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Abstract. Molecular Dynamics (MD) simulations can help to utimingn-
derstand an immense number of phenomena at the nano and microscale.
They often require the exploration of large parameter space, and a pos-
sible parallelization strategy consists of sending different parameter sets
to different processors. Here we present such approach using a hybrid
environment of Graphic Processing Units (GPUs) and CPU cores. We
take advantage of the software LAMMPS (lammps.sandia.gov), which
is already prepared to run in a hybrid environment, in order to do an
efficient parameter sweep. One example is presented in this work: the
collision of two clusters is sampled over a multivariate space to obtain
information on the resulting structural properties.
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1 Introduction

In the last few years, Graphic Processing Units (GPUs) have been used in nu-
merous scientific projects due to their large amount of parallel processors and
memory bandwidth. The two primary video cards manufacturers, NVIDIA and
AMD/ATI, have created software development kits to use the GPUs for general
purpose computing. There are several technologies for developing code that can
be executed in a GPU: CUDA [1] from NVIDIA, OpenCL [2], AMD Accelerated
Parallel Processing (APP) [3], OpenACC [4]. Atomistic simulation, including
Molecular Dynamics (MD), is one of the areas where application of GPUs has
grown significantly.

MD simulations follow the trajectories of interacting particles [5], and they
have been extremely successful to model a variety of systems specially at the
nanoscale [6]. A great number of these simulations require High Performance
Computing (HPC) to run, combining hardware and software aspects, and GPUs
offer a possible avenue for fast, energy efficient HPC [7-9]. Indeed, in the past



few years MD applications have been developed to run on GPUs, or successful
MD CPU codes have been ported to GPUs. For instance, in the area of simula-
tions aimed at chemistry and biology stand the works of Amber [10], NAMD [11]
and GROMACS [12]. Furthermore, there are codes that aim to physics and engi-
neering applications, e.g. HOOMD [7], LAMMPS [13], and DL_POLY [14]. These
codes can achieve speed-ups of x2-x50 compared to CPU versions. Here we use
LAMMPS, which is a mature, open source code, in active development and with
a fairly large user community. It can be executed in a hybrid cluster of comput-
ers with multiple GPUs in each node using OpenMPI [15] or MPICH [16]. Also
can work with CUDA and with OpenCL, using a library called Geryon [17,8].
LAMMPS can carry out large simulations, which often could not run in a single
process, into different cores or threads, using efficient parallelization strategies.
For instance, in some tests performed by the authors, a single NVIDIA Tesla
C2070 was able to run a simulation with more than ten million atoms. In this
work we consider an alternative scenario: a large number of simulations, where
each of them can fit into a single core. The simulations differ only by a discrete
number of initial parameters, and a parameter sweep is required. This work focus
on testing parameter sweeps in a GPU and a multicore CPU, since both tech-
nologies are readily available in the market today and they are often combined to
improve performance. We developed a script using the Ruby scripting language
(http://www.ruby-lang.org) that spawns several independent and concurrent
processes of LAMMPS with different input parameters in the GPU and CPU.
We conducted several tests to evaluate how many concurrent processes could
be running at the same time to make maximum use of the GPU and also the
available CPU cores in a single workstation. We created a simulation to test the
parameter sweep script which consist in the collision of two clusters of atoms.
Performance tests show the maximum amount of workload that a GPU can
handle by itself, and how CPU cores can contribute to improve performance,
handling part of that workload. The main objective of this work is to find the
conditions which reduce the completion time (makespan) for a large number of
required simulations, trying to maximize the use of the GPU and CPU cores.

2 Parameter Sweep Code

The Ruby script (which is available in the authors website: http://sites.
google.com/site/simafweb/) is build to execute multiple jobs of LAMMPS
in the GPU and/or CPU in parallel. It is necessary to modify certain variables,
which are the parameters that the LAMMPS input files are going to use, for ex-
ample, the initial set of velocities of the atoms in the system. The script builds
an array containing all the possible combinations for the chosen input variables
and their values. After that, it spawns the desired number of processes in the
GPU and CPU iterating the parameter array, taking a set of parameters in each
iteration inside each process, and building the input file for LAMMPS. The script
changes a skeleton input file and only modifies the desired lines which contain
the parameters we are exploring. Each spawned process creates a directory for



each simulation, and maintains the input file and all the output files in that
directory, separately of the rest of the simulations. Each time a LAMMPS sim-
ulation is finished we write in an output file the parameter set for that run, the
run “number”, and the final time for that simulation. The script uses that output
file for several tasks: first, if the script is interrupted for any reason, it restarts
the last simulation that was running; second, we use it to do post-processing
calculations with the output files from all simulations. A second Ruby script is
used to complete the parameter sweep, calculating needed properties, like av-
erages and standard deviation of relevant quantities, generating another output
file with those results.

