
Power Characterisation of Shared-Memory HPC

Systems?

Javier Balladini¹, Enzo Rucci², Armando De Giusti² 4, Marcelo Naiouf², Remo

Suppi³, Dolores Rexachs³, Emilio Luque³

¹Department of Computer Engineering, Universidad Nacional del Comahue
Buenos Aires 1400, 8300 Neuquén, Argentina

javier.balladini@fai.uncoma.edu.ar

²III LIDI, Facultad de Informática, Universidad Nacional de La Plata
Calle 50 y 120, 1900 La Plata (Buenos Aires), Argentina
{erucci, degiusti, mnaiouf}@lidi.info.unlp.edu.ar

³Department of Computer Architecture and Operating Systems, Universitat
Autònoma de Barcelona

Campus UAB, Edi�ci Q, 08193 Bellaterra (Barcelona), Spain
{remo.suppi, dolores.rexachs, emilio.luque}@uab.es

Abstract Energy consumption has become one of the greatest chal-
lenges in the �eld of High Performance Computing (HPC). Besides its
impact on the environment, energy is a limiting factor for the HPC.
Keeping the power consumption of a system below a threshold is one of
the great problems; and power prediction can help to solve it. The power
characterisation can be used to know the power behaviour of the system
under study, and to be a support to reach the power prediction. Fur-
thermore, it could be used to design power-aware application programs.
In this article we propose a methodology to characterise the power con-
sumption of shared-memory HPC systems. Our proposed methodology
involves the �nding of in�uence factors on power consumed by the sys-
tems. It is similar to previous works, but we propose an in-deep approach
that can help us to get a better power characterisation of the system. We
apply our methodology to characterise an Intel server platform and the
results show that we can �nd a more extended set of in�uence factors on
power consumption.

1 Introduction

High Performance Computing (HPC) has had for decades the only goal of in-
creasing the processing speed of computationally complex applications such as
scienti�c applications. Supercomputers were designed exclusively with the aim
of increasing the number of �oating point operations per second (FLOPS).
This is re�ected in the TOP500 list [13], which uses the FLOPS metric to

? This research has been supported by the MINECO (MICINN) Spain under contract
TIN2011-24384.

4 CONICET



determine the ranking of supercomputers. The performance and the trade-o�
price/performance were the most important objectives.

Thus, this led to the appearance of supercomputers that consume vast amounts
of electrical power and produce so much heat that large cooling facilities must
be constructed to ensure proper performance. According to the Lawrence Liv-
ermore National Laboratory (LLNL), for every watt (W) of energy consumed,
0.7 W is spent in cooling to dissipate the energy. The energy consumption of
current supercomputers is so high that it produces a huge economic impact. In
2005, annual spending in electrical energy at LLNL was of 14.6 million dollars
[8]. Currently, the fastest supercomputer in the world (according to TOP500)
has a power of 7.7 MW. The energy consumption not only has an economic
impact, it also a�ects the ecology and society due to the lack of exploitation of
renewable and clean energy.

In 2007 the �rst list of the Green500 [9] was published, ranking the most
energy-e�cient supercomputers in the world. Thus, the new era of green com-
puting began, avoiding the focus of performance-at-any-cost. Today, the TOP500
is not the only interesting ranking, but also the Green500.

Keeping the power consumption of a system below a threshold is a great
challenge for HPC, motivated by the following reasons, among others. As an
energy de�cit can lead to service disruptions, the energy consumption below the
available energy must be maintained. In addition, in order to improve system
load factor, energy suppliers often provide electricity in low-load periods at a
relatively low cost. They may also provide incentives, through conservation and
load management programs, to encourage elimination or shifting of peak loads
[5]. In case a computing centre is supplied by a intermittent renewable energy
source (for example: wind or solar farms), the energy output from the power plant
increases or decreases over time and the demand of the computing centre must
change accordingly. All these reasons justify the necessity to accurately predict
how changes in computing system parameters and utilisation will impact future
power consumption.

It may be possible to predict the power using any of the following two ap-
proaches. One approach would be to perform an initial training phase in which
the application is running at various system parameters and utilisation while
the power is measured and recorded. This information can then be used to pre-
dict power in new application program executions. Another approach could be
to identify di�erent application phases and to search for historical power data
of microbenchmarks that match with these identi�ed phases. If the identi�ed
phases do not exist in the history, new microbenchmarks are added together
with their power information.

