

DYNAMIC COMUNICATION MECHANISM OF A DISTRIBUTED DSS:
THE INFORMATION RETRIEVAL PROCESS OF THE ROUTER AGENT

Geargina STEGMAYER, María Laura TAVERNA, Omar CHIOTTI, María Rosa GALLI
GIDSATD-UTN – Facultad Regional Santa Fe – Lavaise 610- 3000 SANTA FE – Argentina

INGAR – CONICET – Avellaneda 3657 – 3000 SANTA FE – Argentina
mrgalli@intec.unl.edu.ar, chiotti@arcride.edu.ar

ABSTRACT
We have developed a distributed DSS able to work in a dynamic way. This system is based on the
use of mobile agents, which receive the user's queries and visit the DSS domains gathering the
required information. One of the main elements to the efficient operation of this system is the router
agent. Its responsibility is to give an adequate route to the mobile agents. In this paper we propose a
structure for the router agent. It includes a Knowledge Base where the information managed by
each domain is represented, and a mechanism of matching the query contents to the domain
contents. We also present an interactive strategy to obtain the initial data to be stored in the Router
Knowledge Base. The AHP method is used to support the task of evaluating the relative importance
among terms representing each domain.

Keywords. Distributed System, Mobile Agent, Router Agent, DSS, Information Retrieval, AHP.

mailto:Mrgalli@intec.unl.edu.ar�
mailto:chiotti@arcride.edu.ar�

INTRODUCTION
The new organizations of productive systems are based essentially on horizontal structures, with
few hierarchical levels and an important delegation of the decision along the whole production
chain, which no longer involves the company but the whole supply chain. This atomization of the
decision process requires an appropriate system that supports each decision point of the
organization, which is able to coordinate the whole decision process.
The decision points of an organization are generally located on different functional units
geographically disperse, use decision models and techniques specific to each type of decision and
they usually share only some information derived from punctual decision. Therefore, a “global”
decision support system should be designed as a set of geographically distributed subsystems
(Domains), operating with the smallest level of possible joining, which we will call Global Decision
Support System (GDSS).
Nagel et al. (1999), have designed a distributed architecture for a GDSS based on the federation
concepts. This is an event driven mechanism where each domain must specify both its
responsibilities for publishing the information it generates and its subscription to the information
produced by other domains. In this way, by means of this contract-based mechanism, the
architecture only establishes information dependence among system components that implicates
both weakness coupling and domain autonomy conservation [5].
The interaction model of this distributed architecture is flexible in the sense that at the design time it
can be adapted to particular decision-processes requirements of a particular industrial organization,
and it is a robust interaction mechanism among domains with a fully defined data structure. But this
interaction model does not allow the domains to ask for and to receive new information types. Then,
the domains can not support any particular requirements that have not been foreseen at the design
time.
When the same domain needs additional information to which it is not subscribed, it is necessary to
determine if any other domain is reliable to publish this information. Otherwise, it must identify
which domain is able to provide the required information. In this case, the GDSS must have the
same level of intelligence to facilitate the search in a dynamic way.
That is, there exist two types of decisions that should be contemplated for designing a GDSS: static
decision processes that define predictable scenarios, and dynamic decision processes that define non
predictable scenarios.
A predictable scenario is one that can be previously specified to design the interaction model, while
a non predictable scenario is one that is not foreseen at the design time. On that basis, Caliusco et al.
(2000) proposed to develop an architecture for the GDSS with two mechanisms of interaction
among domains: a contract-based mechanism, which supports the static decision process, and a
mobile agent-based mechanism to support dynamic decision processes. In this paper, we consider
only the second mechanism [1].

MOBILE AGENT-BASED MECHANISM TO SUPPORT DYNAMIC
DECISION PROCESSES
When the interaction model among domains can not be defined because the decision scenarios are
non predictable, the proper system must search the required information analyzing where these data
are available, or can be generated. To do that, it is necessary to design a search mechanism that is
able to decide where to look for the query. In this context, the mobile agent technology appears as
the most suitable for this case.

