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Abstract. DNA Microarrays are powerful tools to analyze and identigrtain
disease from the expression level of the genes in tissugglesnMany machine
learning techniques are suitable for building predictivedels to classify mi-
croarray samples into different biological categoriese &hcuracy of the predic-
tive model may benefit from a relevant feature selection ow#nd even more,
if the features are ordered in terms of its relevance. Inghjser, we propose a
rank-based method to create the initial population in a BifdE-SVM based
algorithm used to build a predictive model. The new algontfDE-SVMgani)
is evaluated in terms of the achieved accuracy by the pieeliotodel and also,
the execution time required to complete the maximun numbéetions. Ex-
perimental results on public-domain microarrays show dhatproposal reduces
the computational time in comparison with a similar apphoatile providing
highly competitive results.

Keywords: Feature Selection, Support Vector Machines, Binary Déffeial Evo-
lution, Ranking of Features

1 Introduction

Microarrays allow biologists to register and analyze siamgously thousands of sam-
ples of DNA from a particular tissue or cell type. We focus be tneasurement of
expression levels of thousands of genes in a single expetiomer several condi-
tions [19]. A typical microarray experiment collects a la@mount of information. An
important aim of analyzing the information is to identifynetionally related genes and
to classify samples into different classes (healthy oratied).

The classification of samples is an area for the applicatfomachine learning
techniques [12]. A classifier or predictive model can betlftoim either a supervised or
unsupervised learning technique or a mixture of both. Itigaar, supervised learning
infers a model from labeled samples for each class. Suppaib¥Machine (SVM) is
an algorithm capable of generating a robust and efficienhégtdy effective predictive
model from labeled samples [9, 7].



A typical microarray data set contains a number of sampleshnsmaller than the
number of genes. Thus, an important challenge for machameileg techniques in high-
dimensional data is the so-called “curse of dimensionalithis phenomenon affects
the reliability and generalization capacity of the modeimBnsion reduction of the
samples can enhance the performance of the model.

Feature selection is area of fundamental interest for madieiarning. Feature se-
lection technigues choose a subset of input variablesuffes) by eliminating redun-
dant and irrelevant features. The machine learning andrieatlection techniques can
interact in different ways. In particular, the wrapper noetifil 5] uses the learning tech-
nique to determine which features are selected. We use #ttsad because it allows to
determine interactions among features although it hastadugputational cost.

The wrapper methods search for the optimal feature subseospace of all pos-
sible feature subsets. This is an optimization problemithlatown to be NP-hard [13]
and the bio-inspired algorithms can be used to solve it ssfablly [14, 3, 20]. Dif-
ferential Evolution (DE) is one of those novel algorithmssigeed to find a global
optimum solution. DE utilizes a stochastic parallel dirgearch method to explore the
solution space. Moreover, DE has a simple structure and fpgformance to tackle
large-dimensional problems such as feature selection ki Biicroarray data.

DE starts to explore from randomly spreading solutions@lte search space. But
it is known that DNA microarrays contains irrelevant gerfgiace the relevance of the
features can be measured in terms of a relationship betvezdarés and classes. A
preprocessing method can be used to detect irrelevant geadsance and reduce the
computational time of the search process [16].

In this paper we propose a preprocessing method to exten8\INEapproach pre-
sented by Garcia-Nietet al. in [6]. Our proposal, DE-SVM, .. uses the most rel-
evant genes to provide a new population initialization rodtfor DE which searchs
for the best gene subset by employing SVM to build and evalagiredictive model.
DE-SVMg,1 have been tested upon four public domain microarray dassaset the
experimental results show that our proposal is highly cditipe.

The rest of this paper is organized as follows, Section 2rigess some concepts
of Feature Selection and Section 3 outlines the ranking atufes. In Section 4 we
briefly describe Differential Evolution whereas our proglds explained in Section 5.
The experimental results are presented in Section 6 andyfigaction 7 shows the
conclusions and future works.