The �rst approach does not seem to be di�cult to achieve. However, un-
fortunately, the production systems do not enable (accurate and �ne grained)
power measurements (for the moment) because it increases costs due to board
space constraints and the need for additional components. In absence of direct
power measurement, the commonly used alternative is to make power models.
The basic idea behind power modelling is to take as input some Performance



Monitoring Counters (PMCs) and software counters and use those to calcu-
late power consumption. Previous works [4,10,7,6,12] calculate the total system
power consumption using several learning techniques such as linear regression,
recursive learning automata, and stochastic power models. There are many dif-
ferent hardware counters that can be tracked, while only a few can be tracked
simultaneously. Thus, we have the problem to choice the best counters that will
result in a accurate model. A power characterisation of computing system could
be used to judiciously select these counters.

In the second approach, microbenchmarks must be generalised in order to
match them with a major number of applications phases. A power characterisa-
tion of the system is also necessary to make this generalisation. Furthermore,
a power characterisation could be used to design power-aware application pro-
grams.

In this article we propose a methodology to characterise the power con-
sumption of shared-memory HPC systems. Our proposed methodology involves
the �nding of in�uence factors on power consumed by the systems, that is a
sensitivity analysis of workload properties and system parameters on the power
behaviour. The workload considers the computation and communication aspects
of applications while disk input/output operations are excluded due to being a
large issue to be discussed beside computation.

Our methodology is similar to previous works [4,10], but we propose an in-
deep approach of the impact of workload properties on power consumption. This
study can help us to get a better power characterisation of system computation.

The remaining of this article is organised as follows. Section 2 exposes the
methodology overview used to characterise the power consumption of shared-
memory HPC systems. Sections 3, 4, 5 and 6 describe the methodology's phases
and present a case of study. Finally, section 7 discusses the conclusions and future
works.

2 Methodology Overview

Our methodology explore in�uence factors of workload properties and system
parameters. The methodology consists of four phases:

1. Identi�cation of system architecture components and parameters. The use of
di�erent parts of hardware and system parameters normally produce di�er-
ent power consumption, so it is necessary to �rst determine what are the
components that make up the architecture and the con�gurable parameters
of the system under study.

2. Development of microbenchmarks. Building of small synthetic applications,
called microbenchmarks, whose operations stress and evaluate special fea-
tures of each architectural component.

3. Test Cases Creation and Electrical Power Measurement. Instrumentation of
the HPC system with a power meter, and measurement of the power used
to compute the microbenchmarks at di�erent system parameters.



4. Finding of Power-In�uence Factors. Identi�cation of in�uence factors based
on measurement result analysis.

The phases are further explained and supported by a case of study in sections
3, 4, 5 and 6.

3 Phase I: Identi�cation of System Architecture

Components and Parameters

A computer consists of a set of components or modules of three basic types that
communicate with each other: processor, memory and Input/Output (I/O). So,
as we are focused on computation but not the I/O phases of programs, we can
determine three system aspects (excluding I/O) to analyse:

1. CPU's functional units. Multi-core processors are composed of several cores
(or CPUs, Central Processing Unit), and a core include several independ-
ent functional units such as Integer Unit, Floating-Point Unit, Branch Pro-
cessing Unit, etc. These units inside a core are candidates to consume dif-
ferent power.

2. Data access. A shared memory system provides a global physical address
space accessed from any core, and a design key issue of these systems is in the
organisation of the memory hierarchy. The cores may have access to a central
shared memory (UMA �Uniform Memory Access�), or may participate in
a memory hierarchy with both local and shared memory (NUMA �Non-
Uniform Memory Access�) . Common memory organisations use shared
caches, buses, and interconnection networks, and we need to evaluate the
in�uence on power consumption of these parts.

3. System Parameters. The parameters of the system that can modify the power
are mainly divided in two types: Resource Hibernation and Dynamic Voltage
Scaling.

(a) Resource Hibernation: The computer components consume power even
when idle. Thus, the technique of resource hibernation turns o� or dis-
connects components in idle moments. The components that can be hi-
bernated depend on each system and can include: hard disks, cores,
network interface cards, and memories.

(b) Dynamic Voltage Scaling (DVS): Reducing the supply voltage reduces
power consumption. However, it increases the delay of logic gates, so
that the clock frequency should be reduced to allow the circuit to work
properly. Current systems allow us to change the CPU's voltage/clock-
frequency and it is clearly a factor to analyse.

