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Abstract. This paper relates the Defeasible Logic Programming (DeLP) framework and its semantics SEMp..p
to more classical logic programming frameworks. In DeLP we distinguish between strict and defeasible rules,
combining default and strict negation. In contrast to this, in normal logic programming (NLP), there is one
negation not , interpreted as a kind of negation-as-failure, which introduces defeasibility. Various semantics have
been defined for NLP, notably the well-founded semantics WFS.

In this paper we consider the transformation properties for NLP introduced by Brass et al. adapted within the
DeLP framework. We show which transformation properties are satisfied, identifying the aspects in which NLP and
DeLP differ. We contend that transformation rules presented in this paper can help to gain a better understanding of
the relationship of DeLP semantics with respect to more traditional logic programming approaches. As a byproduct
we get that DeLP is a proper extension of NLP.
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1 Introduction and motivations

Defeasible Logic Programming (DeLP) is a logic programming formalism which relies upon
defeasible argumentation for solving queries. Logic programming has experienced considerable
growth in the last decade, and several extensions have been developed and studied, such as normal
logic programming (NLP) and extended logic programming (ENLP). For these formalizations
different semantics have been developed, such as well-founded semantics (WFS) and stable model
semantics.! In contrast, DeLP has an ‘operational’ semantics which is determined by the outcome
of the dialectical process used for answering queries.

In [BD99], a number of transformation rules were introduced which allow to ‘simplify’ a
normal logic program (NLP) P to get its WFS. The application of these rules leads to a new,
simplified NLP P’ from which its WFS can be easily read off. In this paper we will focus on
finding similar transformation rules for DeLP, which can be used to simplify the knowledge
encoded in a DeLP program. In our analysis, we show that in DeLP a complete simplification of
the original program cannot be achieved. However, our results suggest some connections between
the semantics of classical approaches and logic programming with DeLP.

The paper is structured as follows: Section 2 introduces preliminary notions concerning NLP
and DeLP. Section 3 introduces transformations for NLP. Section 4 shows how to adapt these
transformations for DeLP. Section 5 summarizes the relationships between NLP and DeLP, and
the main results we have obtained. Finally, Section 6 concludes.

* This paper emerged while the first author was visiting the University of Koblenz in February 2000. It is part of the joint

Argentine-German collaboration project DeReLoP.
! See [DPP97,BDO01] for an in-depth discussion of extensions of logic programming and their semantics.



2 Preliminaries

In order to render the paper in a self-contained manner, this section contains all the necessary

definitions. Subsection 2.1 introduces normal logic programs, and Subsection 2.2 introduces the

defeasible logic programming framework. We will focus our analysis on propositional logic pro-
2

grams.

2.1 Normal Logic Programs (/NLP)

Definition 2.1 (Normal Logic Program P). A normal logic program (nlp) P is a finite set of
normal program rules. A normal program rule has the form A «— L,,..., L,, where A is an
atom and each L; is an atom B or its negation not B. If B= {L4, ..., L,} is the body of a rule
A « B, we also use the notation A — B, not B~, where BT (resp. B~) contains all the positive
(resp. negative) body atoms in B.

In NLP, atoms A and negated atoms not A are called literals. However, we must not confuse this
notion with the notion of a literal introduced in Section 2.2. In the sequel we will speak of an
atom and its negation, refering to an atom A and its default negation not A. If BT = B~ = (),
we say that the rule is a fact and denote it by A < (or just by A).

We will now introduce some concepts useful for describing what a semantics of a nlp is. Let
Prog, be the set of all normal propositional programs with atoms from a signature £. By Lp we
understand the signature of P, i.e. the set of atoms that occur in P. A (partial) interpretation based
on a signature £ is a disjoint pair of sets (I, I5) such that I; U, C L. A partial interpretation is
total if I; U I, = L. We may also view an interpretation (I, I5) as the set of atoms and negated
atoms [; U not 1.

Definition 2.2 (Semantics SEM). 4 semantics SEM is a mapping which assigns to every logic
program P a set SEM (P) of (partial) models of ‘P, such that SEM is “instantiation invariant”,
i.e. SEM(P) = SEM(ground(P)), where ground(P) denotes the Herbrand instantiation of P. A
semantics SEM is called 3-value based if for every program P the partial interpretation SEM(P)
is a 3-valued model® of P.

