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Abstract. The visualization of complex virtual scenes can be significantly 
accelerated by applying Occlusion Culling. In this work we introduce a 
variant of the Hierarchical Occlusion Map method to be used in Real-Time 
applications. To avoid using real objects geometry we generate specialized 
conservative Occluders based on Axis Aligned Bounding Boxes which are 
converted into coplanar quads and then rasterized in CPU using a downscaled 
Depth Buffer. We implement this method in a 3D scene using a software 
occlusion map rasterizer module specifically optimized to rasterize Occluder 
quads into a Depth Buffer. We demonstrate that this approach effectively 
increases the number of occluded objects without generating significant 
runtime overhead. 
 
Keywords: Occlusion culling, Hierarchical Occlusion Map, Occluder skin, 
visibility determination, Depth Buffer, Occlusion query, Occluder fusion. 

 
1 Introduction 

In Real-Time Computer Graphics, it is desirable to show complex scenes 
consisting of a large number of triangles with as good quality as possible. Because 
current hardware is not capable of supporting these kinds of complex scenes at an 
acceptable frame rate, optimization techniques are absolutely needed. 

One of these optimization techniques is Frustum Culling which eliminates models 
that are outside of the viewing volume at an early stage in the pipeline. However, its 
major drawback is the fact that it does not consider the case where one object is not 
visible because it is being entirely blocked by another object. To solve this issue, 
Occlusion Culling technique needs to be implemented. 

One of the main advantages of this method is that it reduces the overdraw of 
fragments that has a large computation effort in applications with intensive use of 
pixel shaders, like those with dynamic lighting or fake geometry generation. 

In this work we focus on implementing an image space Occlusion Culling solution 
using software rasterization, based on a variation of the Hierarchical Occlusion Map 
(HOM) suggested by Zhang et al [1]. Unlike HOM, instead of rasterizing the objects 
full geometry, we rasterize simple conservative volumes called Occluder Skins. These 
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volumes are designed exclusively for the Occlusion Culling process assuring its 
conservativeness. This work presents a technique for automatic Occluder Skins 
generation based on Axis-Aligned Bounding Box (AABB).  

Since we use Occluder Skins which are completely opaque, there is no need for the 
Opacity Map proposed in HOM. Finally, Occluder Skins are scan converted into a 
memory Depth Buffer using a streamlined software rasterizer designed specifically to 
support coplanar quad primitives. 

2 Related work 

A strategy for Occlusion Culling is proposed [2] which creates in Real-Time the 
shadow frusta produced by the objects chosen as Occluders. This technique works in 
the Occluder geometry-space but its main drawback is the fact that it does not take 
advantage of the effect called Occluder Fusion, which helps to accelerate to a large 
degree the rendering performance. 

The technique is refined proposing a particular Occluder projection operator [3], in 
order to achieve Occluder Fusion. 

Another solution [4] proposed consists in pre-computing a conservative visibility 
solution of the scene, so then this information can be used at Real-Time. For this to be 
effective, it normally requires a particular kind of scenes, like Indoor environments 
and architectural buildings, where discrete cells and connections can be delimited. 
Moreover, this technique does not work well with dynamic environments. 

Current GPU architecture has the ability to perform Occlusion Queries in order to 
detect whether mesh would be finally visible on screen. Although these techniques 
have a great potential, there are still many difficulties to solve, especially when 
reading from CPU the result of an executed query in GPU at a predictable frame rate. 
Different techniques are proposed [5][6][7] to solve these issues. 

There is a technique proposed for automatic Occluder mesh generation in urban 
environments [8], but the strategy is restricted to 2.5D objects, and is not clear how to 
extend the same approach to other types of meshes. 

3 Algorithm overview 

The proposed strategy consists of the following steps: 
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Fig. 1. An urban scene with Occluder skins and its respective Depth Buffer. 

  
• Occluder Generation: Creates in offline time a simplified conservative 

volume that serves as an Occluder object in the scene. 
• Occluders Selection: Determines in Real-Time which Occluders are inside 

the Viewing Frustum and selects the best candidates for rasterization. 
• Occluders Rasterization: Detects the visible faces of the Occluders volumes 

and sends them to the specialized rasterizer. As a result, it updates a 
downscaled Depth Buffer version of the real frame buffer screen composed 
of depth points. 

• Occludees Test: first it determines the objects of the scene that are inside the 
Viewing Frustum. Then for every object it generates the 2D screen projected 
Bounding Box and within that region compares each depth values stored in 
the Depth Buffer with a single conservative Occludee depth. If the Bounding 
Box depth is completely behind all the values of the Depth Buffer in that 
region, then we consider the object occluded and we avoid sending it to the 
rendering pipeline. 

