
Implementing Software Occlusion Culling for Real-Time
Applications

Matias N. Leone, Leandro R. Barbagallo, Mariano M. Banquiero, Diego
Agromayor, Andres Bursztyn

Proyecto de Investigación “Explotación de GPUs y Gráficos Por Computadora”, GIGC - Grupo
de Investigación de Gráficos por Computadora, Departamento de Ingeniería en Sistemas de

Información, UTN-FRBA, Argentina

{ mleone, lbarbagallo, mbanquiero, dagromayor }@frba.utn.edu.ar
andresb@sistemas.frba.utn.edu.ar

Abstract. The visualization of complex virtual scenes can be significantly
accelerated by applying Occlusion Culling. In this work we introduce a
variant of the Hierarchical Occlusion Map method to be used in Real-Time
applications. To avoid using real objects geometry we generate specialized
conservative Occluders based on Axis Aligned Bounding Boxes which are
converted into coplanar quads and then rasterized in CPU using a downscaled
Depth Buffer. We implement this method in a 3D scene using a software
occlusion map rasterizer module specifically optimized to rasterize Occluder
quads into a Depth Buffer. We demonstrate that this approach effectively
increases the number of occluded objects without generating significant
runtime overhead.

Keywords: Occlusion culling, Hierarchical Occlusion Map, Occluder skin,
visibility determination, Depth Buffer, Occlusion query, Occluder fusion.

1 Introduction

In Real-Time Computer Graphics, it is desirable to show complex scenes
consisting of a large number of triangles with as good quality as possible. Because
current hardware is not capable of supporting these kinds of complex scenes at an
acceptable frame rate, optimization techniques are absolutely needed.

One of these optimization techniques is Frustum Culling which eliminates models
that are outside of the viewing volume at an early stage in the pipeline. However, its
major drawback is the fact that it does not consider the case where one object is not
visible because it is being entirely blocked by another object. To solve this issue,
Occlusion Culling technique needs to be implemented.

One of the main advantages of this method is that it reduces the overdraw of
fragments that has a large computation effort in applications with intensive use of
pixel shaders, like those with dynamic lighting or fake geometry generation.

In this work we focus on implementing an image space Occlusion Culling solution
using software rasterization, based on a variation of the Hierarchical Occlusion Map
(HOM) suggested by Zhang et al [1]. Unlike HOM, instead of rasterizing the objects
full geometry, we rasterize simple conservative volumes called Occluder Skins. These

2 Matias N. Leone, Leandro R. Barbagallo, Mariano M. Banquiero, Diego Agromayor,
Andres Bursztyn

volumes are designed exclusively for the Occlusion Culling process assuring its
conservativeness. This work presents a technique for automatic Occluder Skins
generation based on Axis-Aligned Bounding Box (AABB).

Since we use Occluder Skins which are completely opaque, there is no need for the
Opacity Map proposed in HOM. Finally, Occluder Skins are scan converted into a
memory Depth Buffer using a streamlined software rasterizer designed specifically to
support coplanar quad primitives.

2 Related work

A strategy for Occlusion Culling is proposed [2] which creates in Real-Time the
shadow frusta produced by the objects chosen as Occluders. This technique works in
the Occluder geometry-space but its main drawback is the fact that it does not take
advantage of the effect called Occluder Fusion, which helps to accelerate to a large
degree the rendering performance.

The technique is refined proposing a particular Occluder projection operator [3], in
order to achieve Occluder Fusion.

Another solution [4] proposed consists in pre-computing a conservative visibility
solution of the scene, so then this information can be used at Real-Time. For this to be
effective, it normally requires a particular kind of scenes, like Indoor environments
and architectural buildings, where discrete cells and connections can be delimited.
Moreover, this technique does not work well with dynamic environments.

Current GPU architecture has the ability to perform Occlusion Queries in order to
detect whether mesh would be finally visible on screen. Although these techniques
have a great potential, there are still many difficulties to solve, especially when
reading from CPU the result of an executed query in GPU at a predictable frame rate.
Different techniques are proposed [5][6][7] to solve these issues.

There is a technique proposed for automatic Occluder mesh generation in urban
environments [8], but the strategy is restricted to 2.5D objects, and is not clear how to
extend the same approach to other types of meshes.

3 Algorithm overview

The proposed strategy consists of the following steps:

Implementing Software Occlusion Culling for Real-Time Applications 3

Fig. 1. An urban scene with Occluder skins and its respective Depth Buffer.