In particular, as a case of study, we evaluate the parallel platform Intel Server
System SC5650BCDP, a dual socket with dual core Intel Xeon E5502 [1] pro-
cessors and 16GB of main memory (8GB per socket). Figure 1 shows the archi-
tecture and memory hierarchy, including memory sizes, of the parallel system.



Figure 1. Architec-
ture and memory hierarchy of the system
under study.

Figure 2. Measurement
connection diagram

It is a NUMA system, each processor has an integrated memory control-
ler, and the interconnection system between processors is the Intel QuickPath
Interconnect (QPI), which provides high-speed, point-to-point links. The avail-
able CPU's clock frequencies are: 1.6, 1.73 and 1.86 GHz. For the best of our
knowledge, the system does not support physical hotplug of memories.

The processor supports low power states (C-states) at individual core. On the
contrary, Intel Turbo Boost technology is not supported by E5502 processors.

4 Phase II: Development of microbenchmarks

After identifying what are the components that make up the architecture un-
der study, we developed a set of microbenchmarks that allow us to characterise
it. The microbenchmarks were developed using language C, gcc compiler ver-
sion 4.6.3, under GNU/Linux with Pthreads library for threads management.
To guarantee that the compiler does not a�ect the microbenchmark's purpose,
assembler codes generated by it was veri�ed using the objdump command (with
-d option).

Each microbenchmark launches four threads, where each thread runs a loop
executing between 1 and 2.5 Gigaoperations. Taking into account the hardware
characteristic of the support architecture, we consider the next factors at the
time of developing the microbenchmarks:

Operation and Data Type. Di�erent operations on di�erent data types
have di�erent complexity hardware implementation. We developed microbench-
marks for add, multiply and division operations. Also, four special microbench-
marks were developed. The �rst one evaluates the cost of performing no speci�c
operation. The rest of them evaluates the cost of performing a complex opera-
tion that involves another simpler ones. Data is read from three vectors accessed
sequentially (stride = 1). The data types used are: int (32-bit integer), �oat
(32-bit �oating point) and double (64-bit �oating point).



Operands Accessing Mode. Load and store instructions have di�erent
computational cost. It is interesting to study what occurs with power. We de-
veloped two microbenchmarks: one that only executes load instructions and one
that only executes store instructions.

Non-Uniform Memory Access. The support architecture has a common
memory address space, but the accesses may be local or foreign. The foreign
access uses QPI interconnection link. Thus, we developed two microbenchmarks
that write data in main memory: one with local access and one with foreign
access.

Resources Usage E�ciency. Systems are often scheduled incorrectly and,
as a result, resources usage e�ciency decreases. We developed two microbench-
marks to study the power in�uence of this factor: an e�cient one and an inef-
�cient one. Both microbenchmarks write data in memory but they di�er in the
number of used cores. The e�cient microbenchmark uses all the cores of the
architecture used, while the ine�cient microbenchmark use only one of them.

Parallel Programming Model. Programming models di�er on the way of
dealing process communication and synchronisation, either as shared memory or
distributed memory. OpenMP is the most widely used model on shared memory,
while MPI is the corresponding for distributed memory. We used the NAS Paral-
lel Benchmarks (NPB) [2], implemented both in OpenMP and MPI, to evaluate
the parallel application programming model in�uence on parallel architectures
power. We selected the CG, IS and EP benchmarks which are computation
bound, and the MG benchmark which is communication bound [11]. We selec-
ted only these benchmarks because the others (NPB) do not provide additional
information for our objective. We determined the benchmarks problem size so
that its main memory requirements for execution are met and memory swap-
ping never happens. Particularly, we chose a class C problem size de�ned by the
speci�cation of the NPB.

Cache Friendliness. The access to the memories of parallel machines (im-
plemented with di�erent technologies and placed at di�erent locations) is a can-
didate to be a power in�uence factor. The developed microbenchmarks can be
classi�ed into two groups. The �rst group microbenchmarks are cache friendly,
that is, they have a good cache hit rate. The second group microbenchmarks are
not cache friendly, that is, they have bad cache performance at all the levels.
The cache friendly microbenchmarks work with a data set smaller than the L1
cache size. The data set size of the no cache friendly microbenchmarks is bigger
than the L3 cache size.