An agent can be described as a software component that performs a specific task autonomously.
Two classes of agents can be identified: static and mobile agents. While static agents are software
components that stay in their respective computers using the network only to transfer information,
mobile agents are software components that are able to migrate between different locations of a
network in order to perform their tasks locally. Since mobile agents maintain an internal execution
state and/or data state, they are able to perform different parts of their tasks sequentially on different
locations into a distributed system. This concept of remote programming avoids the need for
transferring a large amount of data across a network. At the same time, an agent can be regarded as
intelligent or not, depending on whether it has been able to learn or not.
The mechanism proposed to support the dynamic decision process is based on the use of mobile
agents to carry out the search and gathering of information ([2][6][8]). Within the architecture itself,
we can find a series of fundamental elements, among which there are static, mobile and intelligent
agents. These components are namely: Collecting Agents, the Representative Agent, the Collecting-
Agents Server, the Gatekeepers and the Router Agent[1]. Now, we will provide basic notions about
each of them. We present this architecture in Figure 1.

Figure 1. Mobile Agents to support the dynamic decision process

Collecting Agents (CAs): The function of CAs is to receive the user’s consult and to obtain a list of
domains that can provide an answer, according to the consult. Then, they must visit each of those
domains gathering the available information, and once the collection phase is finished, they must
return to the domain of origin to give the user the obtained information.
Representative Agent (RA): All domains have a RA that represents them. This agent is static and
is located in the Gatekeeper of the domain, which must be always up and running. Its functions are
the following: on the one hand, it sends the consults coming from users of the domain to the
collecting agents so that the latter can search for the information. On the other hand, it transmits the
answers to previous consults of the coming agents, and last, it represents the domain when a
collecting agent that belongs to another domain arrives asking for information. To sum up, the

KB
KB: Knowledge Base
DCM: Dynamic Consult Module
GK: Gate Keeper
RA: Representative Agent
CA: Collecting Agents
CAS: Collecting Agents Server

USER

USER

Agents Router

Query

KB

Domain 1

DCM

GK

RA

C.A.S

Query

KB

Domain 2

DCM

GK

RA

C.A.S

CA

CACACA CACACA

CACACA

representative agent of a domain acts as a mediator between a domain and the collecting agents
belonging to either its own or another domain.
Collecting Agents Server (CAS): Currently, the mobile-agents technology is based on server
programs that serve as a habitat for the agents. These servers are the mediators between the agents
and the system resources. The main reason for their existence is the fact that they must provide
protection for the local system against the coming agents so as to avoid the harmful action of any
evil agent. Since our architecture is based on mobile agents, it must necessarily have server
programs that are capable of handling all the functions associated to such agents and of protecting
machines where the agents live together. The CAS, or Collecting Agents Server, is the element that
plays this role in our architecture and is located inside the Gatekeeper just as the RA, which was
described in the previous paragraph. Every interaction between an external program and the
collecting agents takes place through the CAS.
Gatekeeper (GK): It is an abstraction of the set of programs that must be always up and running;
no matter if the domain they belong to is active. In our case, the RA of the domain, the SAC and a
third element must remain active. This third element has not been mentioned yet and is the
Knowledge Base (KB) of the domain. These three components constitute what we call Gatekeeper
and in fact, none of them is compelled to reside in the same machine where the others reside.
Router Agent: The Router is an element that is independent of the domains and the Gatekeepers.
Its function, as its name suggests it, is to give a route, but differently from the routers we are used to
talking about when dealing with networks, this router must route mobile agents and not datagrams.
We can point out two independent functions that must be carried out by this element. On the one
hand, by saying that it must deal with mobile agents we must assume that it must have the
capability of providing such agents with a safe execution environment, thus, one of the functions of
this router is to act as an agent server. On the other hand, it receives the consults of the coming
agents and, according to the information in its KB, gives the agents a route with the domains that
can provide them with an answer.
This mobile agents-based mechanism operates in the follow way:
When a decision-making user needs a specific type of information that he is not actually receiving
he gets into the Dynamic Consults Module. There, with the help of the assistant (whose design is
not within the scope of this work), he expresses the kind of information he would like to receive.
Once the consult is made, the assistant passes it to the RA of the domain, which will change the
consult into a format accepted by the mobile agents and will send this consult to the Collecting
Agents Server (CAS). At this moment, the CAS gives the consult to a collecting agent of the
domain and it goes to a special agent server: the router. This router server receives all the agents
that have just left their domain, reads the formulated consult and according to the information kept
in its KB about the domains, it gives the agents a route of domains that can help the agent to find
the searched information.
This route can contain zero to n domains. If the searching route generated by the router does not
contain domains where to search for the information, we understand that the router does not have
any piece of information in its KB that can associate the information being searched with one or
more of the existing domains. The lack of this association does not imply that the information being
searched does not exist or cannot be generated. In this case, the agent can send a request to the
router asking for the list of all known domains and starts visiting them searching for the
information.
If the agent is working in sequential mode, it will simply go through the scales of its route as they
appear. One by one, it will visit all the domains making its consult. Once it has finished and is about