• Occluder Generation: Creates in offline time a simplified conservative

volume that serves as an Occluder object in the scene.
• Occluders Selection: Determines in Real-Time which Occluders are inside

the Viewing Frustum and selects the best candidates for rasterization.
• Occluders Rasterization: Detects the visible faces of the Occluders volumes

and sends them to the specialized rasterizer. As a result, it updates a
downscaled Depth Buffer version of the real frame buffer screen composed
of depth points.

• Occludees Test: first it determines the objects of the scene that are inside the
Viewing Frustum. Then for every object it generates the 2D screen projected
Bounding Box and within that region compares each depth values stored in
the Depth Buffer with a single conservative Occludee depth. If the Bounding
Box depth is completely behind all the values of the Depth Buffer in that
region, then we consider the object occluded and we avoid sending it to the
rendering pipeline.

The Depth Buffer is updated in every frame. As the Occluders are rasterized and
aggregated together in the Depth Buffer, the area covered by each Occluder is added

4 Matias N. Leone, Leandro R. Barbagallo, Mariano M. Banquiero, Diego Agromayor,
Andres Bursztyn

together resulting in larger Occluder areas, generally maximizing the number of
Occlude rejections. This property is known as Occluder Fusion.

After all the Occluders are rasterized, every point in the Depth Buffer will hold the
depth closest to the camera viewpoint, and it will be used to determine whether scene
object is visible or not by testing if it is being occluded by a single Occluder or
portions of different Occluders.

The visibility test performed is always conservative. The whole area of projected
pixels of an object must be completely behind the values stored in the Depth Buffer to
be considered as non-visible. Conversely, if at least one pixel of the object is closer to
the depth stored in the Depth Buffer, the whole mesh is considered visible.

4 Occluder generation

The original HOM technique uses real meshes of the scene to populate the Depth
Buffer. This can become an important bottleneck when the geometry of the meshes is
complex. To avoid the issue, the method proposed in this work employs “impostor” or
“proxy” objects that represent the volume of the Occluders. These objects must fulfill
the conditions described [9] in order to be considered as a valid Occluder:

• Simple: Its geometry must be as reduced as possible to be efficient at
software rasterization time. Usually this implies being convex.

• Conservative: The object must be completely contained inside the original
mesh. Its volume should be less or equal than the real mesh volume.

• Large: Must occupy the largest volume possible of the original mesh. This
way the Depth Buffer will be filled with more pixels and will help to discard
more Occludee objects in the Occlusion Culling phase.

The Occluders generation is an Offline task, done prior to the runtime execution of
the Real-Time application so they can be constructed manually with the help of a
design tool. Although this method usually produces the most efficient Occluders, it
can require a significant human effort. Therefore it is desirable to have an automated
Occluder generation process, which may not be the most efficient, but creates a set of
base Occluders that can be later refined manually.

In order to compute an Occluder automatically, we can use mesh reduction
techniques as proposed by Hoppe et al [10], which decrease the geometrical
complexity of a mesh but doesn’t guarantee the conservativeness of the result.

Another approach [11] presented consists of a heuristic to reduce the mesh
complexity assuring that at all times the result is conservative. Nonetheless, the
resulting simplified mesh can still be too complex to be rasterized in Real-Time for
Occlusion Culling purposes.

In this work’s implementation we opted to calculate the least quantity of Axis-
Aligned Bounding Boxes that approximate to a mesh that are conservative and as
large as possible. The technique derives from the one suggested by Danell[9] and
comprises the following steps:

• Voxelize all the space occupied by the mesh AABB, defining an adequate
voxel size.

Implementing Software Occlusion Culling for Real-Time Applications 5

• Determine which voxels represent the external surface of the mesh.
• Determine which voxels are interior. These voxels are the ones contained

inside the outer surface of the mesh.
• Compute the largest AABB based on the interior voxels of the mesh, which

does not collide with any surface voxel.
To voxelize the space occupied by the mesh Bounding Box, we first define a voxel

size and then perform a voxel-triangle collision detection against all triangles of the
mesh, using the AABB/Triangle method presented by Moller [12]. In the case of the
colliding voxels we mark them as “Surface Voxels”, and for the rest we proceed to
calculate the “Inner Voxels” in which we need to find at least one voxel that is
completely surrounded by Surface Voxels. If we take any non Surface Voxel, we can
consider it an Inner Voxel only if there exists at least one Surface Voxel (be it
adjacent or not) in all the six directions that define the voxel.