In Section 3 we will consider a particular 3-valued semantics for nlp called WFS, which can be
computed by applying transformation rules on a nip P.

2.2 Defeasible Logic Programs (DeLP)

The DeLP language [SL92,Gar97,GSC98] is defined in terms of two disjoint sets of rules: a set of
strict rules for representing strict (sound) knowledge, and a set of defeasible rules for representing
tentative information. Rules will be defined using literals. A literal L is an atom p or a negated
atom ~p, where the symbol “~” represents strong negation. We define this formally:

Definition 2.3 (Strict, «— , and Defeasible Rules, —< ). A4 strict rule (defeasible rule) is an
ordered pair, conveniently denoted by Head <« Body (Head —< Body), whose first member,
Head, is a literal, and whose second member, Body, is a finite set of literals. A strict rule (defea-
sible rule) with the head Lo and body {L.,... ,L,} can also be written as Ly — Ly;,..., L,
(Lo —< Ly, ..., Ly). If the body is empty, it is written L «— true (L —< true), and it is called
a fact (presumption). Facts may also be written as L.

2 Following [Lif94], program rules with variables are viewed as “schemata” that represent their ground instances.
3 We equip «— with the Kleene interpretation, where undef < undef is considered to be true.



In the sequel, atoms will be denoted with lowercase letters (a, b, ... ). The letter r (possibly
subindicated) will be used for denoting rule names. Literals (i.e. an atom or a negated atom) will
be denoted with capital letters (A, B, ... ), possibly subindicated. Sets will be denoted as A, B,
..., possibly subindicated. Logic programs will be usually denoted as P, Ps, etc.

Definition 2.4 (Defeasible Logic Program P). A defeasible logic program (dlp) is a finite set of
strict and defeasible rules. If P is a dlp, we will distinguish in P the subset 11 of strict rules, and
the subset A of defeasible rules. When required, we will denote P as (11, A). We will distinguish
the class of all defeasible logic programs that use only strict (resp. default) negation, denoting
them as DeLP,,., (DeLP,,,, resp.).

Given a dlp P, a defeasible derivation for a query () is a finite set of rules obtained by
backward chaining from () as in a Prolog program, using both strict and defeasible rules from the
given dlp P. The symbol “~” is considered as part of the predicate when generating a defeasible
derivation. A set of rules S is contradictory iff there is a defeasible derivation from S for some
literal P and its complement ~ P. Given a dlp P, we will assume that the set // of strict rules is
non-contradictory.*

Definition 2.5 (Defeasible Derivation Tree). Let P be a dip, and let H be a ground literal.
A defeasible derivation tree T for H is a finite tree, where all nodes are labelled with literals,
satisfying the following conditions:

1. The root node of 'T' is labelled with H.

2. For each node N in T labelled with the literal L, there exists a ground instance of a strict or
defeasible rule r € P with head Ly and body {L1, L, ... , Ly} in P, such that L = Lo for
some ground variable substitution o, and the node N has exactly k children nodes labelled
as Lo, Lyo, ..., Lio.

The sequence S=|ry,rs, ...r;| of grounded instances of strict and defeasible rules used in building
T will be called a defeasible derivation of H.

Definition 2.6 (Argument/Subargument). Given a dilp P, an argument A for a query (), denoted
(A, Q), is a subset of ground instances of the defeasible rules of P, such that:

1. there exists a defeasible derivation for () from II U A,
2. II U A is non-contradictory, and
3. A is minimal with respect to set inclusion.

An argument (A, (Q)1) is a sub-argument of another argument (As, Q)2), if A1 C As.

Given a dip program P, we will denote by Args(P) the set of all possible arguments that can be
built from P.

Definition 2.7 (Counterargument). An argument (A1, Q1) counterargues an argument (As, ()o)
at a literal () iff there is an subargument (A, Q) of (As, qs) such that the set I1 U {Q1,Q} is
contradictory.

Informally, a query () will succeed if the supporting argument is not defeated; that argument be-
comes a justification. In order to establish if A is a non-defeated argument, counterarguments that
could be defeaters for A are considered, i. e. counterarguments that are preferred to .4 according to
some criterion. DeLP considers a particular preference criterion called specificity [SL92,GSC98]
which favors an argument with greater information content and/or less use of defeasible rules.’