to go back to the domain of origin, it will visit the router to inform it of the results obtained,
allowing the router to have new information for bringing up to date its KB for future agents. Once it
has made all this, the agent will go back to its domain, will deliver the information and will destroy
itself.
If the agent is not working in sequential mode but in parallel mode, after the route of domains is
obtained (if there is any), the agent will generate clones of it, one for each of the domains to be
visited (except for the one it will visit). Thus, all the clones and the original agent will be sent to
their respective destinations. Each of them will travel to a domain, will make the consult to the
Representative Agent of the domain, will collect the results and will go back to the router. Once all
the agents, the original one and the clones, meet in the router, the original agent asks its clones, one
by one, for their information to be structured. When a clone gives the original agent its information,
it tells the router the result of its incursion in the assigned domain. After that, each clone destroys
itself. Once the original agent is ready to go back, it returns to the domain of origin.
The goal of this work is to analyze the Router agent of this system, and particularly to describe both
its mechanism of query understand and its strategy to identify domains able to give answer to the
same ones.

THE ROUTER AGENT STRUCTURE
As we have shown above, the router agent has two well defined main functions:

a) To act as an agents-server,
b) To manage the knowledge about the information type handled by each domain
composing the GDSS.

For that reason, we define its structure with a two-component model (Figure 2):

 Figure 2. The Router Agent Structure

The Communication Component has the function of communicating with the agents that arrive at
the router agent. That is to say, to receive their queries and to send them to the knowledge
component for their prosecution. After receiving the answer from this, send it to the agents that

arrived with the query. And finally, to receive the information obtained from the visited domains for
up to date its Knowledge Base, before the collecting agent go back to the domain of origin.
The Knowledge Component is responsible for two tasks:
a) Interpreting the query transported by the collecting agents, and inferring a probable set of

domains able to answer the query. We will call this task information retrieval into the GDSS.
b) Maintaining and up dating their KB by means of a learning process that uses the information,

which is carried out by the collecting agents after finishing their travel.
An interface between the two components is responsible for the communication between them, that
is, for transferring queries, answers and up dates.

In this paper we will concentrate our attention on the mechanism by which the Knowledge
Component carries out one of the assigned functions: to determine the set of domains that can give
an answer to the users need for information. That is, how it interprets the contents of the query, in
which way the information managed by the different domains is stored at the KB and how it
accesses to this information. The learning mechanism will be discussed in a future work.