2 Feature Selection

Microarray data classification involves a setofsamples labeled with a class. A sam-
pleis avectok; = (1, Zi2, . . .,z Of n features (genes), whete; € [f;,...., finae)
is the gene expression value for tji¢h feature of the-th sample { < i < m;1 <
j < n). The label associates a class valges C with the samplex;, whereC =
{c1,¢2,...,cr} is a set of class values for the samples. In this work, we densiam-
ples with only two possible class valuds=£ 2).

A microarray data set consists of a few hundred samples witaral thousands of
features. A lot of these features do not contribute with rimfation for the predictive



model. Thus, and following the definition given in [6], theafere selection is an op-
timization problem for which a feature selection processtfimd an optimal subset
F* C FwhereF = {fi,..., fn} is all the feature set.

Additionally, Johnet al. [10] define the relevance of a featufe € F' through
a probability distribution over the feature values and thfecent labels. Therefore, a
feature has a strong relevance when the probability digtab is affected whenever it is
eliminated from the set. However, a feature may become wdakkess relevant) under
certain combination of features. Finally, a feature isli@vant when its elimination does
not affect the probability distribution.

We can conclude that a optimum feature subset only condisedavant features.
In the next section, we present a ranking method that codjdiheletermining which
features have enough relevance to be included into the apsinibset™*.

3 Ranking of Features

We have seen in Section 2 that an optimal feature subsetinsmédevant features and
the respective relevance is defined in terms of feature ledioa. Thus, the mutual
information provides a measurement to detect and evalbatddgree of dependence
between variables.

Formally, letp(z) be the prior probability for alk: in X and letp(z|y) be the
posterior probability for allz in X given the valuey of Y (for all  in Y'); the mutual
information between two discrete random variablsandY is given by following
Equation 1 (for more details see [17]):

MI(X;Y)=H(X)— H(X|Y). (1)
where H(X) = — 3. p(x;)logy(p(x;)) is the entropy or measure of uncertainty
contained in the random variablE. The conditional entropyd (X|Y") defined by
H(X|Y) = =32 ply;) > p(wily;)logs(p(w:]y;)) measures the uncertainty re-

maining about the random variablwhen it is known the value of the variabte

The correlation of any featurd; € F and the class value§; is derived from the
mutual information M I(C; f;). Besides, we consider that a feature with a larger mu-
tual information value contains more information abousslaalues. Thus, the mutual
information establishes an order on set of featureby placing relevant features first
over irrelevant ones.

Entropy involves to handle discrete random variables, tere expression contin-
uous values need to be discretized prior to calculate thaahinformation. There exist
in the literature several discretization methods, whicly i@ categorized as either su-
pervised or unsupervised [4]. We choose an unsuperviseretization method due to
its low computational cost and its generality for applioati

The simplest method iBqual Interval Width Method which involves a parameter
k fixed in advance. This method sorts the valueg;adnd divides the range of values
into, k equal sized parts (bins). The bounds of each bins is definég by f; ., +jA
whereA = (fi,... — fi...)/k is the width of the bins angd = 0,...,k — 1. The
method may lead to losing information because it might coralsamples of different
classes into one single bin. However, it has a low computaticomplexity.



4 Binary Differential Evolution

Discrete Differential Evolution defined by Gowetal. in [8] is an extension to the orig-
inal DE [18]. The modifications involve vectors il-dimensional discrete space and
a re-definition of the differential operators. In our cassghedimension has two possi-
ble values and thus, we develop the necessary modificatiores Binary Differential
Evolution (BDE).

BDE evolves a setif) of N binary vectorsxg € {0,1}?, whereg (g = 0... maxg)
is the current generation in the process of evolution,sagdl, ..., N. The population
of vectors is initialized within the solution space. The gass searches for the best so-
lution by applying the differential operators to the vestontil a stop conditionfiax¢)
is reached.