Fig. 2. Surface voxels and Inner voxels. The Inner voxels must have at least one Surface voxel
in all of its six directions.

However, in order to apply this method, the mesh must fulfill the precondition of
being completely sealed or “Water Tight”. Even though non Water Tight voxelization
methods exist, like the one suggested by Haumont [13], their results cannot be
directly applied to the computation of conservative Occluders.

In order to find the first Inner voxel we proceed to check all the non Surface voxels
of the mesh’s space, until we find the one which satisfies the conditions mentioned
earlier. Once the first Inner voxel is found, all the neighboring voxels are added to
the list, except the ones that are Surface Voxels. The neighboring voxels are those
which stay next to the current voxel, again in their six directions.

This process is repeated recursively until a voxel cannot expand to any further
extent, because it is located next to a Surface voxel or because the whole voxel space
has been checked.

6 Matias N. Leone, Leandro R. Barbagallo, Mariano M. Banquiero, Diego Agromayor,
Andres Bursztyn

Fig. 3. Inner voxel expansion, until it reaches the Surface voxel frontier.

At this point, if the mesh was not Water Tight, the Inner voxel expansion would
leak through one of the holes of the non sealed object, generating an invalid Inner
voxel space. In this work we have not found a method yet to overcome this limitation.
Once we have the set of Inner voxels, we proceed to search in an exhaustively manner
the larger AABB which fits only within the Inner voxels. We start with an AABB of
the size of an Inner voxel and we expand this AABB by a voxel length in every one of
the six directions. In each expansion we check that all the voxels contained in the
AABB are Inner voxels. We proceed recursively until the AABB cannot expand
anymore because it contains Surface voxels.

Of all the possible AABB we select the one with the bigger volume and then all the
Inner voxels contained in this AABB are tagged as “taken”.

Then we proceed to choose another initial inner voxel which is not “taken” and we
execute again this sequence of steps, always avoiding the use of “taken” voxels.

Implementing Software Occlusion Culling for Real-Time Applications 7

Fig. 4. Automatic Occluder generation using Axis-Aligned Bounding Box. New Occluders are
computed for each mesh until a threshold is reached. The original mesh is shown behind the
Occluders for volume comparison.

A threshold must be defined for this procedure, based on the following criteria:
• The maximum amount of AABB allowed per mesh.
• The minimum AABB acceptable volume for an Occluder. If it does not pass

this minimum value, the AABB is rejected and the search for Occluders of
this mesh is stopped.

One possible option to select the first Inner voxel that triggers the construction of a
new AABB is to choose the “densest” one, as suggested by Danell [9]. The “densest”
voxel can be obtained by searching for the one that has the largest average distance to
all the Surface voxels of the mesh.

8 Matias N. Leone, Leandro R. Barbagallo, Mariano M. Banquiero, Diego Agromayor,
Andres Bursztyn

5 Depth Buffer generation

During the execution of the Real-Time application, the Occluders obtained with the
previous method are used in the following way:

First Frustum Culling is performed with all the Occluders of the scene, which
discards the Occluders that lay completely outside the View Frustum. To achieve this,
a Frustum-AABB collision test is performed with the Occluder’s AABB. Spatial
subdivision techniques, such as Octree and KD-Tree, can be integrated at this point to
speed the Culling process.

Then, for each Occluder we need to detect its visible faces, i.e. the faces that the
Occluder’s AABB possesses inside the View Frustum. An Occluder could have one,
two or at least three visible faces at the same time. Since the Occluder has an AABB
geometry, each face is made of a four-vertex coplanar polygon or “Quad”. In order to
detect which Quads are visible we need to inspect the angle between the Quad’s
normal (N) and the direction vector from the Quad to the Frustum Viewpoint (L):

N dot L < 0
If the dot product between N and L is less than zero then the Quad is considered

visible. For each visible face we have a 3D polygon that must be projected to screen.
We project the four vertices of the Quad to obtain the 2D polygon in screen-space so
that we can send it to the rasterizer.

This polygon may not fit completely inside the screen bounds, however the
traditional rasterization techniques proceed to clip the polygon in homogeneous space,
as detailed by Blinn [14]. In this particular case there is no need for a perfect Quad
clipping, because the only goal of the rasterizer is to generate a Depth Buffer. The
rasterizer simply computes the fragments that are inside the screen bounds.