“ If a contradictory set of strict rules is used in a dlp the same problems as in extended logic programming would appear. The

corresponding analysis has been done elsewhere [GL90].
% See [GSC98] for details.



Definition 2.8 (Proper Defeater / Blocking Defeater). An argument (A, Q1) defeats (As, Q)2)
at a literal () iff there exists a subargument (A, Q) of (Az, QQ2) such that (A, (Q)1) counterargues
(As, Q2) at Q, and either: (@) (A1,Q1) is “better” that (A,Q) (then (A1, Q1) is a proper
defeater of (A, Q)); or (b) (A1, Q1) is unrelated by the preference order to (A, Q) (then (A1, Q1)
is a blocking defeater of (A, Q)).

Since defeaters are arguments, there may exist defeaters for the defeaters and so on. That prompts
for a complete dialectical analysis to determine which arguments are ultimately defeated. Ulti-
mately undefeated arguments will be marked as U-nodes, and the defeated ones as D-nodes. Next,
we state the formal definitions required for this process:

Definition 2.9 (Dialectical Tree). Let A be an argument for ). A dialectical tree for (A, Q),
denoted T 4 ), is recursively defined as follows:

1. A single node labeled with an argument (A, Q) with no defeaters (proper or blocking) is by
itself the dialectical tree for (A, Q).

2. Let (A1, Q1), (A2, Q) ..., (A, Q) be all the defeaters (proper or blocking) for (A, Q).
We construct the dialectical tree for (A,Q), T aq), by labeling the root node with
(A, Q) and by making this node the parent node of the roots of the dialectical trees for

<A17 Ql)) <A2? QQ): R <An7 Qn)

Definition 2.10 (Marking of the Dialectical Tree). Let (A, Q) be an argument and T 4 its
dialectical tree, then:

1. All the leaves in T 4o are marked as U-nodes.

2. Let (B,H) be an inner node of T s ). Then (B,H) will be a U-node iff every child of
(B, H) is a D-node. The node (B, H) will be a D-node iff it has at least a child marked as
U-node.

To avoid the occurrence of fallacious argumentation [SCG94], some additional constraints on
dialectical trees are imposed, giving rise to acceptable dialectical trees.® An argument A which
turns to be ultimately undefeated is called a justification. Formally:

Definition 2.11 (Justification). Let A be an argument for a literal (), and let T 40 be its
associated acceptable dialectical tree. The argument A for () will be a justification iff the root
of Tia,) is a U-node.

A given query () can be associated with a particular answer set according to some criterion.
Several criteria have been analyized corresponding to different outcomes in the dialectical process.
A possible criterion is specified in the following definition [Gar97]:

Definition 2.12 (Answers to a Given Query Q). Given a dip P, a query () can be classified
as a positive, negative, undecided or unknown answer as follows:

1. Q is a positive answer iff there exists a justification (A, Q).

2. Q is a negative answer iff for every argument (A, (), in the dialectical tree T 4 ), there
exists at least a proper defeater for A marked as U.

3. Q is an undecided answer iff () is not justified, and for every argument (A, Q)), it is the case
that T 4 ) has at least one blocking defeater marked as U.

4. () is an unknown answer if there is no argument for ().

® For space reasons we do not discuss these conditions in this paper; see [GSC98] for an in-depth analysis.



Given a dlp P, we call Positive(P), Negative(P), Undefined(P) and Unknown(P) the sets of
positive, negative, undecided and unknown answers, resp.

From the previous definition we can give a 3-valued semantics SEMp,;p (P) for a dip P, classi-
fying literals in P as accepted, rejected or undefined as follows:

Definition 2.13 (SEMp,.p).
For any dlp P, we define SEMpyp (P) = (Paccepted prejected -pundefy yyhope

Ppaccerted = LO|@Q € Justified(P)}
prejected — {Q|Q € Unknown(P) U Negative(P)}
Pundef = {QlQ c Undeflned(P)}

It must be remarked that since the semantics of DeLP is entirely determined by relationships
among arguments, two dlp programs P and P’ would have the same semantics iff Args(P) =
Args(P'). This equivalence will be frequently used in the following sections.

