.

The developed process applies the classic DE scheme until the selection phase.
After each generation completion (including initial generation) Local Search is
applied. The scheme is summarized in the following steps:

1. Generate the initial population.

2. Compute the objective function values for the individuals.

3. while not Finalization Criterion do

4. Apply LS with the corresponding scheme (DE+LS(1) or DE+LS(2)).

5. if the new generated individual is best than the current best then

6. replace the best (and update the second best, if using DE+LS(2)).

7. else

8. continue like the classic DE, i.e.:

9. Apply Mutation, Crossover and Selection.

10. Update population for next generation.

11. end

12. end
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Local Search uses the first improvement strategy for the selection of a new
neighbor. In DE the finalization condition is determined by the maximum
number of iterations considered, which is a parameter of the algorithm. For
all tests 6000 iterations were considered.

The determination of the constant factors F and Cr was made based on
earlier studies on ED.3 Then, F = 0.5 and Cr = 0.3 were considered.

5 Results analysis

The performance for the proposed algorithm was tested with a set of scalable
functions, obtained from [11]. For each of them, 30 executions were carried out
with different seeds. The sizes of the problems considered were 30, 100, 500,
with a population made up with 100 individuals (NP=100). Table 1 shows a
brief description of each of the functions used. Two of them are unimodal (f sph
and f sch) and four are multimodal (f ack, f ras, f gri, f ros). Two methods were
used for DE: RAND/1/bin and BEST/1/bin.

Code Name Search range f bias

f sph Shifted Sphere [-100,100] -450
f shc Shifted Shwefel [-100,100] -450
f ros Shifted Rosenbrock [-100,100] 390
f ras Shifted Rastrigrin [-5,5] -330
f gri Shifted Griewank [-600, 600] -180
f ack Shifted Ackley [-32,32] -140

Table 1. Functions used for the study.

The average error is defined as the difference between the current value of
the global optimum and the value obtained by the algorithm. Table 2 shows
the average error and the average standard deviation found with each method,
discriminating the tests according to the dimension analyzed. Cells in bold
indicate the best result. It can be observed that in most cases, when using any
scheme of the hybrid DE+LS algorithm, better error and standard deviation
values are obtained. Analyzing the performance of the proposal, it can be seen
that better results are obtained with the DE+LS(1) method. In those instances
in which the results are better using the classic DE version, the differences
with the hybrid version are not significant. It can therefore be seen that the
proposal demonstrates good performance based on the results of average error
and standard deviation.

It also can be observed a correspondence by comparing the results
obtained between the strategies RAND/1/bin and BEST/1/bin. If there was an
improvement in the quality of the solutions using the BEST method (as opposed
to RAND) with the classical DE version, that improvement is also registered

3 Tests were performed with different values for F and Cr, using functions with similar
features to those used in this work.
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Func.- Met. Dim 30 Dim 100 Dim 500

f sph Best Err. Stdev. Err. Stdev. Err. Stdev.
DE 4.029e-17 1.896e-17 1.916e-16 1.183e-16 2.522e-04 3.157e-04
DE+LS(1) 3.760e-17 1.962e-17 2.274e-16 1.409e-16 1.212e-13 1.326e-13
DE+LS(2) 3.849e-17 1.755e-17 2.175e-16 1.058e-16 2.152e-09 2.031e-09

f sph Rand
DE 0.000e+00 0.000e+00 2.286e-14 6.146e-15 1.241e+06 4.637e+04
DE+LS(1) 0.000e+00 0.000e+00 2.453e-16 9.561e-17 7.358e+03 7.246e+02
DE+LS(2) 0.000e+00 0.000e+00 3.993e-16 1.077e-16 1.409e+04 1.697e+03

f sch Best
DE 4.669e+02 7.713e+00 5.405e+02 6.213e+00 5.883e+02 3.380e+00
DE+LS(1) 4.500e+02 1.565e-09 4.500e+02 1.638e-06 4.817e+02 1.990e+00
DE+LS(2) 4.500e+02 1.462e-08 4.561e+02 1.924e+00 5.268e+02 2.016e+00