In a �rst stage, we focused on intensive use of the CPU, so we have left
the analysis of the c-states (as a power in�uence factor) for the future. Table
2 shows a description of some of the developed microbenchmarks. Input para-
meters are: Characteristic Memory Access Pattern, Data Type, Characteristic
Basic Operation, Cache Friendliness, Parallelism Level and Clock Frequency. The
Characteristic Memory Access Pattern indicates the data structures used by the
microbenchmark and how they are accessed by it. The Data Type parameter
indicates the data type of the data structures that were de�ned in previous



Microbenchmark

Characteristic
Memory
Access
Pattern

Data
Type

Characteristic Basic
Operation

Cache
Friendli-
ness

Parallelism
Level

Clock
Fre-

quency

addFloatCache
a,b,c:
stride-1

Float
k1

for
i=0

k2

for
j=0

cj= aj+ bj Yes 4 f i

divDoubleMem
a,b,c:
stride-1

Double
k1

for
i=0

k2

for
j=0

cj= aj/ bj No 4 f i

storeDoubleCache
a,b:

stride-1
Double

k1

for
i=0

k2

for
j=0

aj= bj= 0 Yes 4 f i

loadDoubleCache
a,b:

stride-1
Double

k1

for
i=0

k2

for
j=0

x = aj , y = bj Yes 4 f i

noOpIntCache
a,b:

stride-1
Int

k1

for
i=0

k2

for
j=0

x =aj , cj= bj Yes 4 f i

multiOpIntCache
a,b,c:
stride-1

Int

k1

for
i=0

k2

for
j=0

cj= 8 * aj+ bj +

aj * aj * 5 / bj + bj * aj

Yes 4 f i

multiAddIntCache
a,b,c:
stride-1

Int

k1

for
i=0

k2

for
j=0

cj= aj+

bj+aj+aj+ 5 + bj+ bj+aj

Yes 4 f i

umaFloatCache
a,b,c:
stride-1

Float

k1

for
i=0

k2

for
j=0

cj= aj+ bj+ cj ,

aj= cj ,bj= cj

Yes 4 f i

e�cientFloatCache
a,b,c:
stride-1

Float
k1

for
i=0

k2

for
j=0

cj= aj/ bj Yes 4 f i

ine�cientFloatCache
a,b,c:
stride-1

Float
k1

for
i=0

k2

for
j=0

cj= aj/ bj Yes 1 f i

... ... ... ... ... ... ...

Table 2. Some developed microbenchmarks

column. The Characteristic Basic Operation parameter represents the opera-
tion performed by each thread of the microbenchmark. The Cache Friendliness
parameters indicates whether the microbenchmark is cache friendly or not. The
Parallelism Level parameter is adjusted to the number of cores of the support
architecture (one thread per core). The Clock Frequency parameter depends on
the available processors clock frequencies. Di�erent executions for di�erent k1,
k2 and f i values were done. In all the cases, each thread performs the same basic
operation on its own data set.

5 Phase III: Test Cases Creation and Electrical Power

Measurement

Once the microbenchmarks are developed, the next step is the creation of test
cases. Test cases are written using bash scripts that execute combinations of



microbenchmarks and system parameters. Once the HPC system is instrumented
with the power meter, the test cases are run and measured.

Following, we explain how to scale the clock frequency using a bash command,
and later we expose the power measurement methodology.

5.1 System Parameter: Clock Frequency Scaling

Modern general purpose processors can scale the frequency of each core indi-
vidually. Access is through the Advanced Con�guration and Power Interface
(ACPI). It is possible to know, for a given core, the available frequencies and
the frequency currently in use, respectively, reading the following two �les in
GNU/Linux:

/sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies

/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq

To change the frequency it is possible to use cpufreq-selector command.
For example, running the command �cpufreq-selector -c 0 -f 1000000� the
core number 0 is set to 1 GHz.

5.2 Power Measurement Methodology

This section explains some de�nitions about power and energy, and the method-
ology typically used to measure the electrical power of a whole system, detailing
the instruments utilised by us.

Power is the rate at which the system consumes electrical energy. The watt
(W) is the unit of real power, equivalent to 1 joule by second (1 J/s), and it is the
product of current times voltage. Energy is the total amount of electrical energy
that the system consumes over time, and is measured in joules or watt-hour
(Wh).

We are interested in power; and energy can be calculated by integrating power
over time. We measure the power consumption of the whole shared-memory
HPC system. For this, we use the oscilloscope PicoScope 2203, the TA041 active
di�erential oscilloscope probe, and the PP264 60 A AC/DC current clamp, all
products of Pico Technology. The electrical signals captured by the dual-channel
PicoScope 2203 are transmitted in real-time via USB to a laptop. The voltage
is measured using the TA041 probe that is connected to one oscilloscope's input
channel. The current of the phase conductor is measured using the PP264 current
probe that is connected to the other input channel of the oscilloscope. Then,
power is calculated as the product of measured voltage and current. The sample
rate for the experiments was of 1000 Hz. The Figure 2 shows the measurement
connection diagram.

