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Abstract. In the past years, Web Services (WS) have become the 
standard for exposing services as application programming interfaces to 
be consumed from anywhere in the world. Since many operations 
require the collaboration between two or more WS, the need to have 
languages to express Web Service Compositions has emerged. Web 
Service Composition presents a problem very similar to Business 
Process Management (BPM), both disciplines aim to express complex 
combinations of operations to achieve broader goals. In BPM these 
combinations are generally known as Workflows. The current industry 
standard for representing Web Service Workflows is BPEL, a language 
developed by Microsoft, IBM and others. PEWS is another language 
proposed to describe Web Service Compositions. Simplicity and 
neatness of descriptions are two relevant features of this language. This 
work proposes some extensions to PEWS in order to support the most 
common workflow patterns. The extended version of PEWS is able to 
fully support 36 out of the 43 Workflow Control Patterns as defined in 
the literature. This new version creates the foundation for further 
studies on the language, especially future extensions to capture other 
patterns and features (such as data manipulation, error handling, etc.) as 
well as the addition of semantic information to compositions. 

1 Introduction 

Web services are software systems accessible via Internet. In a typical web service 
development setting, we have: (i) a description of the operations of the service and the 
data types they process; (ii) a specification of the service behavior (possibly written in 
a natural language) and (iii) a set of programs to implement each operation. The 
description of the service is given as a WSDL (Web Service Description Language) 
document [1]. It describes the names and interfaces (types of the arguments) of the 
operations of the service. WSDL addresses only static interface specifications and it 
does not describe the observable behavior of the web service. Moreover, WSDL is 
not equipped to describe compositions. Each operation is, normally, implemented as a 
method or procedure and its execution is supported by a web server. 

The need for better-defined behavioral interfaces for software components and web 
services has motivated the definition of new languages and description techniques for 



these interfaces. PEWS (Path Expressions for Web Services) [2, 3] is an interface 
description language to define composed web services. 

The composition of web services and the definition of (business) process 
workflows are areas which have many common characteristics [4]. They share, for 
instance, the necessity of dealing with independent, communicating pieces of 
software. In [5] it is proposed the analysis of several web service composition 
languages. The analysis is based on a framework composed by workflow patterns: 
abstracted forms of common situations found at the organization of business process 
workflows. 

In [6], new workflow patterns were added to those presented in [5]. The new 
patterns refine and specialize the patterns in [5]. 

The main goal of this work is to study the use of PEWS to express the workflow 
patterns presented in [6]. This study will allow us to compare PEWS with other (more 
popular) languages for web service interfaces. In particular, with BPEL [7], which is 
the de-facto standard for web service composition. 

In the next section we briefly introduce PEWS. Section 3 discusses each of the 
workflow patterns that compose the framework presented in [6] and their 
implementation in PEWS. In Section 4 we present some extension to PEWS that are 
convenient for the practical use of the language as well as for the implementation of 
the new workflow patterns. In Section 5 we use the extensions to PEWS for the 
implementation of more workflow patterns. Section 6 presents a comparison of 
PEWS and BPEL in terms of the ability of both languages to express workflow 
patterns, as well as our analysis and this comparison. 

2 PEWS 

PEWS is a language for the definition of web services. The language is devised to 
help in the design of web services by specifying their behavior, i.e,. the relative order 
in which the operations of the service can be executed. 

PEWS brings predicate path expressions to the context of web services. Predicate 
path-expressions [8] are programming language constructs used to restrict the 
allowable sequences of operations on an object. For instance, given the operations a, 
b and c, the path expression a*.(b||c) defines that the parallel execution of 
operations b and c should be preceded by zero or more executions of a. 

As noted in [8], the use of predicates in path expressions allows a finer control of 
the access to the object being manipulated. For instance, the predicate path expression 
a*.([P]b+[not P]c) indicates that either b or c would be executed according to 
the truth-value of predicate P (the execution of b or of c will be preceded by zero or 
more executions of a). 

The structure of a PEWS program is defined as: 
P::=(var X = Exp)*(task T = S)* S 
S::= O | T | S.S | S||S | S + S | if (Bexp) S | 
while (Bexp) S 

Exp::= Aexp | Bexp 



According to the grammar above, a PEWS program P is composed by a sequence 
of: 

• Macro definitions: An identifier X is bound to an expression (Exp) that may 
be arithmetic (Aexp) or boolean (Bexp). The value of X will be computed each 
time the identifier is used during the run of the program. The expression may 
contain system identifiers that may change their value during execution. (This 
feature will be explained later on in this section.) 