The differential mutation operator generates a mutantovecg, by randomly se-
lecting one of the possible binary vectors that are locatedgven Hamming distance
(Equation 2) from the base vecta':

I (v H):{[d’] if U(0,1) <d — |d| 2)

9 |d'| otherwise.

whered’ = F - dy(x?,x}?) andU(0,1) € [0,1] is a random uniformly distributed
value andi, r1, 2,3 are mutually exclusive integers randomly selected ffdm. . .,
N}. The scale factoF' € [0, +o0) is used to avoid the stagnation of the search pro-
cess. There are different manners to interpretipgv;, x;') € {0,..., D}. We con-
sider any-change mutation wheredy (vg, xgl) components from the base vector are
randomly selected and flipped.

The binomial crossover operator generates the trial vectmi; by following Equa-

tion 3:

4 3
t zi(j) otherwise. ®)

i) = {v;(j) if U(0,1) < Crorj=j,
whereCr € [0, 1] is the crossover probability arid(0,1) € [0, 1] is a uniform ran-
domly distributed value ang- (j, € {1, ..., D}) guarantees at least one component of
the mutant vector for avoiding to duplicaté.

Finally, the selection operator accepts the trial vealgrfor the next generation, if

and only if, it leads to an improvement in the current soim,ti:og.

5 DE-SVMRgani Algorithm for Feature Selection

We propose to extend DE-SVM with a technique to improve tligalization of the
population of DE. The general outline of our proposal DE-S¥M., shown in Figure
1, presents two big phases of processing. In the first phdg iBitializes the popula-
tion from a ranking of features and then, performs a searchrfoptimal feature subset.
In the second phase, the best subset found is tested to detethm final accuracy of
the feature subset.

A vector of the population represents a feature subsetsasmdsimany components
as genes in the microarray. Th¢h component of the vector is set towheneverf;
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Fig. 1. Outline of DE-SVMg.n« for gene selection and classification of DNA Microarrays

(i-th gene) is in the subset afidn other case. In this paper, we propose to initialize the
population as outlined in Algorithm 1.

The algorithm performs a ranking of features (line 1 to 3)diwkd by the initial-
ization of the vectors (line 4 to 18). The paramei#tOPrank € [0, 1] establishes
that only a proportion of the vectors of the population aitdlzed from the ranking
of features. The remaining vectors are initialized in a mmduniform) manner on the
space. The parameteG ENrank € [0,1] sets the average number of features to in-
clude initially in each vector. That is due to the size of thatfire subsets affects the
computational cost of the whole process. Besides, the erpats show that the opti-
mal subset involves only a few features. Finally, the patemeRank € [0, 1] limits
the initialization of the vector from only a proportion oftlest features.

Equation 4 shows the design of the objective function thadegithe evolutionary
process. Based on both the size and accuracy of the feahsetsthe function assigns
a fitness value to each vector of the population.

h(x;) = a - accuracy + (1 — a) - # features @)

where# features is the size of the feature subset anduracy is the percentage of
correctly classified training samples by the model and [0, 1] regulates the strength
given to each objectives. After some attempts, we decided¢o = 0.3.

We use a quite popular method knownGmss-validation method to estimate the
error of the model. The method divides the training set kifolds of equal size, each
fold is left out of the SVM classifier design and used as tgstit. The error estimation
is computed as the overall error measured on all folds. kss$relble although difficult to
achieve an unbiased model with a low variance. We have chioegoal tol0 because
the method shows both low bias and variance to a reasonalgutational cost [5].



Algorithm 1 Initialization of the DE population
e Let F' bethe feature set and let B be the set of bins where the values of f; areinto [—1, 1];
/IRanking Process

: Calculate the frequency gf into each birb;; (f; € F,b; € B,1 <1 < k);

. CalculateM I(C; f;) (see Equation 1)fi € F,1 < j < D);

: SortF in decreasingV/ I values;

WN P

/nitialization of the population
4: Y «+ SelectN x pPOPrank unique random values frofl, ..., N}

5: for each vectok; of the populationP do

6: ifi€Ythen

7 Z <+ SelectD x pGENgran k unique random values frofi, ..., D x pRank}
8

. else
9: Z + SelectD * pGENgrank unique random values froft, . .., D}
10:  endif
11:  for each positiory of x; do
12: if j € Zthen z;(j) < lelsez;(j) «+ 0
13:  end for
14: end for

15: Output: PopulationP.

