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Abstract. The software industry has identified, in a vast proportion,
the object-oriented programming paradigm with the variant based in
classes and single inheritance. Particularly, design patterns and their
best-known implementations are largely conceived for this traditional
object model. However, the last years have witnessed a steady growth
of the popularity of several alternative models, which allow for different
ways to organise the definition of object behavior.

This paper shows non-standard implementations of the decorator design
pattern, which exploit behavior sharing and refining features unique to
alternative models. We claim that these features allow for more natural
renderings of the pattern and avoid a well-known flaw of the classical
implementation, i.e. the loss of object identity.

1 Introduction

In the evolution of object-oriented programming, several languages have been
developed implementing different variants of the paradigm. We can distinguish
class-based languages, such as Smalltalk [6], Java or C++ from object-based
languages, such as Self [12] or Javascript. Moreover, different behavior sharing
mechanisms have been proposed for class-based languages, such as single inher-
itance, multiple [3] inheritance, mixin-based inheritance and traits.

For many years one of these variants has been by far more popular than
the others. This variant is strongly class-based: every object is an instance of
a class, an object cannot change its class once created, and the definition of
behavior of objects lies entirely in classes. Inheritance is the only way to share
behavior between classes without explicit coding. Besides, it is restricted to single
inheritance. In the sequel, we will refer to this model as the traditional model of
the object-oriented paradigm.

However, in the last few years, several alternative models have increased their
popularity. Many languages have incorporated alternative ways of sharing be-
havior, such as Ruby, Groovy, Pharo Smalltalk, Scala[9]. Some of them allow you
to add behavior directly to objects instead of classes, while others allow for dif-
ferent inheritance mechanisms. The different behavior sharing features included
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in these languages, which imply a change from the traditional model of object-
oriented programming, are increasingly adopted in industrial developments.

Many of the technological, conceptual, and methodological tools that are
most widely used in the software industry are conceived for languages follow-
ing the traditional object model. The exploit of alternative behavior sharing
mechanisms is sometimes hindered by the lack of tools needed for a medium or
big scale development. For example, the description and classical implementa-
tions of design patterns [5] is given almost exclusively from the viewpoint of the
traditional object model. Their applicability to alternative models is largely un-
explored. Particularly, it is not clear if different behavior sharing facilities could
give rise to better implementations of classical patterns.

In this work we describe two alternative implementations of the concept of
decorator object. The proposed implementations take profit of ways to organise,
share and refine the definition of object behavior which are not present in the
traditional object model. Namely, we use mizin-based inheritance in one of the
given implementations, and delegation-based inheritance in the other one.

We claim that the novel behavior sharing features allow for more natural
renderings of the pattern. Moreover, the proposed implementations solve some
negative consequences of the classical rendering of the decorator pattern. Par-
ticularly, object identity of the decorated component is preserved, as will be
explained in the sequel.

In our opinion, a similar approach is worth taking for other popular design
patterns; similar and even better (by comparison to classical) implementations
could be obtained by exploiting different ways of organising object behavior
definitions. This effort could contribute to provide the support needed in order
to forward the adoption of alternative object models in software industry.

Related work The first systematic description of design patterns [5] gave rise
to a broad literature about the subject discussing the applicability and conse-
quences of patterns, proposing additional patterns, describing implementations
tailored for different programming languages, etc. [1, 4]. There are a few later
presentations that have focused in a programming language with an alternative
model, such as AspectJ [7] or Scala [8]. To our knowledge, there is no study
comparing pattern implementations among several alternative models.

Structure of the paper In Section 2 we briefly describe the traditional object
model and the alternative behavior organisation and sharing features we will
study in the sequel; and we introduce the programming languages which will
be used in the examples. In Section 3 we describe and discuss the proposed,
alternative renderings of the decorator design pattern. Finally, in Section 4 we
present our conclusions and suggest further work.
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2 Object-Oriented Models

In this section we will briefly describe three variants of the object-oriented
paradigm, namely: the traditional model, based in classes and single inheritance;
a model which allows for mixin-based composition; and finally an object-based
model with delegation-based inheritance. The programming languages Scala and
Toke will be used to illustrate, respectively, the first two models and the last one;
some features of them will be described in this section as well.