The Quad clipping can be avoided without problems except when a polygon edge
has one vertex with a negative projected value of W and the other vertex with a
positive W. In these cases, it is necessary to perform some sort of clipping in order to
avoid invalid projection results.

To deal with this problem we project the Quad to View-Space and then we clip the
edges that intersect the Frustum Near Plane. In this way we perform a polygon
clipping procedure but only against one plane, when the clipping techniques are
usually employed to perform tests with six planes, like the one detailed by Blinn [14].

It must be noted that the clipping procedure may not always generate a four-vertex
polygon. Sometimes a three or five-vertex polygon is generated. For the first case
only a triangle is sent to the rasterizer, and for the five-vertex case we send a Quad
and a triangle to rasterize.

The rasterizer received the (X, Y) projected coordinate for each polygon’s vertex,
along with its project Z coordinate (after being divided by W). Finally the rasterizer
computes the depth value for each fragment by using a scan-line conversion
procedure.

An optimal choice is to select only one depth value for the whole polygon, for
example the farthest Z value. In this way there is no need for the rasterizer to compute
the depth value of each fragment, reducing expensive fragment computations. The
problem with this approach is that it is extremely conservative for some types of
Occluder geometries, like the ones with high Z variation in their points (in View
Space).

Implementing Software Occlusion Culling for Real-Time Applications 9

6 Testing the Occludees

Only the objects that passed the Depth Buffer test are sent to the GPU. We first
discard those who lay completely outside the View Frustum. Then for every mesh we
generate its 2D screen projected Bounding Box and from this projection we choose
only one Z value, by selecting the one closest to the View Point. In this way we
guarantee the conservativeness of the test.

Then this 2D rectangle is sent to the rasterizer, where its unique Z value is checked
against the corresponding fragment’s Z value of the Depth Buffer. If at least one value
of the rectangle is closer to the View Point than its corresponding in the Depth Buffer,
then the rasterizer stops and the mesh is considered visible. This enables an early-out
strategy. The mesh is considered non visible when the rectangle Z value is behind all
the fragment Z values of the Depth Buffer.

7 Implementation

The software rasterizer designed by Barbagallo et al. [15] was used for the task of
Depth Buffer generation and Occludees testing. The rasterizer is designed with the
only purpose of fast generation of the Depth Buffer and for efficient Occludee
rejection against it. Due to its design, it does not have the overhead of other typical
stages of the pipeline, like Shading and Texture mapping. This rasterizer has support
for triangles and Quads primitives. The Quads are supported in a native way, when
most of other rasterization solutions convert them to triangles. A tiled rasterization
approach is used which divides the Depth buffer in fixed section to accelerate the
procedure. Each tile rasterization is deferred until it is completely necessary.

A very important aspect is to select a proper size for the Depth Buffer. A Depth
Buffer with the same size of the Frame Buffer will generate too much overhead in the
rasterizer, and usually there is no need of such fragment precision for Occlusion
Culling purposes. On the contrary a Depth Buffer that is too small will be overly
conservative, reducing the performance boost of the Occlusion Culling procedure. For
this work we choose to use a Depth Buffer with a quarter size of the screen.

8 Results

A 3D city model was built, composed of 22 meshes, adding up a total of 50.189
triangles. For this scene 40 Occluders were generated in Offline time. In order to
analyze the algorithm performance, eight representative scene View Points were
taken. For each position we compute the following metric: Value = (t - v) / t * 100,
where t: total scene meshes and v: total visible meshes.

This metric allows us to see the percent of discarded meshes that Occlusion
Culling prevented from sending to the GPU in each frame. The metric is computed
with Occlusion Culling deactivated and then with it activated. We also include the
frames per second that resulted from rendering the scene with and without Occlusion
Culling. The results were computed using a PC with Intel Core 2 Duo 1.86GHz
processor with 2GB RAM and an ATI Radeon Xpress 1100 GPU.

10 Matias N. Leone, Leandro R. Barbagallo, Mariano M. Banquiero, Diego Agromayor,
Andres Bursztyn

Fig. 5. Left: FPS rendering performance only with Frustum Culling and then with Occlusion
Culling activated, at the eight different selected View Points. Right: Discarded mesh percent,
first with only Frustum Culling and then activating Occlusion Culling, at the eight different
selected View Points.