• Task definitions: An identifier T is bound to a workflow expression S. Task 
definitions may be recursive. For example, we can define the following tasks: 
task T

1
=A.(B||C) and task T

2
=T

1
.T

2
. Notice that the task T2 is equivalent 

to the task while (true) (A.(B||C)). 

• A workflow expression: This expression defines the main task of the program. 
It represents the allowable order in which the operations of the service may be 
performed.  

The grammar for S defines that a workflow expression can be a WSDL defined 
operation (O) or a task name (T); the sequential (.) or parallel (||) composition of 
workflow expressions; the exclusive choice between workflows (+); the conditional 
execution of a workflow (if (Bexp) S) and the (conditional) repetition of a 
workflow expression (while (Bexp) S). Bexp are PEWS predicates (boolean 
expressions that can contain PEWS counters and identifiers). PEWS also includes 
some predefined, primitive tasks, identified with the names break (used for the 
termination of loops), exit (successful, explicit termination of the current task) and 
nop (the no-operation).  

The language associates counters to each operation and task: Given a 
task/operation identifier Y in the program, the PEWS run-time system associates three 
counters to it. They correspond, respectively, to the number of times Y has been called 
(req(Y)), started (act(Y)) or finished (term(Y)). Each of these counters is 
composed by a pair: a natural number (the counter itself, denoted by val) and a 
timestamp, corresponding to the last time in which the counter was modified (denoted 
by time). For instance, the expression term(SellItem).time - 

act(SellItem).time describes the time interval between the activation and 
termination of the opeation SellItem. 

The language defined in this section will be referred to as core PEWS. This 
language is capable of describing an expressive number of workflow patterns (as it 
will be seen in the next section). However, the direct implementation of some other 
workflow patterns is problematic in core PEWS. The language will be extended with 
new features in section 4, in order to obtain a broader direct representation of the 
workflow patterns defined in [6]. 

3 Workflow Patterns 

In this section we will focus on the control flow patterns supported by core PEWS. 
Control flow patterns correspond to a set of forty-three control structures, classified 
into eight collections, which usually arise during business process modeling [6].  



Basic Control Flow Patterns: the Workflow Management Coalition defined a set 
of five patterns that represent the most basic combination of tasks. The list of patterns 
includes Sequence, Parallel Split, Synchronization, Exclusive Choice and Simple 
Merge. Given processes A, B and C, and a boolean expression Cond, these patterns 
can be defined in PEWS as: 

Pattern Representation in PEWS 

Sequence A.B.C 

Parallel Split A.(B||C) 

Synchronization (A||B).C 

Exclusive Choice A.(if (Cond) B + if (Cond) C) 

Simple Merge (if (Cond) A + if (¬Cond) B).C 

Advanced Branching and Synchronization Patterns: the basic control flow patterns 
above turned out to be effective for business process automation and have widespread 
support, however, further requirements for workflows arise in practice, opening the 
possibility for extensions. In order to address this problem, a set of advanced 
branching and synchronization patterns were defined in [6].  

Multiple Instance Patterns: in these patterns, the activation of several instances of 
the same task is needed. Each instance runs independently from their calling thread, 
which will not wait for their completion. Excepting for the Cancelling Partial Join for 
Multiple Instances, all of these patterns are representable in PEWS with the 
extensions that will be presented in section 4. We will give a representation, as well as 
an explanation, for these patterns in section 5. 

State-based Patterns: state-based patterns represent situations where there is a need 
to support state. State represents the data and metadata related to the current 
execution, including the status of the various tasks being executed, variables and other 
data elements. 

Deferred Choice: deferred choice patterns describe an external choice of tasks. 
This pattern can be described in PEWS using the choice operator, as in (A + B). One 
of the branches of the constructor will be chosen, in accordance with their availability. 

Cancellation and Force Completion Patterns: some patterns describe situations 
where task cancellation is required. The simplest situation involving cancellation is 
captured by the Cancel Task pattern, where just a task is aborted. However, more 
advanced situations can arise. This group of patterns includes: Cancel Task, Cancel 
Case, Cancel Region, Cancel Multiple Instance Activity, Complete Multiple Instance 
Activity. 

Iteration Patterns Iteration Patterns: define the repeated execution of tasks. The 
patterns in this group are analogous to loop and recursion constructs that are common 
in programming languages. These patterns include: Structured Loop, Recursion, and 
Arbitrary Cycles. 