6 Experimental Results

Next, we compare the performance of our proposal, DE-ZYM and DE-SVM ap-
proach. We study the accuracy of the optimal feature sulpskttee computational cost
of both proposals. BDE and feature selection method aresimghted using MALLBA
library [1] (C++). Our proposal make use of the LIBSVM libydP] to try and validate
the predictive model.

6.1 Data Sets

We evaluate our proposal using real-world data sets. Taliltslpublic domain mi-
croarray data sets collected in the Kent Ridge Biomedictd&k public repository [11].
In all cases, the gene expression level values are norrdaimtscaled intp-1, 1]. This
will ease the comparison among data sets.

6.2 Parameter Setting

DE-SVMg.,r Was executed on a heterogeneous PCs cluster with Intelgsoiceand

Linux O.S. (Debian distribution). SVM was configured with améar Kernel and the

best parameter value was found in a pre-processing stagke Zéa) summarizes the
kernel parameter values for each data set. A trial-and-pnacess was employed to
adjust the parameters of BDE. The best options are outlm@dbles 2(b) and 2(c).

6.3 Analysis of Results

First, we display in Table 3 the number of genes in terms oftean of the best feature
subset obtained in 25 independent runs. The total numbesra@gof each microarray



Table 1. Data sets, amount of genes, and nhumber of samples

Training Set Testing Set

Data set No.ofgenes  Class " Samples No. of Samples
Prostate Cancer 12600 ';Il'g:l%oarl 2(2) 295
Ovarian Cancer 15154 I\Tgrrpnoegl 16058 gg

Lung Cancer 12533 AMD%MA ilg 1%354

Leukemia 7129 ﬁl\blLL ﬂ ig

Table 2. DE-SVMg.nk parameter settings

(@) SVM settings (b) BDE settings (c) Ranking settings
BDE Ranking
Data sets C Parameters Parameters
Prostate Cancer0.03125 F 0.05 pPOPRank 0.5
Ovarian Cancer 0.03125 Cr 0.08 PGENRank 0.07
Lung Cancer  0.03125 N 25 pRank 0.9
Leukemia 0.5 maxg 4000

is summarized in the second column. The mean size of thealigitbset and final subset
for DE-SVMg.nk is shown in the third and fourth columns respectively. Wetmosice
that in the last column, all results confirm that the size efdhiginal set (column two)

has been reduced by an amount closgx®5%.

Table 3. Number of genes (original set and the obtained from DE-SVYM) and the average
reduction percentage for each data set

Data Sets No. Genes DE-SVMgank
(all set) No. genes (initial) No. genes (final) Reduction(%)
Mean (s.d) Mean (s.d)
Prostate-Cancer 12600 428.6(£9.4) 4.2(£1.2) 99.97
Ovarian-Cancer 15154 526.2(+12.7) 6.4(£1.6) 99.96
Lung-Cancer 12533 424.8(+10.6) 3.7(£1.5) 99.97
Leukemia 7129 232.4(+£8.9) 2.9(40.5) 99.96

The accuracy is computed as the percentage of correctlgifidas samples over
the total amount of classified samples. The accuracy for tha@evfeature set, using
the testing set with SVM, is shown in the second column of &@&blColumns three to
five of the table summarize the values of accuracy in terms@best feature subset
obtained in 25 independent runs. The third column showswakation on the training
set, and the fourth and fifth columns does it on the testingTdet average accuracy



(column five) is slightly smaller than the one of the origifedture set. However, note
that the best execution of our proposal (column four) impeothe accuracy of the
original feature set in three of the four case.