3 Transformations for NLP: classifying well-founded semantics

A program transformation is a relation — between ground logic programs [BDFZ01]. A semantics
SEM allows a transformation — iff SEM(P,;) = SEM(P;), for all P, and Ps, such that P; — Ps.
In this case we also say that the transformation — holds wrt SEM. Well-founded semantics for
NLP can be elegantly characterized by a set of transformation rules [BD99], which reduce a given
nlp program P into a simplified version P’, from which the WFS can be easily read off.

Definition 3.1 (Transformation Rules for WFS). Given a program P € Prog,, let HEAD(P)
be the set of all head-atoms of P, i.e. HEAD(P) ={H|H «— B*t,notB~ € P}. Let P, and P,
be ground programs. The following transformation rules characterize WFS:

RED™: (Positive Reduction) Program P, results from program P, by RED" (written Py —p P5)
iff there is a rule H «— B in P, and a negative literal not B € B such that there is no rule
about B in Py, i.e. B¢ HEAD(Py), and Py = (P1—{H «— B})U{H «— (B—{not B})}.

RED: (Negative Reduction) Program P, results from program P, by RED~ (written
P1 —n Pso) iff there is a rule H «— B in P, and a negative literal not B € B such that B
appears as a fact in Py, and Py = P, — {H «— B}.

SUB: (Deletion of non-minimal rules) Program P, results from program P, by SUB (written
P1 —n Po) iff there are rules H «— B and H «— B’ in Py such that B C B’ and P, =
P1 - {H — B,}

UNFOLD: (Unfolding) Program P, results from program P, by UNFOLD (written P, —y Ps)
iff there is a rule H «— B in Py and a positive literal B € B such that P, = P, - {H «— B}
U{H « (B-{B}HUuB) | B « B €P}

TAUT: (Deletion of Tautologies) Program P, results from program P, by TAUT (written
Py =1 Po) iff there is H «— B € Py such that H € B and P, = P, — {H «— B}.

A program P’ is a normal form of a program P wrt a transformation “— " iff P . P’, and P’
is irreducible, i.e. there is no program P" such that P’ — P".



Let “—~Rg” be the rewriting system consisting of the above five transformations, i.e. —pr =
U=y Uy U—p U —y. Two distinctive features of this rewriting system [BD98] are that it
is terminating (i.e. every ground program 7P has a normal form P’), and confluent (i.e. given a
program P, by applying the transformations in any order, we eventually arrive at a normal form
normwgs(P)). This normal form normwes(P) is a residual program, consisting of rules without
positive body atoms. For such a simplified program, its well-founded semantics can be easily read
off as follows:

Definition 3.2 (SEMy,). For any nip P, we define SEM,,;,(P) = (Pirue plalse pundefy yyhere

Pirue={H|H « € P}
plase = {H|H € Lp — HEAD(P)}
fPundef — {H|H c »CP _ (fPtrue U pfalse)}

Theorem 3.3 (Classifying WFS [BD99]). WFS(P) = SEM i (normpzs(P)).

4 Transformation Properties in DelP

As stated in the introduction, we want to analyze whether transformations for NLP as the ones
described above also hold for a DeLP program. In our analysis, we will focus first on DeLP,,,
(i.e., DeLP with strict negation “~”). As the transformations in [BDFZ01] are defined with respect
to a NLP setting, we will adapt them accordingly. Therefore, we extend our previous terminology
to be applied to a DeLP,., program P (thus HEAD (P) will stand for all heads of rules in P,
etc.), distinguishing strict rules from defeasible rules when needed. Next, in section 4.2 we will
consider DeLP,,, (i.e., DeLP with default negation not ). In that case, a similar analysis will be
performed.

4.1 Transformation Properties in DeLP,,

Below we will introduce tentative extensions to DeLP,., of the previous transformation rules. The
distinguishing features of the transformation rules are discussed next. For every transformation, 7,
and P, denote ground dlp programs. Some transformation rules have special requirements which
appear underlined.

RED;, ;¢ Program Py will result from program P; by RED™ (written Py +— ppe, P2) iff there is

arule H <+ B in P; and a negative literal ~B € B such that there is no rule about B in P,
i.e. B HEAD(Py), and Py = (P, — {H «— B})U{H «— (B—{~B})}.