3 Nanograin Collisions

3.1 Hardware Infrastructure and Software Details

Simulations were executed in a workstation with multiple CPU cores and a single
GPU. The characteristics are: AMD Phenom 1055T six cores CPU at 2.8 GHz,
with 12GB of RAM, 1 Tb 7200 RPM SATA hard drive and an NVIDIA Tesla
2050C GPU. This GPU has 448 cores running at 1.15 GHz with 3 GB of ECC
memory, it supports single and double precision and has compute capability of
2.0. The Compute Capability (CC) of the GPU indicates which features of CUDA
the GPU can execute, for example: CC 1.3+ supports double precision, previous
versions can only execute code in single precision. The software was installed
in a Linux distribution, Slackware 13.37 64 bit, with LAMMPS version dated
10-Feb-2012, Ruby 1.9.3p194 and CUDA version 3.2. The LAMMPS code was
compiled with OpenMPI 1.4.2 and gcc 4.5.3 with -O2 optimizations, the GPU
package with CC 2.0 and with double and single precision. The LAMMPS code
uses OpenMPI to distribute the jobs between CPU cores in a single workstation
and between nodes of a cluster. All the simulations in this work are executed
using OpenMPI.

3.2 Physical Scenario

We use one simulation to test the parameter sweep script: a complex collision
between two clusters of atoms. A Lennard-Jones (LJ) interatomic potential was
used. LJ interactions are computationally simple, but can describe realistic be-
havior of materials [5]. Simulations can be carried out using dimensionless LJ
units, which will be used from now on. Specifying the LJ parameters o, €, and
mass, for a given material allows the conversion to “real” units. The test case
we consider is the collision of nanograins, of interest in several contexts, from
nanotechnology to astrophysics. There are several studies of such collisions, fo-
cusing on the mixing of grain material [18], or on grain fragmentation [19, 20].
There are also several papers where grains are approximated as elastic spheres
[21], but irreversible plastic deformation will occur for collision velocities above
certain threshold. Accurate determinations of that threshold are not easily car-
ried out, and grain size will affect strain rate and plastic yielding. Here we try to



quantify how much plastic deformation occurs due to the collision. We construct
spherical nanograins, of radius R, from solids with face centered cubic (f.c.c.)
structure but different orientation. To perform the parameter sweep we use three
different relative velocities for the grains, ten different orientations of the lat-
tice, and five impact parameters (distance between the grain centers along the
direction perpendicular to their relative velocity), giving 150 independent simu-
lations. In f.c.c. solids, large stress leads to partial dislocations (PDis) travelling
rapidly through the material. In this case, the partials dislocations run across
the nanograins and are absorbed at the surfaces, leaving behind only stacking
faults (SFs) which change the mechanical properties of the material. Therefore,
to measure the amount of plasticity, atoms in SF's are counted as defective atoms
using a combination of centro-symmetry parameter [22] and coordination num-
ber to avoid counting some surface atoms as part of SFs. We also calculate the
average and standard error of the number of atoms that are in SFs and PDis,
over all simulated orientations, as a function of velocity and impact parameter.
With these values we can observe how the material behaves under collisions with
different velocities and impact parameters.