Table 4. Accuracy Values (on training and testing set) for SVM and &M rank

SVM DE-SVMgank

Data Sets

Ac. (all the set)  Ac. Train (%) Ac. Final (%)

Testing set (%) Mean (s.d.) Best Mean (s.d.)
Prostate-Cancer 91.1 90.1(£3.4) 100 80.8(£10.1)
Ovarian-Cancer 99.4 97.2(£2.2) 100  97.0(£2.4)
Lung-Cancer 100.0 99.0(£1.7) 99.32  90.4(£8.1)
Leukemia 85.3 99.7(£0.9)  91.17  73.5(£8.4)

In Table 5, we display the execution time required by DE-SVM. to perform
the whole process. Note that Ovarian Cancer microarrayweoes a larger amount of
computertime. Butitis due to it has a larger number of fezg@and also a larger number
of samples in the training set. However, the execution tenelatively low. Moreover,
the initialization procedure of DE-SVM, ;. (column 4) requires a negligible amount
of time.

Table 5.Execution time (in sec.) required by DE-S\iM,.» and also average time (in percentage)
spent in the initialization procedure of DE-S\M.,.« (25 independent runs)

DE-SVMgank
Data Sets - -
Total Time (sec.) Ini. Time (%)
Best Mean (s.d)
Prostate-Cancer 9, 59E+2  1.02E+3(+£4.03E11) 0.004
Ovarian-Cancer 1,92E%3  2.00E*3(£1.10E1?) 0.003
Lung-Cancer  2,83E12 2.86E12(+6.54FE10) 0.009
Leukemia 1,85E12 1.84E12(+4.91E10) 0.009

Finally, we evaluate and compare DE-SYM,, and DE-SVM with regard to the
execution time. In the case of DE-SVM, it was used the samanpeter settings as for
DE-SVMg.nk- Although 5 independent runs were done because each onerofrit
quires too much time to complete all the process. The reatdtsummarized in Table 6.
Note that our proposal notably reduces (up@&;) the time consumed by DE-SVM to
process the same microarrays.

Moreover, we compare both approaches with regards to théeuaofi genes of the
best feature subset along the process. For that, we sedeetddian of the runs on both
approaches, for the Ovarian Cancer microarray. Note inrEi@u that the predictive
model may benefit from the ranking technique as it selectssdlermumber of features
than DE-SVM.



Table 6. Execution time required by DE-SVM (5 independent runs) asdt@ntage of reduction

time by using DE-SVM.»« (25 independent runs)

Data Sets DE-SVM DE-SVM vs. DE-SVMgank
Time (sec.) ; o,
mean (s.d.) Reduction (%)
Prostate-Cancer 5.10E+4(£6.96 E+3) 98.00
Ovarian-Cancer  6.34E14(£1.03E14) 96.85
Lung-Cancer 4.58 13 (+£4.27TF 1) 93.77
Leukemia 2.06 E+3(+2.10E+1) 91.09

Fig. 2. Number of genes along the evolutionary process in a typiketwion (median) of DE-
SVM and DE-SVMg,», On Ovarian Cancer microarray experiment.
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7 Conclusions and Future Work

In this paper, we have presented DE-S¥My, an extension to DE-SVM algorithm.
Our proposal involves a new population initialization stiegfor DE based on a ranking
of the features. We have compared the performance of ouopabwith DE-SVM on
public domain microarrays. Generally, DE-SVi\,;, obtained a higher accuracy than
DE-SVM and that the predictive model from the original featset. We also found
that the execution time is drastically reduced from thealitation based on feature
ranking. The feature selection process and the accuratyegiredictive model also is
benefited from the initialization procedure.

As future work, we plan to employ another techniques of nagkinore specific
without increasing the execution time. Also, we plan toizeilother microarray exper-
iments and compare it with other state-of-the-art techesqu
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