9 Conclusions

We have demonstrated herein that it is viable to apply HOM in Real-Time
applications using modern graphics hardware. Using full object geometry can be
prohibitive, so specially generated Occluders are to be used. The manual generation
of these Occluders can take too much work, and for that reason it should be combined
with the automatic Occluder generation techniques introduced in this work. We think
it is wise to perform manual adjustments to the Occluders as part of the last stage of
the scene creation procedure.

To be able to efficiently rasterize the Occluders using a software approach it is
recommended to make the most of a specialized rasterizer, focused only on the Depth
Buffer generation, ignoring other pipeline stages such as Shading or Texturing. A
native support for Quads rasterization is also important to exploit the geometry
features of Occluder skins. Finally, choosing the right Depth Buffer dimensions is
essential in order to limit the Occlusion Culling process computational time to only a
fraction of the total frame rendering time.

10 Future Work

 Occluder generation could be extended to other types of volumes such as Oriented
Bounding Boxes and Quads. An algorithm that supports these new volumes ought to
choose automatically the right type for each particular mesh.

In addition, it is necessary to study which approach must be followed to generate
Occluders from non Water Tight meshes. As a first step, this new approach should
detect these cases preventing the generation of invalid Occluders, and as a second step
the approach should also contemplate the creation of valid Occluders for these cases.

The Occluder clipping process should be enhanced to avoid cases where the
polygons end up formed with more than four vertices, which makes the rasterizer
overload with extra primitives.

Implementing Software Occlusion Culling for Real-Time Applications 11

11 References

1. Zhang, H., Manocha, D., Hudson, T., Hoff, I.: Visibility culling using hierarchical
occlusion maps. In : Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, New York, NY, USA, pp.77-88 (1997)

2. Hudson, T., Manocha, D., Cohen, J., Lin, M., Hoff, K., Zhang, H.: Accelerated
occlusion culling using shadow frusta. In : Proceedings of the thirteenth annual
symposium on Computational geometry, New York, NY, USA, pp.1-10 (1997)

3. Durand, F., Drettakis, G., Thollot, J., Puech, C.: Conservative visibility preprocessing
using extended projections. In : Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, New York, NY, USA, pp.239-248
(2000)

4. Teller, S., Sequin, C.: Visibility preprocessing for interactive walkthroughs. In :
Proceedings of the 18th annual conference on Computer graphics and interactive
techniques, New York, NY, USA, pp.61-70 (1991)

5. Bittner, J., Wimmer, M., Piringer, H., Purgathofer, W.: Coherent hierarchical culling:
Hardware occlusion queries made useful. In : Computer Graphics Forum, vol. 23,
pp.615-624 (2004)

6. Hillesland, K., Salomon, B., Lastra, A., Manocha, D.: Fast and simple occlusion
culling using hardware-based depth queries. Chapel Hill: University of North
Carolina (2002)

7. Staneker, D., Bartz, D., Meissner, M.: Improving Occlusion Query Efficiency with
Occupancy Maps. In : Proceedings of the 2003 IEEE Symposium on Parallel and
Large-Data Visualization and Graphics, Washington, DC, USA, pp.15-- (2003)

8. Germs, R., Jansen, F. W.: Geometric simplification for efficient occlusion culling in
urban scenes. In : Proc. of WSCG, vol. 2001 (2001)

9. Danell, N.: Automated Occluders For GPU Culling. (Sep 2011)
10. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh

optimization. In : Proceedings of the 20th annual conference on Computer graphics
and interactive techniques, New York, NY, USA, pp.19-26 (1993)

11. Sub, T., Koch, C., Jahn, C., Fischer, M.: Approximative occlusion culling using the
hull tree. In : Proceedings of Graphics Interface 2011, School of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada, pp.79-86 (2011)

12. Akenine-Moller, T.: Fast 3D triangle-box overlap testing. In : ACM SIGGRAPH
2005 Courses, New York, NY, USA (2005)

13. Haumont, D., Warzee, N., Bruxelles, U.: Complete Polygonal Scene Voxelization.
(2002)

14. Blinn, J., Newell, M.: Clipping using homogeneous coordinates. In : Proceedings of
the 5th annual conference on Computer graphics and interactive techniques, New
York, NY, USA, pp.245-251 (1978)

15. Barbagallo, L., Leone, M., Banquiero, M., Agromayor, D., Bursztyn, A.: Techniques
for an Image Based Occlusion Culling Engine., Buenos Aires (2012)

	Introduction
	Related work
	Algorithm overview
	Occluder generation
	Depth Buffer generation
	Testing the Occludees
	Implementation
	Results
	Conclusions
	Future Work
	References