f sch Rand
DE 4.500e+02 5.940e-13 4.858e+02 2.100e+00 6.279e+02 1.895e+00
DE+LS(1) 4.500e+02 6.002e-14 4.584e+02 0.846e+00 5.843e+02 3.365e+00
DE+LS(2) 4.500e+02 1.048e-13 4.635e+02 1.344e+00 5.499e+02 0.000e+00

f ros Best
DE 1.964e+01 1.077e+01 2.174e+02 8.836e+01 7.022e+03 1.389e+04
DE+LS(1) 3.257e+01 2.396e+01 2.225e+02 1.187e+02 7.690e+02 2.681e+02
DE+LS(2) 2.261e+01 1.743e+01 1.518e+02 8.305e+01 2.232e+04 1.111e+05

f ros Rand
DE 3.391e+01 2.197e+01 1.625e+02 1.193e+02 1.838e+12 8.077e+10
DE+LS(1) 2.292e+01 1.036e+01 1.073e+02 2.636e+01 1.054e+09 1.898e+08
DE+LS(2) 3.204e+01 2.285e+01 1.064e+02 2.722e+01 2.976e+09 6.744e+08

f ras Best
DE 3.670e-17 1.602e-17 2.032e-16 7.718e-17 1.390e-06 2.771e-06
DE+LS(1) 3.670e-17 1.602e-17 2.130e-16 8.849e-17 2.057e-14 2.380e-14
DE+LS(2) 4.029e-17 1.896e-17 2.238e-16 1.095e-16 3.339e-11 6.686e-11

f ras Rand
DE 0.000e+00 0.000e+00 1.011e-16 7.618e-17 3.067e+03 8.827e+01
DE+LS(1) 0.000e+00 0.000e+00 5.461e-17 2.775e-17 1.811e+01 1.332e+00
DE+LS(2) 0.000e+00 0.000e+00 5.372e-17 2.728e-17 3.348e+01 3.129e+00

f gri Best
DE 3.497e-03 5.715e-03 5.226e-03 2.331e-02 1.990e-01 2.833e-01
DE+LS(1) 1.668e-03 4.139e-03 2.384e-03 4.737e-03 4.039e-02 7.058e-02
DE+LS(2) 4.768e-03 5.930e-03 3.733e-03 6.872e-03 3.546e-01 4.268e-01

f gri Rand
DE 0.000e+00 0.000e+00 1.196e-14 2.671e-15 1.062e+04 3.202e+02
DE+LS(1) 0.000e+00 0.000e+00 1.383e-16 4.292e-17 6.057e+01 6.028e+00
DE+LS(2) 0.000e+00 0.000e+00 2.395e-16 7.049e-17 1.145e+02 1.106e+01

f ack Best
DE -2.718e+00 3.522e-15 -2.718e+00 1.238e-14 -2.716e+00 8.200e-03
DE+LS(1) -2.718e+00 2.970e-15 -2.718e+00 9.867e-14 -2.718e+00 2.997e-09
DE+LS(2) -2.718e+00 2.858e-15 -2.718e+00 1.643e-14 -2.718e+00 1.235e-07

f ack Rand
DE -2.718e+00 0.000e+00 -2.718e+00 2.774e-09 1.631e+01 6.616e-02
DE+LS(1) -2.718e+00 0.00e+00 -2.718e+00 1.447e-10 1.240e+00 1.759e-01
DE+LS(2) -2.718e+00 0.000e+00 -2.718e+00 2.114e-10 2.373e+00 2.315e-01

Table 2. Average error and average standard deviation obtained with the proposed
algorithm with each version.
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for the BEST method in contrast to RAND in any of the two methods. This
correspondence would indicate that the proposal is congruent among different
methods of ED. If any of them reflects an improvement, the same occurs in each
version of the proposed hybrid algorithm.

