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Abstract. DNA Microarrays are powerful tools to analyze and identify certain
disease from the expression level of the genes in tissues samples. Many machine
learning techniques are suitable for building predictive models to classify mi-
croarray samples into different biological categories. The accuracy of the predic-
tive model may benefit from a relevant feature selection method and even more,
if the features are ordered in terms of its relevance. In thispaper, we propose a
rank-based method to create the initial population in a Binary DE-SVM based
algorithm used to build a predictive model. The new algorithm (DE-SVMRank)
is evaluated in terms of the achieved accuracy by the predictive model and also,
the execution time required to complete the maximun number of iterations. Ex-
perimental results on public-domain microarrays show thatour proposal reduces
the computational time in comparison with a similar approach while providing
highly competitive results.

Keywords: Feature Selection, Support Vector Machines, Binary Differential Evo-
lution, Ranking of Features

1 Introduction

Microarrays allow biologists to register and analyze simultaneously thousands of sam-
ples of DNA from a particular tissue or cell type. We focus on the measurement of
expression levels of thousands of genes in a single experiment under several condi-
tions [19]. A typical microarray experiment collects a large amount of information. An
important aim of analyzing the information is to identify functionally related genes and
to classify samples into different classes (healthy or diseased).

The classification of samples is an area for the application of machine learning
techniques [12]. A classifier or predictive model can be built from either a supervised or
unsupervised learning technique or a mixture of both. In particular, supervised learning
infers a model from labeled samples for each class. Support Vector Machine (SVM) is
an algorithm capable of generating a robust and efficient andhighly effective predictive
model from labeled samples [9, 7].



A typical microarray data set contains a number of samples much smaller than the
number of genes. Thus, an important challenge for machine learning techniques in high-
dimensional data is the so-called “curse of dimensionality”. This phenomenon affects
the reliability and generalization capacity of the model. Dimension reduction of the
samples can enhance the performance of the model.

Feature selection is area of fundamental interest for machine learning. Feature se-
lection techniques choose a subset of input variables (features) by eliminating redun-
dant and irrelevant features. The machine learning and feature selection techniques can
interact in different ways. In particular, the wrapper method [15] uses the learning tech-
nique to determine which features are selected. We use this method because it allows to
determine interactions among features although it has a high computational cost.

The wrapper methods search for the optimal feature subset onthe space of all pos-
sible feature subsets. This is an optimization problem thatis known to be NP-hard [13]
and the bio-inspired algorithms can be used to solve it successfully [14, 3, 20]. Dif-
ferential Evolution (DE) is one of those novel algorithms designed to find a global
optimum solution. DE utilizes a stochastic parallel directsearch method to explore the
solution space. Moreover, DE has a simple structure and highperformance to tackle
large-dimensional problems such as feature selection for DNA microarray data.

DE starts to explore from randomly spreading solutions along the search space. But
it is known that DNA microarrays contains irrelevant genes.Since the relevance of the
features can be measured in terms of a relationship between features and classes. A
preprocessing method can be used to detect irrelevant genesin advance and reduce the
computational time of the search process [16].

In this paper we propose a preprocessing method to extend DE-SVM approach pre-
sented by Garcia-Nietoet al. in [6]. Our proposal, DE-SVMRank uses the most rel-
evant genes to provide a new population initialization method for DE which searchs
for the best gene subset by employing SVM to build and evaluate a predictive model.
DE-SVMRank have been tested upon four public domain microarray data sets and the
experimental results show that our proposal is highly competitive.

The rest of this paper is organized as follows, Section 2 describes some concepts
of Feature Selection and Section 3 outlines the ranking of features. In Section 4 we
briefly describe Differential Evolution whereas our proposal is explained in Section 5.
The experimental results are presented in Section 6 and finally, Section 7 shows the
conclusions and future works.