The focus will be set in the mechanisms provided in each model to organise,
share and refine the definition of object behavior, and also in method lookup, i.e.
the selection of the method to evaluate when an object receives a message.

2.1 Single Inheritance in Class-Based Languages

Class-based languages with single inheritance represent the most tratidional
model of the object-oriented paradigm and by far the most popular one. Java,
Smalltalk and C# are* some well-known representatives of this model. In this
view classes play a fundamental role: every object is an instance of a class and
an object cannot change its class once created. The methods, which give the
definition of the behavior of objects, lie completely inside classes; this model
does not provide mechanisms to attach behavior to individual objects.

Single inheritance is the only feature which allows for the sharing of be-
havior (i.e. method) definitions between different classes, allowing to refine in
one class definitions given in other ones as well. Since each class has a unique
superclass®, traversing the superclass relationship recursively gives a list of su-
perclasses, named the ancestors of a class.

The behavior of an object is defined by its class and its ancestors. When
an object receives a message, method lookup starts in the class of the receiver
object, and then traverses the list of ancestors in order until a suitable method
is found. This resolution of method lookup allows a class, at the same time,
to inherit (i.e. share) the method definitions from its ancestors, to change the
behavior corresponding to a given message by overriding (i.e. providing a new
definition for) the corresponding inherited method, and to extend the set of
messages by defining new methods (i.e. methods that do not override any of the
methods inherited from the ancestors).

Additionally, the use of the keyword super inside an overriding method,
makes it possible to include an invocation to the overriden method, and therefore
to mingle the inherited behavior within the new code. This feature extends the
possibility to refine, in a class, the definitions inherited from its ancestors.

Within the execution of the method corresponding to a message-send, the
object identity of the receiver is preserved. This allows most object-oriented lan-
guages to provide a way to send, within a method, additional messages to the

4 At least in the ways in which these languages are most commonly used.
5 This is the difference with multiple inheritance, in which a class can have several
direct superclasses.
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receiver object; a pseudo-variable (usually named self or this) is provided,
which refers to the receiver inside a method body. In the so-called self-sends,
the method lookup starts in the class of the receiver, no matter where the def-
inition of the executing method lies. This is a very important characteristic on
inheritance-based object-oriented systems because it permits some complex in-
teraction patterns, such as Template Method [5, p. 325].

2.2 Mixin-Based Inheritance in Scala

The object model implemented in the Scala language extends the traditional
model by incorporating mizins. A mixin [2] is a unit of definition of object be-
havior which includes method definitions. While any object is still instance of
a class, a list of mixins can be incorporated into an object when it is created.
Therefore, mixins provide an additional mechanism to share behavior defini-
tions among objects, which furthermore can pertain to different classes. Thus,
the definitional units provided by mixins are highly reusable and give rise to a
compositional way of defining object behavior, known as mizin-based composi-
tion.

Figure 1 shows an example of mixin-based composition in Scala. AbsIterator
defines a simple interface for iterators, which is implemented by StringIterator.
RichIterator is a mixin that can be applied to any subclass of AbsIterator
and extends its interface by defining the foreach method. Note that the foreach
method uses hasNext and next, defined by AbsIterator. The example shows
the creation of an object which adds the characteristics defined in RichIterator
to those defined in StringIterator. Mixins are defined by the keyword trait®.

abstract class AbsIterator[T] {
def hasNext: Boolean
def next: T

}

trait RichIterator[T] extends AbsIterator[T] {
def foreach(f: T => Unit) { while (this.hasNext) f(this.next) }
}

class StringIterator(s: String) extends AbsIterator[Char] {
private var i = 0
def hasNext:Boolean = i < s.length()
def next:T = { val ch = s.charAt(i); i += 1; return ch }
}

val iter = new StringIterator("Hello World") with RichIterator
iter.foreach(e => println(e))