INFORMATION RETRIEVAL INTO A GDSS
An Information Retrieval system (IRS) is a tool that allows representing and storing information to
be automatically retrieved at the moment required by the user. The most developed is the
Information Retrieval (IR) area concerned with selecting from a collection of documents those that
are relevant for the information needed by the user. Several works have been published at the last
ten years.
The problem accomplished in this work is something different, because there are no documents to
analyze. But we will do a brief revision of the IRS published, because they are the base for the IRS
proposed by us to implement into a GSSD.
In classical IR, the documents, stored in a collection, are analyzed to obtain a contents
representation. This process is called “indexation”. The IRS extracts index terms from the text of
each document to build a document representation consisting of a set of weighted terms.
A user has access to the system sending a query. Starting from this, the system identifies the entire
document relevant for this query. The IRS extracts index terms from the text of natural language
query to build a query representation consisting also of a set of weighted terms. Document
representations are then matched to the query representation. Documents are ranked according to
how well their representation matches the query representation [3].
There are several models of information retrieval, and the result of the search depends on these
models [4].
 In the Boolean Model, documents are represented as sets of index terms. A query is constructed by
the user choosing the terms and connecting them by Boolean operators (e.g., AND, OR, NOT). A
document is considered relevant and retrieved if it satisfies the logical formula represented by the
query.
In the Vector Space Model each document is represented by a set of index terms with an associated
numerical value, which represents the degree of significance of the term with respect to the contents
of the document. A query is transformed into a vector of keywords. Then a similarity measure
between document and query representation is used to evaluate the document’s relevance as regards
the query.

In the Probabilistic Model documents are ranked by their evaluated probability of relevance for a
user’s need of information.
The Vector Space model and the Probabilistic model are the most important models of IR. Both of
them require automatically extracting terms from documents and queries or manually assigning
terms to them. This way of representing documents and queries has a very serious side effect known
as term mismatch problem: a relevant document will not be retrieved in response to a query if the
document and query representations do not share at least one term. That is so because users and
authors of indexed documents often use different terms to refer to the same concepts [3]. To solve
this problem a number of approaches have been proposed. They can be classified in three groups:
Dimensionality Reduction: These approaches consist of reducing the number of possible ways in
which a concept can be expressed, that is, reducing the vocabulary used to represent concepts.
Query Expansion: It consists of automatically or semi-automatically adding terms to the query by
selecting from the term space those that are the most similar to the ones originally used by the user.
Terms added to the query should be weighted in such a way that their importance in the context of
the query will not modify the original concept expressed by the user.
Logical Imaging: It uses term-term semantic similarity to direct the transfer of indexing weights at
retrieval time from the terms non present in the document to terms that are present.

The aforementioned IR systems allow us to solve the problem of looking for documents published
in big collections as INTERNET, according to the necessities that a user has formulated through a
query in natural language.
The analysis of the text contents of these documents allows for the extraction of a set of terms that
represent them. The importance of these terms as regards the description of the document (weight)
is deduced by starting from the number of times that each term is repeated in the text and its
position inside the document (title, abstract, etc.). Also, the similarity between terms can be
obtained comparing documents belonging to the same context.
In a GDSS, there exists a finite set of domains, each one managing some specific information of the
enterprise.
A user, in the presence of a necessity of information, carries out a query in natural language, which
should be answered from a domain that he/she ignores.
The main difference lies on the strategy we will use to represent the domains, since in our problem
there are no texts to analyze. Therefore, it is necessary to have the intervention of an expert who
defines the initial set of keywords that will identify the domain, and the relative importance of each
of them to define its context.
For this purpose, we propose to use an adaptation of the Analytical Hierarchy Process (AHP) to
support the expert in the task of defining the weight of the indexing terms.

Domain Representation
The strategy we propose for obtaining the initial representation of each domain comprises the
following five steps:
1. Define a set of keywords that allows identifying the information generated and manipulated in

the domain.

2. Establish a weight associated to each term, which defines its importance in respect to the
description of the domain content.

3. Make a semantic expansion of each keyword defined in (1).
4. Establish a similarity degree of each term determined in (3) in respect to the expanded keyword.
5. Establish a weight associated to each term of the expanded set of keywords.
The first four steps require the intervention of an expert. Each one of these items will be developed
in the following way.

1. Keywords representing the domain. An expert of each domain d must identify a set of terms Kd
that are usually employed in the domain , which allow us to identify the manipulated information.
Kd = {ti / ti is a keyword defined to represent the domain d}
It is important that these terms ti ∈ Kd do not represent related concepts. This allows the
simplification of the posterior task of evaluating the relative importance of each term for the
domain.
Let us consider, for example, the domain “forecasting” of a particular GDSS. An expert has allowed
to select as keywords the terms {prediction, time, model, graphic}, but not {forecast, prediction,
prognosticated}, because the latter are entailed with the same concept.