2 Feature Selection

Microarray data classification involves a set ofm samples labeled with a class. A sam-
ple is a vectorxi = [xi1, xi2, . . . , xin] of n features (genes), wherexij ∈ [fjmin

, fjmax
]

is the gene expression value for thej-th feature of thei-th sample (1 ≤ i ≤ m; 1 ≤
j ≤ n). The label associates a class value,ci ∈ C with the samplexi, whereC =
{c1, c2, . . . , ck} is a set of class values for the samples. In this work, we consider sam-
ples with only two possible class values (k = 2).

A microarray data set consists of a few hundred samples with several thousands of
features. A lot of these features do not contribute with information for the predictive



model. Thus, and following the definition given in [6], the feature selection is an op-
timization problem for which a feature selection process must find an optimal subset
F ∗ ⊆ F whereF = {f1, . . . , fn} is all the feature set.

Additionally, Johnet al. [10] define the relevance of a featurefi ∈ F through
a probability distribution over the feature values and the different labels. Therefore, a
feature has a strong relevance when the probability distribution is affected whenever it is
eliminated from the set. However, a feature may become weaker (or less relevant) under
certain combination of features. Finally, a feature is irrelevant when its elimination does
not affect the probability distribution.

We can conclude that a optimum feature subset only consists of relevant features.
In the next section, we present a ranking method that could help in determining which
features have enough relevance to be included into the optimal subsetF ∗.

3 Ranking of Features

We have seen in Section 2 that an optimal feature subset contains relevant features and
the respective relevance is defined in terms of feature correlation. Thus, the mutual
information provides a measurement to detect and evaluate the degree of dependence
between variables.

Formally, letp(x) be the prior probability for allx in X and letp(x|y) be the
posterior probability for allx in X given the valuey of Y (for all y in Y ); the mutual
information between two discrete random variablesX andY is given by following
Equation 1 (for more details see [17]):

MI(X ;Y ) = H(X)−H(X |Y ). (1)

whereH(X) = −
∑

i p(xi) log2(p(xi)) is the entropy or measure of uncertainty
contained in the random variableX . The conditional entropyH(X |Y ) defined by
H(X |Y ) = −

∑

j p(yj)
∑

i p(xi|yj) log2(p(xi|yj)) measures the uncertainty re-
maining about the random variableX when it is known the value of the variableY .

The correlation of any feature,fi ∈ F and the class values,C is derived from the
mutual information,MI(C; fi). Besides, we consider that a feature with a larger mu-
tual information value contains more information about class values. Thus, the mutual
information establishes an order on set of featuresF , by placing relevant features first
over irrelevant ones.

Entropy involves to handle discrete random variables, thengene expression contin-
uous values need to be discretized prior to calculate the mutual information. There exist
in the literature several discretization methods, which may be categorized as either su-
pervised or unsupervised [4]. We choose an unsupervised discretization method due to
its low computational cost and its generality for application.

The simplest method isEqual Interval Width Method which involves a parameter
k fixed in advance. This method sorts the values offi and divides the range of values
into,k equal sized parts (bins). The bounds of each bins is defined bybij = fimin

+ j∆
where∆ = (fimax

− fimin
)/k is the width of the bins andj = 0, . . . , k − 1. The

method may lead to losing information because it might combine samples of different
classes into one single bin. However, it has a low computational complexity.



4 Binary Differential Evolution

Discrete Differential Evolution defined by Gonget al. in [8] is an extension to the orig-
inal DE [18]. The modifications involve vectors inD-dimensional discrete space and
a re-definition of the differential operators. In our case, each dimension has two possi-
ble values and thus, we develop the necessary modifications for a Binary Differential
Evolution (BDE).

BDE evolves a set (P ) of N binary vectors,xi
g ∈ {0, 1}D, whereg (g = 0...maxG)

is the current generation in the process of evolution, andi = 1, . . . , N . The population
of vectors is initialized within the solution space. The process searches for the best so-
lution by applying the differential operators to the vectors until a stop condition (maxG)
is reached.