Termination Patterns Termination Patterns describe the ability to determine when 
a process is considered to be completed. Implicit and Explicit terminations are the two 
relevant patterns in this group: Implicit Termination and Explicit Termination. 

Both patterns are (trivially) supported by core PEWS. Implicit termination is 
represented by the conclusion of a task, after its successful performance. Explicit 
termination of a task is represented in core PEWS by the exit primitive. 



Trigger Patterns: the Trigger patterns define the ability of tasks to be started by 
external signals. There are two possible patterns, whose difference is on the 
persistence of the signal: Transient Trigger and Persistent Trigger. 

4 Extending PEWS 

Some of the patterns listed in the preceding section cannot be directly implemented 
in core PEWS. In this this section we will present a set of extensions that enable 
PEWS to express most of those patterns. These extensions add to the language new 
primitives for task cancellation, task instance creation and semaphores. 

Task Instances There are situations where multiple instances of the same task need 
to be executed. These include: 

- An activity is able to initiate multiple instances of itself. 
- A given activity is initiated multiple times after receiving different triggers. 
- Two or more activities share the same definition. 
To support task instance creation, the $...$ operator is added to PEWS. This 

operator is defined as follows: Each time the control flow reaches the task $A$, a new 
instance of A will be spawned and the control flow continues without waiting for the 
termination of the spawned instance.  

Task Cancellation The cancel operation is expressed by using the “!” operator, 
therefore A! means cancelling the execution of A, where A is a task identifier. For 
instance, the following expression first executes A and then initiates both tasks B and 
C. The first of these latter two tasks that finishes its execution will cancel the 
execution of the other one. 

A.(B.C!||C.B!) 

Notice that owing to the fact that the cancel operation can be used in combination 
with the task definition primitive, it is possible to cancel a composite task. In that 
case, all the tasks contained in the composite task are cancelled. 

Semaphores Some situations require the synchronization of different threads of 
execution. These situations include scenarios that require accessing to critical regions 
or triggering a task (when a certain condition is verified or a point in the workflow is 
reached). 

In order to support these cases, we harness the PEWS language with a library to 
implement semaphore primitives. Semaphore operations in PEWS are defined as: 
Sem<name>: Defines a new semaphore of name <name>. 
set(<name>,<initial count>): Sets the value of the semaphore <name> 

with value <initial count>. 
wait(<name>): Decrements by one the counter of the semaphore, if its value is 

positive. If the value of the semaphore is zero, then the current thread suspends 
its execution until the value of the semaphore can be decremented. 

signal(<name>): Increments by one the value of the semaphore. 
free(<name>): Disposes the semaphore of name <name>. 



5 Representing more Workflow Patterns in PEWS  

In this section, we use the new constructors presented in section 4 to propose 
implementations in PEWS for most of the patterns that were not treated in section 3. 
The extensions not only improve the usability of PEWS, but also enable the direct 
support of most of the common workflow patterns. The rest of this section deals with 
the representation of the patterns in PEWS. 

Structured Partial Join: this workflow pattern describes a situation in which a task 
is performed only after a choice of m out of n other tasks are completed. For instance, 
executing a task after two out of the three other tasks have finished. The PEWS 
representation of this situation is given as follows: 

sem S . set(S, 0).A 
.(B.signal(S)||C.signal(S)||D.signal(S)||wait(S). 
wait(S).E) 
.free(S) 

In this example, the task A is performed first. After A's completion, the tasks B, C 
and D are initiated. The task E is performed only after two out of the three tasks B, C 
and D completed. 

Cancelling Partial Join: this workflow pattern is similar to the previous one, in the 
sense that a task will be performed only after m out of n other tasks are completed. 
The only difference with the previous pattern is that the n – m unfinished tasks are 
cancelled. The case of this pattern where we should choose 2 out of 3 tasks can be 
described by the following PEWS expression: 

sem S . set(S,0) 
.A.(B.signal(S)||C.signal(S)||D.signal(S) 

||wait(S).wait(S).(if(term(B).val+term(C).val=2)D! 
+if(term(B).val+term(D).val=2)C! 
+if(term(C).val+term(D).val=2)B!).E) 

.free(S) 

Blocking Partial Join: this pattern is similar to the Structured Partial Join pattern, 
where subsequent executions of the partial join require that previous executions of it 
are already completed. The PEWS representation of this pattern uses a globally 
defined semaphore G, initialized in 1. The case of this pattern where we should 
choose 2 out of 3 tasks can be described by the following PEWS expression: 

wait(G) 
.sem S.set(S, 0) 
.A.(B.signal(S)||C.signal(S)||D.signal(S)||wait(S).
wait(S).E) 
.free(S) 
.signal(G) 

Multiple Instances without Synchronization: this pattern is exactly described by the 
task instances primitive of PEWS. 