Fig. 1. Mixin-based inheritance example in Scala

5 The behavior of Scala traits resembles more tightly the idea of mixin, as defined
by [2] than the idea of trait as defined by [11]. The Scala literature uses both words.
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Mixins can be incorporated to objects, classes or other mixins. Thus, in this
model the ancestors of an object do not conform a list, but an acyclic graph.
In order to do method lookup, the graph of ancestors is linearised’, i.e. the
language semantics defines an order in which the graph has to be traversed.
Particularly, method lookup gives, to mixins added to the message receiver,
precedence over its class®. The ability to override methods, and also to access to
the overriden versions by using the super keyword, is given to mixins analogously
as described for classes. We remark that a super-send included in a mixin can
refer to different overriden methods, depending on the particular configuration
of each object incorporating the mixin.

2.3 Delegation-Based Inheritance in Ioke

The Toke” language implements an object-based model, whose most prominent
feature is the absence of classes. Thus, object behavior is defined inside objects.

Ioke implements the delegation mechanism of behavior definition sharing!'®
which allows for the delegation of behavior between objects with no specific
implementation code required. A list of parents is included in the definition
of each object. When an object receives a message, the method lookup starts
with the receiving object, and continues (if needed) with the list of its parents,
traversed in order. Therefore, definitions included in an object are inherited by
(i.e. shared with) all other objects including the former in their lists of parents.
As described for mixin-based inheritance in Section 2.2, the behavior of an object
is defined in a compositional manner; in this case, each object incorporates the
behavior defined in all of its parents. Another similiarity is that the linearisation
semantics is also used in Ioke''. The comment of Section 2.2 about overriding
methods and the super keyword are valid as well.

This model preserves object identity. If an object executes a method inher-
ited from one of its parents and this method uses the self pseudo-variable,
it will refer to the original receiver, and not to the method owner. Therefore,
delegation-based inheritance has at least the same expresive power as class-based
inheritance. A remarkable advantage is that the set of parents of an object can
be changed dynamically. Thus, dynamical changes to the behavior of an object
are much more natural than in class-based languages.

Figure 2 shows an example of delegation-based inheritance in Ioke. In Ioke
parents are named mimics. Sending the message mimic to any object creates
a new object that has the receiver as parent. The message do(...) allows
to add new features to the receiver and returns it. The messages mimic! /

7 In other objects models the method lookup is based on the flattening, rather than
the linearisation, of the ancestor graph.

® The details of method lookup and linearisation in Scala can be found in [9].

9 For more information about Ioke, see http://ioke.org/wiki/index.php/Guide

10 Delegation, along with cloning, are the best-known ways to organise and share be-
havior definitions in object-based languages

11 This is the main reason because we choose Ioke over other interesting object-based
models, such as [12] or [10]
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StringIterator = Origin mimic do(
initialize = method(aString, self i = 0. self s = aString)
hasNext = method(i < s length)
next = method(ch = s[i]. self i += 1. ch))

RichIterator = Origin mimic do(
foreach = method(f, while(hasNext, f(next))))

iter = StringIterator mimic("Hello World")
iter mimic!(RichIterator)
iter foreach(fn(elem, elem println))

Fig. 2. Delegation-based inheritance example in Ioke

prependMimic! allow to add a new parent to the receiver, at the end / begin-
ning of the parent list respectively.

3 Decorator

The intent of the Decorator pattern is to add responsibilities to individual ob-
jects, instead of adding them to an entire class [5, p. 175]. Decorators provide a
flexible alternative to subclassing for extending functionality.

The classical implementation of this pattern is based on the traditional model
of object orientation. To add responsibilites to a single object, we define an ad-
ditional object which exhibits the same interface. The additional object will
serve as a decorator: it implements the added behavior and delegates the rest in
the original (or decorated) object. Since the decorator shares its interface with
the decorated object, it can be furtherly decorated in turn, making it to define
objects consisting of a basic implementation object combined with multiple dec-
orators. Figure 3 shows an example of the classical implementation, in which two
decorators are applied to a CollectionStream: a Capitalize that changes the
first letter to upper case, and an OnlyLetters that discards any non-alphabetic
characters. The abstract class Stream defines the common interface to decorators
and decorated objects. Finally, BaseDecorator is an utility class that simplifies
the implementation of concrete decorators, by delegating all necessary messages
to the decorated object.