RED,, : Program P, will result from program P; by RED™ (written P — nyeq Po) iff there is
arule H «— B in P; and a negative literal ~B € B such that B appears as a fact in P, and

P2=P1—{H<—B}.

SUB,,.,: Program P, will result from program P; by SUB (written P; +,; Py) iff there are
strict rules H «— B and H <« B’ in P; such that B C B’ and P, = P, — {H «— B'}. The
rule H «— B, is called non-minimal rule wrt H «— B;.

UNFOLD,,.,: Suppose program 7P; contains a strict rule H <« B such that
there is no defeasible rule in P; with head H. Then program P, will result from pro-
gram P; by UNFOLD,,., (written P; ., P2) iff there is a positive literal B € B’ such

7 Note that we do not distinguish between atoms and their negations because negated literals are treated as new predicate names.



that P, =P, - {H «— B} U{H « (B—{B})UB') | B « B € P,}. Theclause H «— B
is said to be UNFOLD,,.,-related with each B «— B, € P, (fori =1,...,n).

TAUT,,,: Program P, will result from program P; by TAUT,,., (written P, rppe, Po) iff
there is H « B € Py such that H € Band P, =P, — {H < B}.

First we consider RED;/, . This transformation rule does not hold for strict negation. Note that
whereas RED™ captures the idea that not A trivially holds whenever A cannot be derived (and
for that reason not A can be deleted), the same principle cannot be applied to ~A, which holds
whenever there is a derivation for ~A. Consider the following example:

Example 4.1. Consider the following DeLP,., program: II = { (p «— ~5s), (~s «— 1),
(¢4 < ) (g2 < )}and A={(t—< q), (~t—<qy,qs) }. Here p is not justified from P
(since the argument A; = { t —< ¢, } for p is defeated by the argument Ay = { ~ t —< ¢, o
} for ~ ¢. If we consider P’ = RED;, (P) we get p as a fact, so p would be justified in P’.

neg

Let us now consider RED,,.,. This transformation rule holds for both defeasible and strict rules

in a DeLP,., program P, as shown in Proposition 4.2

Proposition 4.2. Let P be a DeLP,., program. Let P’ be the resulting program of applying
RED ie P " Nneg Pl. Then SEMDeLP(P,) = SEMDQLP<P).

neg’

Proof. Let P be a DeLP,,, program, and let A «— & P. Let r=P <« @Qy,...Q, (resp.
P—=< Qy,...Q,) be a rule in P, such that ~A = (), for some 7. Then r cannot be used in any
defeasible derivation corresponding to an argument in P, since if r is used, then both ~A and
A follow from I U A, contradicting the definition of argument). Then, every argument that can
be built from P can also be built from P’ = P — {r}. Thus Args(P) = Args(P’), and therefore
SEMDeLP(P) = SEMDeLp(,P,).

Let us now consider SUB,,.,. This transformation holds for strict rules, as shown in Proposition 4.4.
It does not hold in DeLP,., for defeasible rules (since having more literals in the body gives more
specific information), as shown in Example 4.3

Example 4.3. Let P = (I, A), where IT = {q1,¢2} and A ={ (p —< q1,¢), (p —< q1),
(~p —< g2) }. The argument A = { (p —< ¢;, g2) } for p is strictly more specific than B = {
(~p —< ¢2) } for ~p. However, if we consider P’ =P - { (p —< ¢;, ¢2) }, then we get two
arguments with block each other (A ={ (p —<¢;) } for pand B = { (~ p —< ¢z) } for ~p).

Proposition 4.4. Let P be a DelLP,,., program. Let P’ be the program resulting from applying
SUBneg, ie P = Mneg Pl. Then SEMDELP<P) = SEMDQLP<P/).

Proof. Clearly, P’ =P - { r | r is a non-minimal rule }. Let r = P «— ;... Q) be a non-
minimal rule in P, and assume there is an argument .4 for some literal H in which r is part of the
defeasible derivation for H. From the definition of defeasible derivation, for every literal (), ...
Q). there is an argument (B1, Q1) ... (B, Qk), such that Ule B; C A. Since r is a non-minimal
rule, there exists ' = P «— @Q;...Q; € II, j < k, such that for every literal ); (i = 1..j)
there are arguments (B, Q1) ... (B;,Q;). But ngl B; C Ule Bj.. Hence by replacing r by 7’
we get either the same set A as an argument for H, or a proper subset A’ C A as an argument
for H. In any case, the rule r can be removed from P, without affecting the arguments that can
be obtained from P. Therefore Args(P) = Args(P’), with P'= P — {r}. Hence SEMp,p(P) =
SEMperp(P').