Multiple Instances with a Priori Design-Time Knowledge: this pattern models a 
situation in which a statically known number (n) of instances of a task can be created. 
These instances are independent of each other and run concurrently. This pattern is 

implemented in PEWS as: {$A$}n. 

Multiple Instances with a Priori Run-Time Knowledge: this pattern describes a 
situation in which a number of task instances needs to be created. The number of 



instances is known before the instance creation begins. Given that the task A defines 

n, we can have this pattern described as: A.{$B$}n . 
Multiple Instances without a Priori Run-Time Knowledge: this pattern describes a 

situation in which the spawn of new instances is controlled by a condition in the 
program. This pattern is partially representable in PEWS, due to the nature of 
conditions in the language. In fact, PEWS conditions only define expressions on 
counters and constants. Data processed by operations (like input/output data) do not 
occur in PEWS programs. 

The (partial) representation of this pattern is given by the task X, as follows: 

task X = ((if(Cond)$A$+if(¬Cond)exit)||X) 

Static Partial Join for Multiple Instances: this pattern corresponds to the execution 
of a task B after the completion of m instances (out of a total of n) of a task A. The 
PEWS representation of this pattern is: 

sem S.set(S,0).{$A.signal(S)}n.{wait(S)}m.B.free(S) 

Interleaved Parallel Routing: this pattern describes a situation in which a set of 
tasks is executed in a predefined (partial) order. No two tasks are to be executed at the 
same time. The partial order of tasks can be represented in PEWS by the combination 
of the sequential and parallel composition. The non-concomitant execution of tasks 
can be expressed in PEWS using semaphores. As an example of this pattern in PEWS, 
consider the case where a task B should be performed after A, while there is no 
defined order between the execution of these two tasks and another task C: 

sem S . set(S,0). 

(wait(S).A.signal(S).wait(S).B.signal(S))|| 

(wait(S).C.signal(S)) 

.free(S) 

Milestone: this pattern describes a situation where a task is enabled only when the 
execution of another branch of the workflow is at a specific point (called a milestone). 
For instance, suppose that a task E, inside a loop, is enabled only after a task B has 
finished and before another task C started (B and C are in a sequence). This can be 
described by the following PEWS code: 

var M = term(B).val = act(C).val + 1 

task W = D.(if(M)(E.W+F.G)+if(¬M)F.G) 

... 

(A.B.C)||W 

Critical Section: a critical section pattern describes a situation in which two or 
more parts of a composite task must be performed one at a time. The use of 
semaphores in PEWS implements this pattern. For instance, in the following PEWS 
expression,  

sem S . set(S,0) 

.A.(wait(S).(B.C).signal(S))|| 

(wait(S).(D||E).signal(S)) 

.free(S) 

the sequential composition of B and C defines one critical section of the task and the 
parallel composition of D and E defines another critical section. 

Interleaved Routing: this pattern describes a situation in which a pool of tasks is 
executed in mutual exclusion. This pattern is easily described using the semaphore 
primitive of PEWS. 



sem S . set(S,0) 
.((wait(S).A.signal(S))|| 
(wait(S).B.signal(S))||(wait(S).C.signal(S))) 
.free(S) 

Cancel Task: the cancellation of a task is a pattern that allows a part of the program 
to be cancelled by an authoritative agent. The preemption primitive of PEWS can be 
used for such a goal, as: (A : B!) k B . Notice that the task B can be terminated after A 
finishes. 