The differential mutation operator generates a mutant vector, vi
g, by randomly se-

lecting one of the possible binary vectors that are located at a given Hamming distance
(Equation 2) from the base vector,x

r1
g :

dH(vi
g,x

r1
g ) =

{

⌈d′⌉ if U(0, 1) < d′ − ⌊d′⌋

⌊d′⌋ otherwise.
(2)

whered′ = F · dH(xr2
g ,xr3

g ) andU(0, 1) ∈ [0, 1] is a random uniformly distributed
value andi, r1, r2, r3 are mutually exclusive integers randomly selected from{1, . . . ,
N}. The scale factorF ∈ [0,+∞) is used to avoid the stagnation of the search pro-
cess. There are different manners to interpretingdH(vi

g ,x
r1
g ) ∈ {0, . . . , D}. We con-

sider any-change mutation wheredH(vi
g ,x

r1
g ) components from the base vector are

randomly selected and flipped.
The binomial crossover operator generates the trial vectoru

i
g by following Equa-

tion 3:

ui
g(j) =

{

vig(j) if U(0, 1) ≤ Cr or j = jr,

xi
g(j) otherwise.

(3)

whereCr ∈ [0, 1] is the crossover probability andU(0, 1) ∈ [0, 1] is a uniform ran-
domly distributed value andjr (jr ∈ {1, . . . , D}) guarantees at least one component of
the mutant vector for avoiding to duplicatexi

g.
Finally, the selection operator accepts the trial vector,u

i
g for the next generation, if

and only if, it leads to an improvement in the current solution,xi
g.

5 DE-SVMRank Algorithm for Feature Selection

We propose to extend DE-SVM with a technique to improve the initialization of the
population of DE. The general outline of our proposal DE-SVMRank, shown in Figure
1, presents two big phases of processing. In the first phase, BDE initializes the popula-
tion from a ranking of features and then, performs a search for an optimal feature subset.
In the second phase, the best subset found is tested to determine the final accuracy of
the feature subset.

A vector of the population represents a feature subsets and has as many components
as genes in the microarray. Thei-th component of the vector is set to1 wheneverfi
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Fig. 1. Outline of DE-SVMRank for gene selection and classification of DNA Microarrays

(i-th gene) is in the subset and0 in other case. In this paper, we propose to initialize the
population as outlined in Algorithm 1.

The algorithm performs a ranking of features (line 1 to 3) followed by the initial-
ization of the vectors (line 4 to 18). The parameterpPOPRANK ∈ [0, 1] establishes
that only a proportion of the vectors of the population are initialized from the ranking
of features. The remaining vectors are initialized in a random (uniform) manner on the
space. The parameterpGENRANK ∈ [0, 1] sets the average number of features to in-
clude initially in each vector. That is due to the size of the feature subsets affects the
computational cost of the whole process. Besides, the experiments show that the opti-
mal subset involves only a few features. Finally, the parameter pRank ∈ [0, 1] limits
the initialization of the vector from only a proportion of the best features.

Equation 4 shows the design of the objective function that guides the evolutionary
process. Based on both the size and accuracy of the feature subset, the functionh assigns
a fitness value to each vector of the population.

h(xi) = α · accuracy + (1− α) ·#features (4)

where#features is the size of the feature subset andaccuracy is the percentage of
correctly classified training samples by the model andα ∈ [0, 1] regulates the strength
given to each objectives. After some attempts, we decide to useα = 0.3.

We use a quite popular method known asCross-validation method to estimate the
error of the model. The method divides the training set intok-folds of equal size, each
fold is left out of the SVM classifier design and used as testing set. The error estimation
is computed as the overall error measured on all folds. It is desirable although difficult to
achieve an unbiased model with a low variance. We have chosenk equal to10 because
the method shows both low bias and variance to a reasonable computational cost [5].