2. The indexing weights assigned to each keyword of the domain. To perform this item we
proposed the use of the Analytical Hierarchy Process (AHP).
AHP is a decision tool for dealing with complex, unstructured and multiattribute decisions,
developed by Thomas L. Saaty (1980)[7]. The methodology is based on the principle that for
making a decision, the experience and the knowledge of people are as valuable as the used data.
AHP offers a structure to include a classification of trials and approaches in an intuitive and
consistent way.
AHP uses pairwise comparisons of attributes in the decision making process. This process is called
the intensity of the reasons affecting the decision. This comparison technique is useful in this paper
to find the weight factor of each indexing terms of the domain. The expert assigns an importance
intensity number from Table 1 that represents, in a 1-9 scale, the relative importance of each term ti
∈ Kd with respect to other term tj ∈ Kd to describe the domain.
If n terms have been selected by the expert to describe the domain, an n × n matrix A is derived.
















=

nnn

n

aa

aa
A

...
.........

...

1

111

where aij is the intensity importance of the term tj over the term ti.
If the expert criterions are consistent: aij =1 iff ti = tj ; aij = aji; and aij = aik / akj . Saaty has suggested
a strategy to evaluate the consistency of the pairwise matrix and an acceptability criterion that we
will not develop in this paper.
To get a raking of priorities from a pairwise matrix A, the best approach is the eigenvector solution.
A short computational way to obtain the eigenvector suggested by Saaty is the following:

a) Raise the pairwise matrix to powers that are successively squared each time.
b) Sum the n element of each row.
c) Normalize the result by dividing each row sum by the row totals. The result is the

eigenvector.
d) Repeat this process until the eigenvector solution does not change from the previous iteration.

The elements of the eigenvector wd found when this iterative process has finished represent the
indexing weights wi

d assigned to each keyword ti of the domain d.

Table 1: Intensity importance of factors in the pairwise comparison process
Intensity of importance on an absolute

scale
Definition Explanation

1 Equal importance Two terms contribute equally to the
objective.

3 Moderate importance of one over the
other

Experience and judgement weakly
favour one over the other.

5 Essential or strong importance Experience and judgement strongly
favour one over the other.

7 Very strong importance A term is strongly favouring and its
dominance demonstrated in practice.

9 Extreme importance The evidence favouring one term over
the other is of the highest possible order
of affirmation.

2,4,6,8 Intermediate values between the two adjacent judgements, when compromise is
required.

3. Semantic expansion. Not everyone uses the same terms to express the same concept. For that
reason, the index terms may be associated to the query and the domain non-matching. That is an
obstacle to produce a good ranking of domain associated to the query.
To take into account this problem, we suggest to make a semantic expansion of the keywords
defined by the expert. That is, to associate a set of words Ti related to its concept to each keyword ti
∈ Kd.
Ti = {tj / tj is a word related to the ti concept} includes the term ti.
This task must be also done interactively by the expert. Considering the same example of the
forecasting domain, the terms forecast and prognosticated should be included in the semantic
expansion of the keyword prediction.

4. Similar ity Measure. Let be the keyword ti ∈ Kd, which has been expanded by a set of terms Ti.
We need a measure of similarity that enables us to evaluate a real value for each term tj ∈ Ti. This
value estimates how semantically close the term tj is to ti.
Most similarity measures used in IR attempt to estimate the semantic similarity between terms by
looking at their pattern of occurrence in documents. Two terms are considered semantically similar
if they tend to co-occur in the same context. That is not applicable to the problem addressed in this
paper. Newly the AHP will be a useful tool to establish the similarity between terms.

This similarity measure should have the following properties [3]:

0 ≤ Sim(ti, tj) ≤ 1 ∀ tj ∈ Ti , ti ∈ Kd

Sim(ti, tj) = 1 iff tj = ti

Sim(ti, tj) ″ 1 if tj and ti can be used to express the same concepts.
Sim(ti, tj) ″ 0 if tj and ti are not semantically close.