3.3 Single Simulation

In order to obtain reference times to use as comparison for the multiple sim-
ulations done in the next subsection we executed the collision of nanograins
simulation in both CPU and GPU. We selected a single simulation from the
parameter sweep pool of inputs and executed the mpirun command in the CPU
(using 1,2,4 and 6 cores) and the GPU. The Table 1 shows the wall time for the
simulation in 1,2,4 and 6 MPI tasks (or processes, -np parameter in the mpirun
command) in CPU and GPU for single and double precision. Each MPI task
uses a CPU core, even if it is executing the simulation in the GPU. From the
computed CPU times one can see that the GPU (double precision, running one
MPIT task) has a speed-up 5.39x over the serial case (1 MPI task) CPU and a
speedup of 1.45x over six CPU MPI tasks. For GPU single precision the speedups
are greater, e.g., 12x for the CPU serial case and 3.4x for the six CPUs MPI
tasks. In some cases the GPU is not used to the fullest potential (see Ref. [8]),
it can be seen in Table 1 that two processes running in the GPU in parallel
give better timing than one process, but there is no further advantage in the ad-
dition of new processes because each process must communicate with the rest.
This communication is done through the CPU and the data must go through
the PCI-Express bus, which is time consuming. For CPU-only cases, the timing
decreases as the number of MPI tasks increases, these improvements in timing
are thanks to the MPI effectiveness in the CPU architecture, and the bottleneck
in communication with the PCI-Express bus is missing; in our tests we are not
taking into account MPI communications between hosts of a cluster.

LAMMPS has the ability to do load balancing of processing by splitting the
force calculations between the GPU and CPU [8]. We tested this feature and
we did not obtain any speedups for the number of atoms we simulate (10000).
For further benchmarks and simulations of this feature see the work of Brown et



Table 1. Collision between two nanograins, with 10,000 atoms and 200,000 steps.

Num of | CPU | GPU |GPU
domains double|single

1 2055s| 381s | 163s
2 1031s| 346s | 1465
4 668s | 382s [184s
6 554s | 487s | 268 s

al. [8]. In the next subsection we conduct several tests cases to show how many
parallel jobs the GPU can handle with the final goal of reducing the makespan
of multiple independent simulations. Further testing of LAMMPS simulations
using CPUs and GPUs can be found in Ref. [23].

3.4 Multiple Simulations

In this section we execute the parameter sweep script for multiple simulations in
the GPU and a hybrid scenario using GPU and CPU cores. To obtain reference
times to compare with the hybrid scenario first we executed the multiple simula-
tions using only the GPU, we execute in parallel multiple simulations, distribut-
ing jobs between the CPU and GPU in order to minimize the makespan. The
optimal assignation of resources of CPU and GPU to minimize the makespan it
is a problem of job scheduling which is beyond the scope of the presented work.
Further investigation in this matter is needed. Certain simulations, when the
number of atoms is of the order of 1000 to 10000, can be executed in parallel
using only one GPU, providing the amount of memory available on the GPU be
large enough to satisfy job memory requirements. The GPU can execute multiple
independent processes at the same time, unless the “compute mode” of the GPU
is set to “exclusive process”, in this mode only one process can be executed in
the GPU. We take advantage of this feature and we execute multiple simulations
at the same time for the example described above. Each simulation has 10,059
atoms, runs 200,000 steps and produces 12 MB of data spread in three kinds of
dump files: atoms in stacking faults, atoms in partial dislocations, both dumped
every 20,000 steps, and all atoms in the system, dumped every 25,000 steps. We
execute 150 simulations.

Table 2 shows the makespan for the 150 independent simulations in terms of
the number of processes considered. The column “Parallel simulations” indicates
the number of independent simulations running in parallel. As a reference, the
Phenom CPU executed the same simulations in 60,334 seconds, one independent
simulation per core, six simulations in parallel. For double precision, the GPU is
1.46x times faster than the six CPU cores, launching four simulations in parallel.
For single precision the speedup is 6.96x, for six simulations in parallel.

Figure 2 displays the data collected in Table 2 and one hybrid GPU/CPU
case executing five parallel simulations, four of which are GPU processes and
one CPU process using two cores. It is important to note the drop in wall time



when using more than one process simultaneously, since the GPU can handle
more than one simulation at a time extremely well. The Tesla GPU can run
up to ten independent simulations in parallel, and the best speedup is obtained
with four simulations in parallel, at 1.39x comparing one GPU processes vs four
GPU processes. The number of parallel simulations that the GPU can execute is
related to the amount of memory each simulation requires. For example, running
eight parallel simulations of the collision of nanograins consumes approximately
28% of the total memory of the Tesla GPU (3 GB), as reported by the “nvidia-
smi” command. Simulations with more atoms or more complex potentials will
consume more memory and the number of parallel simulations will depend on
the amount of memory needed by each simulation. There is also a point at which
the amount of parallel simulations will overload the GPU and the makespan will
of course increase.