Algorithm 1 Initialization of the DE population
• Let F be the feature set and let B be the set of bins where the values of fi are into [−1, 1];

//Ranking Process
1: Calculate the frequency offj into each binbjl (fj ∈ F, bj ∈ B, 1 ≤ l ≤ k);
2: CalculateMI(C; fj) (see Equation 1) (fj ∈ F, 1 ≤ j ≤ D);
3: SortF in decreasingMI values;

//Initialization of the population
4: Y ← SelectN ∗ pPOPRANK unique random values from{1, . . . , N}
5: for each vectorxi of the populationP do
6: if i ∈ Y then
7: Z ← SelectD ∗ pGENRANK unique random values from{1, . . . , D ∗ pRank}
8: else
9: Z ← SelectD ∗ pGENRANK unique random values from{1, . . . , D}

10: end if
11: for each positionj of xi do
12: if j ∈ Z then xi(j)← 1 else xi(j)← 0
13: end for
14: end for
15: Output: PopulationP .

6 Experimental Results

Next, we compare the performance of our proposal, DE-SVMRank and DE-SVM ap-
proach. We study the accuracy of the optimal feature subset and the computational cost
of both proposals. BDE and feature selection method are implemented using MALLBA
library [1] (C++). Our proposal make use of the LIBSVM library [2] to try and validate
the predictive model.

6.1 Data Sets

We evaluate our proposal using real-world data sets. Table 1lists public domain mi-
croarray data sets collected in the Kent Ridge Biomedical Dataset public repository [11].
In all cases, the gene expression level values are normalized and scaled into[−1, 1]. This
will ease the comparison among data sets.

6.2 Parameter Setting

DE-SVMRank was executed on a heterogeneous PCs cluster with Intel processors and
Linux O.S. (Debian distribution). SVM was configured with a Linear Kernel and the
best parameter value was found in a pre-processing stage. Table 2(a) summarizes the
kernel parameter values for each data set. A trial-and-error process was employed to
adjust the parameters of BDE. The best options are outlined in Tables 2(b) and 2(c).

6.3 Analysis of Results

First, we display in Table 3 the number of genes in terms of themean of the best feature
subset obtained in 25 independent runs. The total number of genes of each microarray



Table 1.Data sets, amount of genes, and number of samples

Data set No. of genes Class Training Set Testing Set
No. of Samples No. of Samples

Prostate Cancer 12600
Tumor 52 25
Normal 50 9

Ovarian Cancer 15154 Tumor 108 54
Normal 65 26

Lung Cancer 12533 MPM 16 15
ADCA 16 134

Leukemia 7129
ALL 27 20
AML 11 14

Table 2.DE-SVMRank parameter settings

(a) SVM settings

Data sets C

Prostate Cancer0.03125
Ovarian Cancer 0.03125
Lung Cancer 0.03125
Leukemia 0.5

(b) BDE settings

BDE
Parameters

F 0.05
Cr 0.08
N 25
maxG 4000

(c) Ranking settings

Ranking
Parameters

pPOPRank 0.5
pGENRank 0.07
pRank 0.9

is summarized in the second column. The mean size of the initial subset and final subset
for DE-SVMRank is shown in the third and fourth columns respectively. We must notice
that in the last column, all results confirm that the size of the original set (column two)
has been reduced by an amount close to99, 95%.

Table 3. Number of genes (original set and the obtained from DE-SVMRank) and the average
reduction percentage for each data set

Data Sets No. Genes DE-SVMRank

(all set) No. genes (initial) No. genes (final) Reduction(%)
Mean (s.d) Mean (s.d)

Prostate-Cancer 12600 428.6(±9.4) 4.2(±1.2) 99.97
Ovarian-Cancer 15154 526.2(±12.7) 6.4(±1.6) 99.96
Lung-Cancer 12533 424.8(±10.6) 3.7(±1.5) 99.97
Leukemia 7129 232.4(±8.9) 2.9(±0.5) 99.96

The accuracy is computed as the percentage of correctly classified samples over
the total amount of classified samples. The accuracy for the whole feature set, using
the testing set with SVM, is shown in the second column of Table 4. Columns three to
five of the table summarize the values of accuracy in terms of the best feature subset
obtained in 25 independent runs. The third column shows the evaluation on the training
set, and the fourth and fifth columns does it on the testing set. The average accuracy



(column five) is slightly smaller than the one of the originalfeature set. However, note
that the best execution of our proposal (column four) improves the accuracy of the
original feature set in three of the four case.