The Depth Buffer is updated in every frame. As the Occluders are rasterized and 
aggregated together in the Depth Buffer, the area covered by each Occluder is added 
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together resulting in larger Occluder areas, generally maximizing the number of 
Occlude rejections.  This property is known as Occluder Fusion. 

After all the Occluders are rasterized, every point in the Depth Buffer will hold the 
depth closest to the camera viewpoint, and it will be used to determine whether scene 
object is visible or not by testing if it is being occluded by a single Occluder or 
portions of different Occluders. 

The visibility test performed is always conservative. The whole area of projected 
pixels of an object must be completely behind the values stored in the Depth Buffer to 
be considered as non-visible. Conversely, if at least one pixel of the object is closer to 
the depth stored in the Depth Buffer, the whole mesh is considered visible.  

4 Occluder generation 

The original HOM technique uses real meshes of the scene to populate the Depth 
Buffer. This can become an important bottleneck when the geometry of the meshes is 
complex. To avoid the issue, the method proposed in this work employs “impostor” or 
“proxy” objects that represent the volume of the Occluders. These objects must fulfill 
the conditions described [9] in order to be considered as a valid Occluder: 

• Simple: Its geometry must be as reduced as possible to be efficient at 
software rasterization time. Usually this implies being convex. 

• Conservative: The object must be completely contained inside the original 
mesh. Its volume should be less or equal than the real mesh volume. 

• Large: Must occupy the largest volume possible of the original mesh. This 
way the Depth Buffer will be filled with more pixels and will help to discard 
more Occludee objects in the Occlusion Culling phase. 

The Occluders generation is an Offline task, done prior to the runtime execution of 
the Real-Time application so they can be constructed manually with the help of a 
design tool. Although this method usually produces the most efficient Occluders, it 
can require a significant human effort. Therefore it is desirable to have an automated 
Occluder generation process, which may not be the most efficient, but creates a set of 
base Occluders that can be later refined manually. 

In order to compute an Occluder automatically, we can use mesh reduction 
techniques as proposed by Hoppe et al [10], which decrease the geometrical 
complexity of a mesh but doesn’t guarantee the conservativeness of the result. 

Another approach [11] presented consists of a heuristic to reduce the mesh 
complexity assuring that at all times the result is conservative. Nonetheless, the 
resulting simplified mesh can still be too complex to be rasterized in Real-Time for 
Occlusion Culling purposes. 

In this work’s implementation we opted to calculate the least quantity of Axis-
Aligned Bounding Boxes that approximate to a mesh that are conservative and as 
large as possible. The technique derives from the one suggested by Danell[9] and 
comprises the following steps: 

• Voxelize all the space occupied by the mesh AABB, defining an adequate 
voxel size. 
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• Determine which voxels represent the external surface of the mesh. 
• Determine which voxels are interior. These voxels are the ones contained 

inside the outer surface of the mesh. 
• Compute the largest AABB based on the interior voxels of the mesh, which 

does not collide with any surface voxel. 
To voxelize the space occupied by the mesh Bounding Box, we first define a voxel 

size and then perform a voxel-triangle collision detection against all triangles of the 
mesh, using the AABB/Triangle method presented by Moller [12]. In the case of the 
colliding voxels we mark them as “Surface Voxels”, and for the rest we proceed to 
calculate the “Inner Voxels” in which we need to find at least one voxel that is 
completely surrounded by Surface Voxels. If we take any non Surface Voxel, we can 
consider it an Inner Voxel only if there exists at least one Surface Voxel (be it 
adjacent or not) in all the six directions that define the voxel.  
 

 
Fig. 2. Surface voxels and Inner voxels. The Inner voxels must have at least one Surface voxel 
in all of its six directions.  
 

However, in order to apply this method, the mesh must fulfill the precondition of 
being completely sealed or “Water Tight”. Even though non Water Tight voxelization 
methods exist, like the one suggested by Haumont [13], their results cannot be 
directly applied to the computation of conservative Occluders.  

In order to find the first Inner voxel we proceed to check all the non Surface voxels 
of the mesh’s space, until we find the one which satisfies the conditions mentioned 
earlier.  Once the first Inner voxel is found, all the neighboring voxels are added to 
the list, except the ones that are Surface Voxels. The neighboring voxels are those 
which stay next to the current voxel, again in their six directions. 