Let us now consider UNFOLD,,.,. This property does not hold for defeasible rules, as shown in
Example 4.5. Besides, it does not hold for strict rules in general either: we impose the additional
condition that no defeasible rule has the same head as the literal which is being removed by
applying UNFOLD,,.,. The reason for doing so is shown in Example 4.6.

Example 4.5 (UNFOLD Does not Hold for Defeasible Rules). Consider the following example

I A
has_feathers «—  flies —< bird
has_beak <« ~flies —< bird, wounded
wounded <« bird —< has_feathers, has_beak
In P, there is an argument A = { (~flies — bird, wounded),

(bird —<  has_feathers, has_beak)} for ~ flies which is strictly more specific than A, =
{ (flies —< bird), (bird —< has_feathers, has_beak) } for flies. In this case, the first
argument is a justification. However, if UNFOLD,,, is applied on defeasible rules, we get
P = (I, 4", with A'={ (flies —< has_feathers, has_beak), (~flies —< bird, wounded),
(bird —< has_feathers, has_beak)}. In P’ we have two conflicting arguments, 4; = {
(~flies —< bird, wounded), (bird —< has_feathers, has_beak)} for ~flies and Ay = {
(flies —< has_feathers, has_beak) } for flies. In this case, neither of them is strictly more
specific than the other.

Example 4.6. Let P = (II, A) be a dlp, where IT = { (p «— ¢q,$), (¢ «— [f1), (¢ — [f2),
(s < ) (t < )}, and A={ ¢—<s }. If we could apply UNFOLD,,., on rule p « g¢,s,
we would get the program P’ =P — {p «— ¢q,s} U{p «— fi,s,p «— fo,s }. But A} ={
q—=<t } is an argument for p in P, but it does not exist in P’.

Proposition 4.7. Let P = (IIcUIl-, A) be a dlp, such that 11 = I15U1lc. I denotes the strict
rules (excluding facts) in II, and Il the set of facts in II. Let P" denote all possible literals
that have a defeasible derivation from P. Then for any F C Il¢, (IIcUF)" = (II,UF)", where
11}, follows from Il by UNFOLD,,., (i.e., Il —yneq 111).

Proof. (Sketch)® Since we do not consider defeasible rules, all defeasible derivations are actually
’strict’ (i.e. not involving defeasible information). Assume /I # II(,, where Il — I1{, (other-
wise our conclusion trivially holds). Then there exists at least a pair of strict rules r;, 7;,1 which
are UNFOLD,,. -related. We will show that any defeasible derivation S in (/I U F') involving
such rules has its counterpart in I7/, U F'), and viceversa. Let S=[ry, 72, ... , 7,741, ...7] be the
sequence of rules used for deriving H € (IIoUF'). Consider the subsequence [r;, ;. 1], such that r;
and r;, are UNFOLD,,. -related. Let r; = A < B,andletr;.; =G <« B'. Let UNFOLD,,,(P)
be the program resulting from applying UNFOLD,,., to a program P. Clearly, the subsequence
[73, 7i+1] 1s no longer valid in UNFOLD,,.,(IIUF'), since ; was removed. However, by applying
UNFOLD,,., we have substituted it by [r¥], where r¥ is the instance obtained by replacing 7,
by A « (B —{G} URB). Clearly, r’ has the same subgoals as [r;, 7;,1], and its head coincides
with the head of r;. It follows that S'=[ry,rs,... 7% ...7r,] is a defeasible derivation for h in
UNFOLD.,,.,(I1; U F). The proof is analogous the other way around.