Table 4.Accuracy Values (on training and testing set) for SVM and DE-SVMRank

Data Sets
SVM DE-SVMRank

Ac. (all the set) Ac. Train (%) Ac. Final (%)

Testing set (%) Mean (s.d.) Best Mean (s.d.)

Prostate-Cancer 91.1 90.1(±3.4) 100 80.8(±10.1)
Ovarian-Cancer 99.4 97.2(±2.2) 100 97.0(±2.4)
Lung-Cancer 100.0 99.0(±1.7) 99.32 90.4(±8.1)
Leukemia 85.3 99.7(±0.9) 91.17 73.5(±8.4)

In Table 5, we display the execution time required by DE-SVMRank to perform
the whole process. Note that Ovarian Cancer microarray consumes a larger amount of
computer time. But it is due to it has a larger number of features and also a larger number
of samples in the training set. However, the execution time is relatively low. Moreover,
the initialization procedure of DE-SVMRank (column 4) requires a negligible amount
of time.

Table 5.Execution time (in sec.) required by DE-SVMRank and also average time (in percentage)
spent in the initialization procedure of DE-SVMRank (25 independent runs)

Data Sets
DE-SVMRank

Total Time (sec.) Ini. Time (%)

Best Mean (s.d)

Prostate-Cancer9, 59E+2 1.02E+3(±4.03E+1) 0.004
Ovarian-Cancer 1, 92E+3 2.00E+3(±1.10E+2) 0.003
Lung-Cancer 2, 83E+2 2.86E+2(±6.54E+0) 0.009
Leukemia 1, 85E+2 1.84E+2(±4.91E+0) 0.009

Finally, we evaluate and compare DE-SVMRank and DE-SVM with regard to the
execution time. In the case of DE-SVM, it was used the same parameter settings as for
DE-SVMRank. Although 5 independent runs were done because each one of them re-
quires too much time to complete all the process. The resultsare summarized in Table 6.
Note that our proposal notably reduces (up to90%) the time consumed by DE-SVM to
process the same microarrays.

Moreover, we compare both approaches with regards to the number of genes of the
best feature subset along the process. For that, we select the median of the runs on both
approaches, for the Ovarian Cancer microarray. Note in Figure 2, that the predictive
model may benefit from the ranking technique as it selects a smaller number of features
than DE-SVM.



Table 6.Execution time required by DE-SVM (5 independent runs) and percentage of reduction
time by using DE-SVMRank (25 independent runs)

Data Sets DE-SVM DE-SVM vs. DE-SVMRank

Time (sec.) Reduction (%)mean (s.d.)

Prostate-Cancer 5.10E+4(±6.96E+3) 98.00
Ovarian-Cancer 6.34E+4(±1.03E+4) 96.85
Lung-Cancer 4.58E+3(±4.27E+1) 93.77
Leukemia 2.06E+3(±2.10E+1) 91.09

Fig. 2. Number of genes along the evolutionary process in a typical execution (median) of DE-
SVM and DE-SVMRank on Ovarian Cancer microarray experiment.
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7 Conclusions and Future Work

In this paper, we have presented DE-SVMRank, an extension to DE-SVM algorithm.
Our proposal involves a new population initialization scheme for DE based on a ranking
of the features. We have compared the performance of our proposal with DE-SVM on
public domain microarrays. Generally, DE-SVMRank obtained a higher accuracy than
DE-SVM and that the predictive model from the original feature set. We also found
that the execution time is drastically reduced from the initialization based on feature
ranking. The feature selection process and the accuracy of the predictive model also is
benefited from the initialization procedure.

As future work, we plan to employ another techniques of ranking more specific
without increasing the execution time. Also, we plan to utilize other microarray exper-
iments and compare it with other state-of-the-art techniques.
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