This process is repeated recursively until a voxel cannot expand to any further 
extent, because it is located next to a Surface voxel or because the whole voxel space 
has been checked. 
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Fig. 3. Inner voxel expansion, until it reaches the Surface voxel frontier. 
 

At this point, if the mesh was not Water Tight, the Inner voxel expansion would 
leak through one of the holes of the non sealed object, generating an invalid Inner 
voxel space. In this work we have not found a method yet to overcome this limitation. 
Once we have the set of Inner voxels, we proceed to search in an exhaustively manner 
the larger AABB which fits only within the Inner voxels. We start with an AABB of 
the size of an Inner voxel and we expand this AABB by a voxel length in every one of 
the six directions. In each expansion we check that all the voxels contained in the 
AABB are Inner voxels. We proceed recursively until the AABB cannot expand 
anymore because it contains Surface voxels.  

Of all the possible AABB we select the one with the bigger volume and then all the 
Inner voxels contained in this AABB are tagged as “taken”. 

Then we proceed to choose another initial inner voxel which is not “taken” and we 
execute again this sequence of steps, always avoiding the use of “taken” voxels. 
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Fig. 4. Automatic Occluder generation using Axis-Aligned Bounding Box. New Occluders are 
computed for each mesh until a threshold is reached. The original mesh is shown behind the 
Occluders for volume comparison. 
 

A threshold must be defined for this procedure, based on the following criteria: 
• The maximum amount of AABB allowed per mesh. 
• The minimum AABB acceptable volume for an Occluder. If it does not pass 

this minimum value, the AABB is rejected and the search for Occluders of 
this mesh is stopped. 

One possible option to select the first Inner voxel that triggers the construction of a 
new AABB is to choose the “densest” one, as suggested by Danell [9]. The “densest” 
voxel can be obtained by searching for the one that has the largest average distance to 
all the Surface voxels of the mesh. 
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5 Depth Buffer generation 

During the execution of the Real-Time application, the Occluders obtained with the 
previous method are used in the following way: 

First Frustum Culling is performed with all the Occluders of the scene, which 
discards the Occluders that lay completely outside the View Frustum. To achieve this, 
a Frustum-AABB collision test is performed with the Occluder’s AABB. Spatial 
subdivision techniques, such as Octree and KD-Tree, can be integrated at this point to 
speed the Culling process. 

Then, for each Occluder we need to detect its visible faces, i.e. the faces that the 
Occluder’s AABB possesses inside the View Frustum. An Occluder could have one, 
two or at least three visible faces at the same time. Since the Occluder has an AABB 
geometry, each face is made of a four-vertex coplanar polygon or “Quad”. In order to 
detect which Quads are visible we need to inspect the angle between the Quad’s 
normal (N) and the direction vector from the Quad to the Frustum Viewpoint (L): 

N dot L < 0 
If the dot product between N and L is less than zero then the Quad is considered 

visible. For each visible face we have a 3D polygon that must be projected to screen. 
We project the four vertices of the Quad to obtain the 2D polygon in screen-space so 
that we can send it to the rasterizer. 

This polygon may not fit completely inside the screen bounds, however the 
traditional rasterization techniques proceed to clip the polygon in homogeneous space, 
as detailed by Blinn [14]. In this particular case there is no need for a perfect Quad 
clipping, because the only goal of the rasterizer is to generate a Depth Buffer. The 
rasterizer simply computes the fragments that are inside the screen bounds. 

The Quad clipping can be avoided without problems except when a polygon edge 
has one vertex with a negative projected value of W and the other vertex with a 
positive W. In these cases, it is necessary to perform some sort of clipping in order to 
avoid invalid projection results. 

To deal with this problem we project the Quad to View-Space and then we clip the 
edges that intersect the Frustum Near Plane. In this way we perform a polygon 
clipping procedure but only against one plane, when the clipping techniques are 
usually employed to perform tests with six planes, like the one detailed by Blinn [14]. 

It must be noted that the clipping procedure may not always generate a four-vertex 
polygon. Sometimes a three or five-vertex polygon is generated. For the first case 
only a triangle is sent to the rasterizer, and for the five-vertex case we send a Quad 
and a triangle to rasterize. 

The rasterizer received the (X, Y) projected coordinate for each polygon’s vertex, 
along with its project Z coordinate (after being divided by W). Finally the rasterizer 
computes the depth value for each fragment by using a scan-line conversion 
procedure. 