6 Phase IV: Finding of Power-In�uence Factors

After running and measuring test cases, we proceed to �nd power-in�uence
factors. Figure 3 shows the average power for the microbenchmarks developed



������
��	�ABCD

EF�������
��	�ABCD

������
��	�ABCD

EF�������
��	�ABCD

������
��	�ABCD

EF�������
��	�ABCD

�A� �CF�� �F��C�

���

���

���

���

���

���

���

�BB B	� ��C AF� ��C�	� ��C�	!BB ��C�	�	�

�
�
�
��
�
�
��
	
A
�
��
BC

D

Figure 3. In�uence of �Operation and
Data Type� and �Cache Friendliness�

������
��	�ABCD

EF�������
��	�ABCD

������
��	�ABCD

EF�������
��	�ABCD

������
��	�ABCD

EF�������
��	�ABCD

�A� �CF�� �F��C�

���

���

���

���

���

���

���

CF�B ��F��

�
�
�
��
�
�
��
	
A
�
��
BC

D

Figure 4. In�uence of �Operands Access-
ing Mode� and �Cache Friendliness�

��������	�ABCD EF���������	�ABCD

���

���

���

���

���

���

���

�F��C������� �F��	�A�������

�
�
�
��
�
�
��
	
A
�
��
BC

D

Figure 5. In�uence of �Non-Uniform
Memory Access� and �Cache Friendliness�

��������	�ABC DE���������	�ABFC

���

���

���

���

���

���

���	�	�A�����E����������� �A���	�	�A�����E�����������

�
�
�
��
�
�
��
	
A
�
��
BC

D

Figure 6. In�uence of �Resources Usage
E�ciency� and �Cache Friendliness�

�� �� �� ��

�	A

�BA

�CA

�DA

�EA

FAA

F�A

��� ���

�
�
�
��
�
�
��
	
A
�
��
BC

D

Figure 7. In�uence of �Parallel Program-
ming Model�

��� ��� ��� ��� ��� ���
���	ABCDEAF��� ��B���	ABCDEAF���

���

���

���

���

���

���

���

���

���

���

���

�����F� ���DA�F� ����F� ����E� �F�

�
�
�
��

�
�
��
	
A
�
��
BC

D

Figure 8. In�uence of �Voltage and Fre-
quency Scaling� and �Cache Friendliness�

to evaluate �Operation and Data Type� and �Cache Friendliness� factors. The
microbenchmarks run at the maximum clock frequency. It can be observed that
microbenchmarks with bad cache performance produce higher average power.
Regarding the �Operation and Data Type� factor, it can be seen that the op-
eration to perform has no signi�cant impact on int data type, except when
the operation is composed of multiple ones (multiOp, multiAdd and multiDiv).
While �oating point data types (�oat and double) have di�erent size, their power
behaviour are similar. Also, it can be seen that the operation to perform impacts
on the average power produced, being these values generally lower than those
for int microbenchmarks.

The in�uence of �Data Type�, �Operands Accessing Mode� and �Cache Friend-
liness� factors are analysed in Figure 4. This chart shows the average power for
the microbenchmarks developed to evaluate those factors at the maximum clock
frequency. It can be observed that average power for load and store microbench-
marks are similar when the cache has a good performance but this similarity dos



not maintain when cache miss rate increases. It can be seen that store instruc-
tions performed in main memory produces higher average power, particularly
when using int and double data types.

Figure 5 shows the average power for �Non-Uniform Memory Access� and
�Cache Friendliness� microbenchmarks at the maximum clock frequency. It can
be observed that average power hardly varies when the cache performance is
good. In the opposite situation, that is when the cache has a bad performance,
the use of the QPI interconnection link decreases average power.

Figure 6 allow us to evaluate the power in�uence of �Resources Usage E�-
ciency� and �Cache Friendliness� factors. This chart shows the average power for
the microbenchmarks developed to evaluate those factors at the maximum clock
frequency. It can be seen that average power increases when resources are used
e�ciently, beyond the cache performance.

The �Parallel Programming Model� in�uence factor is analysed in Figure
7. This chart shows the average power for each NAS benchmark executed at
the maximum clock frequency. It can be observed that the programming model
practically has no impact on the average power of each benchmark tested.