We conducted several tests cases before selecting which distribution of jobs
between the CPU and GPU double precision would give the lowest final wall
time. Looking at the results in Table 2 we can see that four GPU double precision
processes running the 150 simulations give the best timing. In that case, each
batch of four GPU simulations takes ~1110s to finish, and these four GPU
processes use four CPU cores, while the remaining two cores would remain idle,
opening up the possibility to execute a “hybrid” case. Using these two CPU
cores we obtain that a single simulation takes ~1031s (see Table 1). Therefore,
to improve the makespan, we executed the parameter sweep script with this
configuration: four GPU processes and one CPU process using two cores, running
a total of five parallel LAMMPS simulations. After a batch of five simulations,
the GPU needed the same amount of time to complete the four simulations
as when the CPU was not in use (~1110s), for the CPU simulation the time
was higher (~1250s). With these values we can calculate approximately how
much time will it take to run the 150 simulations with different distributions.
For example: executing 10 simulations in the CPU and 140 in the GPU would
it take ~ 140/4 * 1110s = 38850s for the GPU to finish and ~ 10 * 1250s
= 12500s for the CPU to finish, the CPU will finish first than the GPU. In
Table 3 we can see that the time to run the 150 simulations for this distribution
is 38932s. Based on those results, we run 20 simulations in the CPU (taking
~25000s), and 130 in the GPU (taking =~ 130/4 * 1110s = 36075s), and the
calculated final times are close to the ones obtained in the 150 simulations in
Table 3. For other kind of problems one could make similar tests and obtain
partial times and calculate the nearly optimal distribution and assignation of
the available resources to minimize simulations time.

Table 3 shows the results obtained for the multiple simulations distributed
between CPU and GPU. The “Parallel simul. CPU” column indicates the num-
ber of independent LAMMPS simulations executing in the CPU with each of
these simulations using N number of cores (second column, -np parameter in
mpirun command). The “Parallel simul. GPU” column indicates how many pro-
cesses are running in the GPU in parallel with the CPU. The number of parallel
simulations that are executing in each case is: “Parallel simul. CPU” 4 “Parallel



simul. GPU”, the number of CPU cores in use in each case is calculated by: “Par-
allel simul. CPU” * “CPU Processes” + “Parallel simul. GPU”. The “Distr.”
column indicates the amount of simulations executed in the GPU and CPU for
each case. In the case of hybrid simulations between CPU and GPU (row four in
Table 3), the number of concurrent simulations is five: one simulation (process)
in the CPU using two CPU cores and 4 simulations in the GPU. Comparing
the best result from Table 2 for double precision (41070s) to the best result of
hybrid CPU/GPU (35511s) the speedup is only 1.15x times. The speedup of
this hybrid case with the six cores in the CPU (60334 s) test is 1.69x. Therefore,
for this kind of simulations, executing simultaneously in the CPU and GPU can
reduce the makespan.

Table 3. Hybrid simulations between CPU
Table 2. Collision of and GPU.

grains, 150 simulations.

Parallel] CPU |Parallel] GPU

Parallel | GPU | GPU simul. |processes| simul. | Double| Distr.
simulations|double| single CPU | (-np) | GPU gpu|cpu
1 57238525233 s 6 1 0 60334 s 0]150

2 418855|15409 s 0 0 4 41070s| 150 O

4 41070s| 87558 40038s| 145| 5

6 417315| 86595 389325 | 140] 10

8 41804s| 8304 s 1 2 4 |35511s|130] 20

10 41808 5| 87605 38658 | 120] 30
48218s| 110] 40

Colberg and Hofling [24] performed MD simulations of polymers and con-
cluded that single floating point precision is not sufficient and may result in
qualitatively and quantitatively wrong results. However, for the type of sim-
ulations presented here, single precision might be a valid option. We selected
one simulation from the 150 performed, and calculated the energy difference
between double and single precision runs, and the difference was close to the
0.0007%, which is perfectly acceptable, especially given the decrease in wall time.
LAMMPS also has a mixed precision option (not used in this work), where po-
sitions are stored in single precision, but accumulation and storage of forces,
torques, energies, and virials are performed in double precision.