An optimal choice is to select only one depth value for the whole polygon, for 
example the farthest Z value. In this way there is no need for the rasterizer to compute 
the depth value of each fragment, reducing expensive fragment computations. The 
problem with this approach is that it is extremely conservative for some types of 
Occluder geometries, like the ones with high Z variation in their points (in View 
Space). 
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6 Testing the Occludees 

Only the objects that passed the Depth Buffer test are sent to the GPU. We first 
discard those who lay completely outside the View Frustum. Then for every mesh we 
generate its 2D screen projected Bounding Box and from this projection we choose 
only one Z value, by selecting the one closest to the View Point. In this way we 
guarantee the conservativeness of the test. 

Then this 2D rectangle is sent to the rasterizer, where its unique Z value is checked 
against the corresponding fragment’s Z value of the Depth Buffer. If at least one value 
of the rectangle is closer to the View Point than its corresponding in the Depth Buffer, 
then the rasterizer stops and the mesh is considered visible. This enables an early-out 
strategy. The mesh is considered non visible when the rectangle Z value is behind all 
the fragment Z values of the Depth Buffer. 

7 Implementation 

The software rasterizer designed by Barbagallo et al. [15] was used for the task of 
Depth Buffer generation and Occludees testing. The rasterizer is designed with the 
only purpose of fast generation of the Depth Buffer and for efficient Occludee 
rejection against it. Due to its design, it does not have the overhead of other typical 
stages of the pipeline, like Shading and Texture mapping. This rasterizer has support 
for triangles and Quads primitives. The Quads are supported in a native way, when 
most of other rasterization solutions convert them to triangles. A tiled rasterization 
approach is used which divides the Depth buffer in fixed section to accelerate the 
procedure. Each tile rasterization is deferred until it is completely necessary. 

A very important aspect is to select a proper size for the Depth Buffer. A Depth 
Buffer with the same size of the Frame Buffer will generate too much overhead in the 
rasterizer, and usually there is no need of such fragment precision for Occlusion 
Culling purposes. On the contrary a Depth Buffer that is too small will be overly 
conservative, reducing the performance boost of the Occlusion Culling procedure. For 
this work we choose to use a Depth Buffer with a quarter size of the screen. 

8 Results 

A 3D city model was built, composed of 22 meshes, adding up a total of 50.189 
triangles. For this scene 40 Occluders were generated in Offline time. In order to 
analyze the algorithm performance, eight representative scene View Points were 
taken. For each position we compute the following metric: Value = (t - v) / t * 100, 
where t: total scene meshes and v: total visible meshes. 

This metric allows us to see the percent of discarded meshes that Occlusion 
Culling prevented from sending to the GPU in each frame. The metric is computed 
with Occlusion Culling deactivated and then with it activated. We also include the 
frames per second that resulted from rendering the scene with and without Occlusion 
Culling. The results were computed using a PC with Intel Core 2 Duo 1.86GHz 
processor with 2GB RAM and an ATI Radeon Xpress 1100 GPU. 
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Fig.  5. Left: FPS rendering performance only with Frustum Culling and then with Occlusion 
Culling activated, at the eight different selected View Points. Right: Discarded mesh percent, 
first with only Frustum Culling and then activating Occlusion Culling, at the eight different 
selected View Points. 

9 Conclusions 

We have demonstrated herein that it is viable to apply HOM in Real-Time 
applications using modern graphics hardware. Using full object geometry can be 
prohibitive, so specially generated Occluders are to be used. The manual generation 
of these Occluders can take too much work, and for that reason it should be combined 
with the automatic Occluder generation techniques introduced in this work. We think 
it is wise to perform manual adjustments to  the Occluders as part of the last stage of 
the scene creation procedure. 

To be able to efficiently rasterize the Occluders using a software approach it is 
recommended to make the most of a specialized rasterizer, focused only on the Depth 
Buffer generation, ignoring other pipeline stages such as Shading or Texturing. A 
native support for Quads rasterization is also important to exploit the geometry 
features of Occluder skins. Finally, choosing the right Depth Buffer dimensions is 
essential in order to limit the Occlusion Culling process computational time to only a 
fraction of the total frame rendering time. 

10 Future Work 

 Occluder generation could be extended to other types of volumes such as Oriented 
Bounding Boxes and Quads. An algorithm that supports these new volumes ought to 
choose automatically the right type for each particular mesh. 

In addition, it is necessary to study which approach must be followed to generate 
Occluders from non Water Tight meshes. As a first step, this new approach should 
detect these cases preventing the generation of invalid Occluders, and as a second step 
the approach should also contemplate the creation of valid Occluders for these cases. 

The Occluder clipping process should be enhanced to avoid cases where the 
polygons end up formed with more than four vertices, which makes the rasterizer 
overload with extra primitives. 
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