Cancel Case: this pattern describes a situation in which a composite task must be 
preempted. Its representation in PEWS consists in defining a composite task by using 
the task directive, in order to identify it with a name. This task can, then, be cancelled 
in the same manner as in the previous pattern. 

task C = ... 
A.((B.C!)||C) 

Transient Trigger: this pattern models the case in which the execution of a task is 
conditioned to the activation of a trigger. We will model the trigger using a 
semaphore. Notice that the activation of the trigger is transient, meaning that if there 
is no task ready to be performed once the trigger is enabled, then the activation has no 
efect. If there is a task waiting for the trigger's activation, then this task will be 
executed. This pattern can be described in PEWS as: 

sem(S).set(S,0). 
(while(true)(signal(S).set(S,0))||(A.wait(S).B)) 

Persistent Trigger: this pattern describes a situation that is similar to the previous 
one, except for the fact that the trigger is persistent (meaning that once it is activated, 
this condition remains during execution). This pattern can be described in PEWS as: 

sem(S).set(S,0).(signal(S)||(A.wait(S).B)) 

Local Synchronizing Merge: this pattern defines that one of the branches of a 
parallel task can take an independent path, exiting the constructor by creating a new 
thread. This is described in PEWS by using the task instance primitive, where the 
independent path is defined as the spawn of a task instance ($D$). 

task D = ... 
if(Cond1)A||if(Cond2)(B.(C+$D$)) 

General Synchronizing Merge: this pattern generalizes the previous one, adding a 
loop before the (local) synchronizing merge. This situation can be described in PEWS 
as follows: 

task D = ... 
task X = B.(C+$D$+X) 
if (Cond1) A || if (Cond2) X 

Cancel Region: this pattern describes the ability of a task to cancel a set of other, 
possibly unrelated tasks. This capability is useful when alternative execution paths 
may be chosen, as a form of handling exceptional situations. In the following PEWS 
program, the region formed by tasks B and D will be cancelled whenever a trigger is 
activated. 

((A.B)||(C.D))||...if(Trigger)(B!||D!)... 

Cancel Multiple Instance Activity: this pattern describes a situation where multiple 
instances of a task must be terminated. The cancellation affects all the instances that 
are currently being executed as well as all future instances. The PEWS 
implementation of this situation can be described as follows. 

(...$A$...$A$...)||...if(Trigger) A!... 



6 Concluding Remarks 

Sections 3 and 5 show the implementation in PEWS of most of the workflow 
patterns that compose the framework in [6]. We have seen that PEWS gives support 
to most patterns, with the exception of those which are not structured. This was 
expected, since PEWS itself is a structured language. 

We have compared the use of PEWS and BPEL for the expression of the workflow 
patterns presented in [6]. The result of the comparison appears in Table 1. In that 
table, the columns marked BPEL and PEWS correspond, respectively, to the ability of 
these languages to directly represent the patterns of the first column. Each row of the 
table represents a workflow pattern. The symbol “+” indicates that the pattern is 
supported, where the symbol “-“ indicates the contrary. Partial support is signaled by 
“+/-“. 
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Table 1. Workflow Patterns in BPEL and PEWS. 

Group Pattern BPEL PEWS 
B

as
ic

 

Sequence + + 
Parallel Split + + 
Synchronization + + 
Exclusive Choice + + 
Simple Merge + + 

A
d

v
an

ce
d
 B

ra
n

ch
in

g
 a

n
d
 S

y
nc

 

Multi-Choice + + 
Structured Synchronizing Merge + + 
Multi-Merge - + 
Structured Discriminator - + 
Blocking Discriminator - + 
Cancelling Discriminator - + 
Structured Partial Join - + 
Blocking Partial Join - + 
Cancelling Partial Join - + 
Generalized AND-Join - - 
Local Synchronizing Merge + + 
General Synchronizing Merge - + 
Thread Merge +/- + 
Thread Split +/- + 

M
u

lt
. 
In

st
an

ce
s 

Multiple Instances without Synchronization + + 
Multiple Instances with a Priori Design-Time Knowledge - + 
Multiple Instances with a Priori Run-Time Knowledge - + 
Multiple Instances without a Priori Run-Time Knowledge - +/- 
Static Partial Join for Multiple Instances - + 
Cancelling Partial Join for Multiple Instances - - 
Dynamic Partial Join for Multiple Instances - - 

S
ta

te
-b

as
ed

 Deferred Choice + + 
Interleaved Parallel Routing +/- + 
Milestone - + 
Critical Section + + 
Interleaved Routing + + 

C
an

ce
ll

at
io

n
 

Cancel Task + + 
Cancel Case + + 
Cancel Region +/- + 
Cancel Multiple Instance Activity - + 
Complete Multiple Instance Activity - - 

It
er

. 

Arbitrary Cycles - - 
Structured Loop + + 
Recursion - + 

T
e

rm . 

Implicit Termination + + 
Explicit Termination - + 

T
ri . 

Transient Trigger - + 
Persistent Trigger + + 

 