Then we need to compute the similarity vector si = {Sim(ti, tj)}with m elements (where m is the
number of terms that expand the keyword ti , including ti).

The AHP allows us to compute a vector vi = {vij} that ranking the terms tj ∈ Ti according to their
capacity for representing the same concept as ti.
The first stage to derive this vector consists of defining an m × m pairwise matrix Pi, in which the
element pi

jk is the importance intensity number, in a 1-9 scale (similar to Table 1), which represents
the relative importance of each term tj in respect to other term tk to describe the same concept as ti.
Then, the eigenvector vi, associated to the matrix Pi, is computed following the strategy above
described to find the weight factor of keywords of the domain.
Finally, starting the eigenvector vi, we can obtain the similarity vector si dividing each element vij
by vii:

() d
i

ii

ij
ji KiTj

v
v

ttSim ∈∈∀= ,,

The similarity measure obtained in this way verifies the properties previously required.

5. Weight assigned to each term of the extended domain representation. Since the semantic
expansion has been done and the similarity measures computed, it is necessary to obtain the weights
wek

d associated to each term tk of the expanded set of keywords EKd = {tk/ tk ∈ Tj and tj ∈ Kd }. For
that porpose, we propose to compute:

wek
d = Sim(tk, tj) wj

d ∀ k ∈ EKd , j ∈ Kd

The set of terms EKd and their associated weights wek
d constitute the initial elements of the router

KB. According to the GDSS work, a learning mechanism, not included in this paper, will up date
this KB.

Query Representation
When a user from a domain d´ belonging to the GDSS requires the same information, he/she must
build a query that will be transported to the Router by a collecting agent. This query will have a
two-part structure:
The TITLE: it consists of an explicative phrase with an upper bound of the number of strings.

The EXPLANATION: in this section the user explains in detail which information he/she requires.
No bound over the extension is imposed to this part.
To analyze the possible domains that can give an answer to the query, the router agent only takes
into account the field TITLE. The other field will be only used by the domain that should answer
the query.
The set of keywords Kq that represent the query q must be identified. For this purpose, the system
breaks the Title into its constituent works. That is, the keywords tq ∈ Kq are the terms that remain
after the stop words (i.e. articles, propositions, auxiliary verbs, etc.) are eliminated.

Information Retr ieval Process
Since the KB of the Router has the initial information about each domain of the GDSS, That is, the
indexing weight wei

d of each keyword ti ∈ EKd can be able to identify the set of domains associated
to each query that comes from the user.
The information retrieval process accomplished by the router is schematically showed in Figure 3.

Figure 3. Schematic representation of the information retrieval process

When a query comes to the router, the system determines a query representation in the way
explained in the previous paragraph. Then, it uses some relevant evaluation algorithms to compare
the domains representation with the query representation. Finally, it lists the domains that best
match the query.
In classic IR, the Retrieval Status Value (RSV) of documents is used to estimate the relevance of a
document in respect to a query. Many models have been proposed to compute the RSV. The most
used are those that consider the frequency of the terms representing the query q in the contents of
the document d. We can not use those models because we have domains represented by a set of
keywords. Then we propose to use an adaptation of the coordination level matching model, which
simply counts the number of terms that are present in both document and query [3].

() ∑
∈

=
qi Kt

d
iweqdRSV ,

where RSV(d,q) is the retrieval status value of the domain d in respect to the query q.

The RSV(d,q) is the sum of the indexing weight of the total keywords of the query, which are
included in the expanded representation of the domain d. If any term does not belong to the
expanded representation of the domain, its weight is null.
The list of the RSV(d,q) for each domain is the information that the router transfers to the collecting
agent for deciding the route to follow to get the answer.