Figure 8 allow us to assess the in�uence of �Cache Friendliness� and �Voltage
and Frequency Scaling� factors. This chart shows the average power for int mi-
crobenchmarks with good and bad cache performance at di�erent clock frequen-
cies (for readability only four microbenchmarks are shown). It can be seen that
average power increases when the clock frequency increases, regardless the cache
performance.

From previous analysis, we can con�rm the in�uence of the studied factors
on the average power of the support architecture:

� When working with �oating point data types (�oat or double), the operation
to perform must be taken into account because it in�uences the produced
average power. It does not occur the same with int data type. Beyond data
type used, the ratio of the number of mathematical operations to the number
of data read from main memory must be a factor to consider.

� When the cache has a good performance, local and foreign accesses have sim-
ilar power behaviours. Nevertheless, when cache performance is bad, foreign
accesses produce lower average power than local accesses.

� Increase the e�ciency in resources usage produces higher average power.

� The parallel programming model is not a power in�uence factor (although
it is an energy in�uence factor as we analysed in [3]).

� The cache performance has no in�uence on the average power produced by
load instructions. However, store instructions produces higher average power
when they are performed in main memory, particularly when int and double
data types are used.

� Beyond the operands accessing mode, the operation to perform, the data
type, the parallel programming model and the cache performance, the aver-
age power increases when the clock frequency increases.



7 Conclusions and Future Works

In this work we present a methodology to characterise the power consumption of
shared-memory HPC systems. The power characterisation can be used to know
the power behaviour of the system under study in order to design power-aware
application programs, and to be a support to reach the power prediction. We
apply our methodology to characterise an Intel server platform and the results
show that we can �nd a extended set of in�uence factors on power consumption.

As future works, we will analyse the in�uence of c-states on power consump-
tion of our platform. Later, we plan to �nd a way to automatically characterise
a system, following our methodology. Furthermore, we will continue working on
power prediction of HPC systems using the information obtained with the power
characterisations.

References

1. Intel E5500 datasheet - Vol 1 (Accessed on 2012),
http://www.intel.com/content/www/us/en/processors/xeon/xeon-5500-vol-1-
datasheet.html

2. NAS Parallel Benchmarks (Accessed on 2012),
http://www.nas.nasa.gov/publications/npb.html

3. Balladini, J., Suppi, R., Rexachs, D., Luque, E.: Impact of parallel program-
ming models and cpus clock frequency on energy consumption of hpc systems.
In: AICCSA. pp. 16�21 (2011)

4. Bircher, W.L., John, L.K.: Complete system power estimation using processor
performance events. IEEE Transactions on Computers 61, 563�577 (2012)

5. Capehart, B.L. (ed.): Encyclopedia of Energy Engineering and Technology. CRC
Press (2007)

6. Contreras, G.: Power prediction for intel xscale processors using performance mon-
itoring unit events. In: In Proceedings of the International symposium on Low
power electronics and design (ISLPED. pp. 221�226. ACM Press (2005)

7. Economou, D., Rivoire, S., Kozyrakis, C.: Full-system power analysis and mod-
eling for server environments. In: In Workshop on Modeling Benchmarking and
Simulation (MOBS (2006)

8. Feng, W.C.: The importance of being low power in high-performance computing.
Cyberinfrastructure Technology Watch Quarterly 1(3) (August 2005)

9. The Green500 website (Accessed on 2012), http://www.green500.org/
10. Jiménez, V., Cazorla, F.J., Gioiosa, R., Valero, M., Boneti, C., Kursun, E., Cher,

C.Y., Isci, C., Buyuktosunoglu, A., Bose, P.: Power and thermal characterization
of power6 system. In: Proceedings of the 19th international conference on Parallel
architectures and compilation techniques. pp. 7�18. PACT '10, ACM (2010)

11. Jin, H., Hood, R., Chang, J., Djomehri, J., Jespersen, D., Taylor, K.: Characteriz-
ing application performance sensitivity to resource contention in multicore archi-
tectures. Tech. rep., NASA Advanced Supercomputing (NAS) Division (2009)

12. Qiu, Q., Wu, Q., Pedram, M.: Stochastic modeling of a power-managed system:
construction and optimization. In: Proceedings of the 1999 international sym-
posium on Low power electronics and design. pp. 194�199. ISLPED '99 (1999)

13. The TOP500 website (Accessed on 2012), http://www.top500.org/