Proposition 4.8. Let P be a dip, and let P — ey P'. Then (A, H) € Args(P) iff (A, H)
€ Args(P’)

8 For space reasons we do not include the proof in detail; the interested reader is referred to [CDSS00].



Proof. Assume (A, H) is an argument in a dlp P = (II,A). Then Il U A - H, or equiva-
lently II; U Il U A + H. But from Proposition 4.7 this is equivalent to /I’ U A -+ H, where
Il U 1o —pneq II'. Clearly, this defeasible derivation is non-contradictory, and minimal. Hence

(A, H) € Args(P')

Corollary 4.9. Let P’ be the program resulting of applying UNFOLD,,., i.e. P — ey P'. Then
SEMDeLP(P> - SEMDQLP<P/).

Let us now consider tautology elimination.

Proposition 4.10. Let P be a DelLP,., program, and P’ the program resulting from applying
TAUT,., to P, i.e. P —1 P' Then SEMperp(P) = SEMperp(P’).

Proof. Let (A, () be an argument in Args(P), such that I7 U A I () using a strict rule r=P «
P,Q1, ..., Q. Then the occurrence of P in the antecedent can also be proven from I7 — {r} U A.
Thus, there exists a derivation for ) from I7 — {r} U A (the same holds the other way around).
Therefore, (A, Q) € Args(P iff (4,Q) € Args(P — {r}). Assume now that (4, P) is an
argument in Args(P), such that [T U A+ P using a defeasible rule =P —< P, S;,...,S;. Let
A= A\{r}. Clearly, I U A’ - P. But then (A, P) is not an argument, since it is not minimal
(contradiction). Therefore, no defeasible rule P —< P, S;,...,S; can be used in building an
argument. Therefore, (A, P) € Args(P) iff (A, P) € Args(P — {r}).

4.2 Transformation Properties in DelLP,,;

DeLP,,; can be seen as NLP with the addition of defeasible rules. In such a setting there is no
strict negation “~”, and therefore no contradictory literals P and ~P. The attack relationship
among arguments is completely captured by the semantics of default negation in DeLP: not H
holds iff H cannot be justified [GSCI8]. In this respect, DeLP naturally extends the intended
meaning of default negation in traditional logic programming (not H holds iff H fails to be
finitely proven).’

Since a DeLP,, program does not involve strict negation, many problems considered in
Subsection 4.1 do not arise. New transformations RED;’ ,, RED, ,, SUB,,;, UNFOLD,,,; and
TAUT,,; can be defined, with the same meaning as the ones introduced in Subsection 4.1, but
referring to default negation. A complete analysis of transformations for DeLP,,, is outside the
scope of this paper (the interested reader is referred to [CDSS00]). For every transformation, we
will show that the resulting transformed program is equivalent to the original one.

1. (RED;,): Let (A, H) be an argument in P, such that r=P «— @Q;,...,not Q,...,Q
is a strict rule used in the defeasible derivation of H in A. The literal not () holds iff )
is not justified. Since there is no rule with head () in P, there is no argument for (), and
hence no justification for (). Therefore (A, H) is also an argument in P — {r} U {r'}, with
r'= P «— @,...,Q The same applies for any other strict or defeasible rule used in the

defeasible derivation. Hence if P +— nyeq P, then SEMpe.p(P)=SEMperp(P’).

2. (RED, ):Letr=P «— @Qy,...,not Q,...Q, beastrict rule, and assume () «— & P.Ifr
is used in a defeasible derivation for building an argument (A, H), the literal not () will hold
iff @ is not justified. But the empty argument (), Q) is a justification for (). Hence r cannot

® Note that default negation is applied to positive literals (i.e., atoms) in NLP, whereas in DeLP it can be applied to arbitrary
literals.



| INLP under wfs|  DelLP,., | DelP,, |

RED™ yes no yes
RED™ yes yes yes
SUB yes yes, for strict rules | yes, for strict rules
UNFOLD yes yes?, for strict rules|yes?, for strict rules
TAUT yes yes yes

Fig. 1. Behavior of NLP, DelLP,., and DeLP,, under different transformations

% Some additional conditions are required for the transformation to hold.

be used in any argument, so that any argument (A, H) in Args(’P) is also an argument in
Args(P —{r}). The same applies for any other strict or defeasible rule used in the defeasible
derivation of H in .A. Therefore if P + ppe, P’, then SEMperp(P)=SEMp.p(P’).