5.1 Statistical analysis: non parametric methods

In order to verify if there exists significant differences between the results
obtained with the methods used, an analysis is given below using the Friedman
paired test. The null hypothesis states that there are no significant differences
between DE and the two hybrid versions proposed.

The average error results were the ones used to perform the test, over all
problem sizes (30, 100, 500). Table 3 shows the obtained values. It can be
observed for dimensions 30 and 100 (BEST method) that there is insufficient
evidence to reject the null hypothesis, therefore it can not be ensured that
there are significant differences between the algorithms compared for the stated
problems. Looking again at table 2 it can be seen that the algorithms behavior
for dimension 30 and for dimension 100 (BEST method) is more regular and
balanced.

Problem size RAND BEST

30 0.529200 0.154200
100 0.009404 0.846500
500 0.005704 0.009404

Table 3. Friedman test. p-value obtained comparing DE vs DE+LS(1) vs
DE+LS(2).

However, in all comparisons made for dimension 500 a p-value < 0.05
is obtained, indicating that there is significant evidence to reject the null
hypothesis. From this it is inferred that there are marked differences between
the algorithms with all versions and methods applied. Looking at dimension 500
in table 2 for each function it can be analyzed that in general the performance
is better using hybrid versions in contrast with the classic DE version. This is
consistent with the results of the non-parametric test for this dimension, and for
the dimension 100 using the Differential Evolution RAND method.

The trend would indicate that the larger the scale of the problems, differences
become more evident. This assumption can be corroborated through the study
and the test generation for larger problem dimensions

As stated above, and considering that in some cases there is a similarity in
the quality of the solutions, the next section presents a study carried out to test
whether the addition of LS improves the performance, in terms of the speed of
convergence.
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5.2 Convergence analysis

A convergence analysis was performed by calculating the average of the objective
function evaluations needed to reach an error of 10−06.

In the proposed algorithm there are three points where the objective function
evaluation takes place. First, it is performed during the population initialization
to calculate the initial costs. Next, in LS, the objective function is used to obtain
the best neighbor, which is one population individual with the lowest cost in the
function evaluation. Finally, in the selection step, the function used to evaluate
the costs of the individuals resulting from mutation and crossover stages. To
analyze the convergence of the proposed algorithm only the evaluations carried
out in DE were taken into account, i.e., those corresponding to initialization and
selection.

Table 4 shows the results obtained for those functions (using the respective
methods). If the error 10−06 is not reached, the total number of evaluations is
600100.

Function Method Dim DE DE+LS(1) DE+LS(2)

f sph BEST 30 27046 14403 16043
f ras BEST 30 20686 12200 12233
f sph BEST 100 82623 33576 51996
f sph RAND 100 361076 301360 309473
f ras BEST 100 64326 33576 40036
f ras RAND 100 281146 233020 237996
f gri RAND 100 353643 295580 302643
f sph BEST 500 600100 229126 431716
f ras BEST 500 600100 181230 349280

Table 4. Function evaluation average to obtain an error of 10−06.

It can be seen that in all cases DE+LS(1) performs less objective function
evaluations, in order to achieve the mentioned error.

6 Conclusions and future works

In this paper we made a comparison between the classic Differential Evolution
algorithm and two hybrid version that combines DE with Local Search, in order
to explore the solution space near the best population individual.

Through the results analysis it was found that the proposed algorithm gives
no significan improvement using DE+LS(2), but with the version DE+LS(1) the
proposal obtains good quality results in contrast to the classical version of DE
in terms of average error, average standard deviation and speed of convergence.

As future works we plan to carry out the study on more complex problems, an
also to compare the proposal performance with other hybrid algorithm versions
and with algorithms of the state of the art on the benchmark analyzed (for
example, the algorithms from the CEC 2008 competition [11]).
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