4 Plasticity in Nanograins

Figure 3 shows snapshots of selected simulations for different velocities V. The
lowest velocity case shown here (V=0.3) does not include any SFs, and the
deformation at the interface is only elastic, as assumed in most granular models
[25]. We also include results for V=6, indicating that there is already a large
degree of fragmentation and amorphization, and one cannot easily identify line
and planar defects. We observe SFs at intermediate velocities, in {111} planes.



Figure 1 quantifies the amount of plasticity, counting SF atoms, vs. velocity.
Plasticity increases with velocity and decreases as the impact parameter grows.
This is expected because larger velocities and more central collisions increase
the resulting stress in the grains, helping with dislocation nucleation. The curve
b = 0 R SP shows one result for single floating point precision. It can be seen
that the SF's for single precision are within the error bars of the double precision
run, further validating the use of single precision in this case.

60,000 T T T

—e— GPU Double
—=— GPU Single
¥ mixed GPU/CPU | ]

50,000

R
R SP

kil

40,000 -

6R

30,000 -

N
FRYES
R
888

20,000 1

Wall time in seconds

<Stacking Fault

10,000 -

T T T T

. . L L 0 . . . . .
0 0.5 1 15 2 25 3 35 0 2 4 6 8 10 12
Velocity Number of parallel processes

Fig. 1. Average of stacking fault atoms Fig. 2. Collision of grains, 150 simu-
for 10 orientations versus velocity (LJ lations. The hybrid GPU/CPU test is

units), b indicates the impact parame- for five processes running independent
ter, and R is the radius of the spherical simulations in parallel using six CPU
grains (R=6.7 o). SP indicates single cores, one CPU process with two cores
precision. and four GPU processes.

Fig. 3. Collision of grains. Snapshot showing the last step of the simulation for different
velocities V (LJ units): a) V=0.3, b) V=1, ¢) V=3, and d) V=6. Only part of the atoms
are shown, to allow the visualization of stacking fault atoms (grey), arranged in planar
structures. Grains are showed in teal and red, to display the lack of mixing at low
velocities.



5 Conclusions

We presented a strategy to carry out parameter sweeps for the Molecular Dy-
namics code LAMMPS in a hybrid CPU-GPU environment, using a Ruby script.
Although our approach is general and can be applied to a plethora of problems,
here we focus on one case which is of interest to us, and calculate timing and
speedup factors for that particular case. We first studied the comparative inde-
pendent performance of the CPU and GPU. Then independent jobs were exe-
cuted in parallel, with various distributions in order to establish the maximum
number of parallel jobs for the minimum makespan possible. Finally, we carried
out simulations using a hybrid architecture (CPU/GPU), obtaining an improve-
ment of 15%, respect to non-hybrid results. Of course, this would depends on
the size and type of simulation, but similar improvements could be achievable
for others types of problems.

Our Ruby script can also be easily modified to make any kind of simulation
with LAMMPS and a similar approach could be used to execute code that sup-
ports GPU and CPU with minimum changes to the script. The performed tests
show that running independent simulations in parallel in both CPU and GPU
could improve the final simulation time. In addition, it is important to note that,
in all cases tested here, it was better to run more than one simulation in parallel
that to run one simulation at a time in the GPU. In the tests performed for dou-
ble precision, the GPU is 1.46x times faster than the six CPU cores, launching 4
simulation in parallel in the GPU. For single precision the speedup is 6.96x, for 6
simulations in parallel vs six CPU cores. Executing LAMMPS processes in GPU
and CPU gives better performance, and we obtained speedups of 1.15x compar-
ing the best result from double precision in GPU (41070s for four processes in
parallel) to the best result of hybrid CPU/GPU (35511s for four processes in
GPU and 1 process with two cores in CPU). The speedup of this hybrid case
with the six cores in the CPU (60334 5s) test is 1.69x.

The parameter sweep script presented in this work was used to simulate
the collision of two nanograins. The number of atoms in Stacking Faults (SFs)
provides a measure of plasticity which grows with velocity. We locate a threshold
for plasticity, averaged over different impact orientations, for velocities between
0.3 and 1 (LJ units). Beyond V=3 we observe significant fragmentation of the
grains, and a measure of plasticity is no longer meaningful. Such information is
important for astrophysical applications [21] and will be expanded in the near
future.
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