3. (SUB,,;): Let P be a DeLP,,, program, and let r = P « B, be a non-minimal rule in P
(i.e., there exists a rule " = P «+ B, such that By C B;). If there is an argument A for
H using rule r in the defeasible derivation of H, then the same argument .4 for H can be
built by using ' instead (since every literal not () that holds in B, also holds in ;). Hence
Args(P) = Args(P — {r}). The same applies for any other strict rule used in the defeasible
derivation of & in A. Therefore SUB,,,; holds wrt strict rules.

4. (UNFOLD,,): this transformation holds in DelLP,,, following the same line of reasoning
used in Proposition 4.8.

5. (TAUT,,;): tautology elimination holds in DeLP,,,, following the same line of reasoning used
in Proposition 4.10.

5 Relating NLP and DelP

Figure 1 summarizes the behavior of NLP, DeLP,., and DeLP,,,, under the different transformation
rules presented before. From that table we can identify some relevant features:

— An argumentation-based semantics has been given to NLP using an abstract argumentation
framework [KT99]. From Section 4.2 it is clear that DeLP is a proper extension of NLP,
since there are transformation properties in NLP which do not hold in DeLP. This is basically
due to the knowledge representation capabilities provided by defeasible rules.

— Some properties of NLP under well-founded semantics are also present in DeLP (such as
TAUT and RED). It is worth noticing that RED™ holds in NLP because of a ‘consistency
constraint’ (it cannot be the case that both not P and P hold). The same is achieved in DeLP
by demanding non-contradiction when constructing arguments.

— Other transformation properties only hold for strict rules (e.g. SUB), sometimes with extra
requirements (e.g. UNFOLD). This shows that defeasible rules express a link between literals
that cannot be easily ‘simplified’ in terms of a transformation rule, and a more complex



analysis (e.g. computing defeat) is required.

— Some properties (e.g. RED™) do not hold at all wrt strict negation, but do hold wrt default
negation. In the first case, the reason is that negated literals are treated as new predicate names
(and succeed as subgoals iff they can be proven from the program). In the second case, default
negation behaves much like its counterpart in NLP. As in NLP, the absence of rules with head
H is enough for concluding that H cannot be proven, and therefore not justified.

5.1 Related work

In recent work [KT99] an abstract argumentation framework has been used as a basis for defin-
ing an unifying proof theory for various argumentation semantics of logic programming. In that
framework, well-founded semantics for NLP is computed by using an argument-based approach,
which has many similarities with DeLP [CS99].

Many semantics for extended logic programs view default negation and symmetric negation
as unrelated. To overcome this situation a semantics WFSX for extended logic programs was
defined [ADP95]. Well-founded Semantics with Explicit Negation (WFSX) embeds a “coher-
ence principle” providing the natural missing link between both negations: if ~ L holds then
not L should hold too (similarly, if L then not ~ L). In DeLP this “coherence principle” also
holds [GSC98].

Finally, it must be remarked the the original Simari-Loui formulation [SL92] contains a fixed-
point definition that characterizes all justified beliefs. A similar approach was used later by
Prakken & Sartor [PS97] in an extended logic programming setting, getting a revised version of
well-founded semantics as defined by Dung [Dun93]. These analogies highlight the link between
well-founded semantics and skeptical argumentative frameworks.

6 Conclusion

We have related in ths paper the logical framework DeLP to classical logic programming semantics,
particularly well-founded semantics for NLP. The link between both semantics was established
by looking for analogies and differences in the results of applying transformation rules on logic
programs.

The differences between NLP and DeLP are to be found in the expressive power of DeLP for
encoding knowledge in comparison with NLP. Defeasible rules allow the formalization of criteria
for defeat among arguments which cannot be easily ‘compressed’ by applying transformation rules,
as explained in Section 5. Strict negation in DeLP is also a feature which extends the representation
capabilities of NLP. However, as already discussed, the same principle which guides the application
of the transformation rule RED~ in NLP can be used for detecting rules that cannot be used for
constructing arguments.

It is worth noting that the original motivation for DeLP was to find an argumentative formu-
lation for defeasible theories in order to resolve potential inconsistencies. This was at the end of
the 80’s. In the meantime the area of semantics for logic programs underwent a solid foundational
phase and today several possible semantics together with their properties are well-known. We
contend that these results can be applied to gain a better understanding of argumentation-based
frameworks.
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