CONCLUSIONS
In a previous work we have describe a GDSS based in the use of mobile agents (Caliusco et al.,
2000). This system is able to support dynamic decision processes. One of the main components to
achieve an efficient operation of the consult mechanism is the router agent. This agent is
responsible of to give a route to the collecting agents, which must visit the system domains
searching for an answer to queries formulated by a user. In this paper we have presented a strategy
to obtain a ranked list of domains able to answer these queries.
To perform this information retrieval process, the router agent must have a KB and a mechanism of
matching the query contents to the domain contents. We have proposed a structure to represent the
information managed by each domain. The strategy to obtain the initial data to be stored in the
Router KB requires the intervention of a domain’s expert. The AHP method is used to support the
task of evaluating the relative importance among the keywords.
We proposed an interactive mechanism to obtain an adequate initial representation of the domain
contents into the KB. But this initial information must be increased according as the dynamic
consult mechanism works. To this end, the knowledge component of the router agent must also to
account with a learning mechanism. That is been studied now and will be presented in a future
work.

REFERENCES
[1]Caliusco, M., L. Cabral, H. Nissio, P. Villareal, M. Galli, M. Taverna and O. Chiotti. Distributed
Architecture to Support Dynamic Decision Processes, Proceeding XXVI Conferencia
Latinoamericana de Informática , Mexico, septiembre, 2000.
[2]Chess, D., B. Grosof, C. Harrison, D. Levine, C. Parris and G. Tsudik, Itinerant Agents for
Mobile Computing, in Michael Huhns' & Munidar Singh's book, Reading in Agents, 1998.
[3]Cretani, F., Exploiting the Similarity of Non-Matching Terms at Retrieval Time, Information

Retrieval, 2, 25-45, 2000.
[4]Crestani, F. and G. Pasi. Soft Information Retrieval: Applications of Fuzzy Set Theory and
Neural Networks. In: N. Kasabov and R. Kozma, editors, Neuro-Fuzzy Techniques for Intelligent
Information Systems, pages 287-315, Physica Verlag (Springer Verlag), Heidelberg, Germany,
1999.
[5]Nagel, J., P.Rossi, A.Toffolo, P.Villarreal, and O. Chiotti Distributed Architecture of a Global

DSS Generator for Industrial Companies, Proceeding 25th International Conference on
Computers and Industrial Engineering, Lousiana, USA, 1999.

[6]Rus,D., R. Gray and D. Kots, Department of Computer Science, Dartmouth College,
Transportable Information Agents, in Michael Huhns & Munidar Singh book, Reading in Agents,
1998

[7] Saaty, T. L. The Analytical Hierarchy Process.New York: McGraw-Hill, 1980.

[8]White, J.E., General Magic Inc., 1997 , Mobile Agents, in Jeffrey Bradshaw's book Software
Agents, AAAI Press/The MIT Press 1997.

	Geargina Stegmayer, María Laura Taverna, Omar Chiotti, María Rosa Galli
	GIDSATD-UTN – Facultad Regional Santa Fe – Lavaise 610- 3000 SANTA FE – Argentina
	The goal of this work is to analyze the Router agent of this system, and particularly to describe both its mechanism of query understand and its strategy to identify domains able to give answer to the same ones.
	The Router Agent Structure
	As we have shown above, the router agent has two well defined main functions:
	To act as an agents-server,
	To manage the knowledge about the information type handled by each domain composing the GDSS.
	For that reason, we define its structure with a two-component model (Figure 2):
	Figure 2. The Router Agent Structure
	The Communication Component has the function of communicating with the agents that arrive at the router agent. That is to say, to receive their queries and to send them to the knowledge component for their prosecution. After receiving the answer from ...
	The Knowledge Component is responsible for two tasks:
	Interpreting the query transported by the collecting agents, and inferring a probable set of domains able to answer the query. We will call this task information retrieval into the GDSS.
	Maintaining and up dating their KB by means of a learning process that uses the information, which is carried out by the collecting agents after finishing their travel.
	An interface between the two components is responsible for the communication between them, that is, for transferring queries, answers and up dates.
	In this paper we will concentrate our attention on the mechanism by which the Knowledge Component carries out one of the assigned functions: to determine the set of domains that can give an answer to the users need for information. That is, how it int...
	2. The indexing weights assigned to each keyword of the domain. To perform this item we proposed the use of the Analytical Hierarchy Process (AHP).