The classical implementation has three drawbacks. In the first place, deco-
rator and decorated are different objects. Therefore, when a reference to this
appears in any of the involved classes, it is not clear whether the referred object
is the one expected.

We can show a concrete consequence in the example. The result of the evalua-
tion of s1.writeAl1("hello34"), will include the numbers, because the method
write in the OnlyLetters decorator (which would have rejected them) is never
invoked. The implementation of writeAll is delegated, from OnlyLetters to
Capitalize with no particular action (since OnlyLetters only overrides the
write method), and then to CollectionStream after having capitalized the
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abstract class Stream {

def write(elem: Char): Unit

def writeAll(elems: String): Unit
}

class CollectionStream extends Stream {
var data = new MutableList[Char]();
def write(elem: Char): Unit = { data += elem }
def writeAll(elems: String) = elems.foreach(e => this.write(e))

}

abstract class BaseDecorator(deleg: Stream) extends Stream {
def write(elem: Char): Unit = deleg.write(elem)
def writeAll(elems: String): Unit = deleg.writeAll(elems)
}

class Capitalize(deleg: Stream) extends BaseDecorator(deleg) {
override def writeAll(elems: String) = {
this.write(elems.head.toUpper);
deleg.writeAll(elems.tail);
}
}

class OnlyLetters(deleg: Stream) extends BaseDecorator(deleg) {
override def write(el: Char) = if (el.isLetter) deleg.write(el)
}

val s1 = new OnlyLetters(new Capitalize(new CollectionStream))
Fig. 3. Traditional implementation of the decorator pattern

first letter. When the method writeAll in CollectionStream is executed, the
object referred to by this, i.e. the receiver, is the original stream, which is a
different object from any of the decorators. Therefore, the method lookup for
the this.write send will not include methods defined in decorators.

Notice that this unwanted behavior could be fixed by moving the implementa-
tion of writeAll to the Stream class, and deleting the corresponding implemen-
tation in BaseDecorator. Now the code is executed with the OnlyLetters dec-
orator as receiver, and then method lookup for this.write will begin with that
class. Unfortunately, the decorated writeAll implementation in Capitalize is
ignored, and therefore the first letter will not be capitalized as expected.

The second drawback is that delegation to the decorated object has to be
explicitly coded, in the BaseDecorator in the example.

Finally, we remark that there is no easy way to dynamically add responsi-
bilites to an object using this implementation of the pattern. Adding a decorator
to an object implies that subsequent messages must be sent to the new decorator
in order to access the added behavior. Therefore, all references to the original
object should switch to the decorator, a task being unfeasible or at least prob-
lematic in most object-oriented environments.
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Mixin-based implementation Mixin-based inheritance allows for a different
approach to the decorator pattern: implement each decorator as a mixin. Figure
4 shows a mixin-based implementation of the decorator pattern. Stream and
CollectionStream remain the same as in the traditional implementation, while
BaseDecorator is no longer needed.

trait Capitalize extends Stream {
abstract override def writeAll(elems: String) = {
this.write(elems.head.toUpper);
super.writeAll (elems.tail);
}
}

trait OnlyLetters extends Stream {
abstract override def write(el: Char) = if (el.isLetter)
super.write(el)

val sl = new CollectionStream with Capitalize with OnlyLetters
Fig. 4. Mixin-based implementation of the decorator pattern in Scala

Unlike [8]'2, we find that the mixin-based implementation solves two of the
problems in classical decorator implementations.

In the first place, the original object incorporates the added behaviors, in-
stead of being decorated by additional objects. Therefore, object identity is
preserved, and consequently the object will behave as expected in all situa-
tions. In the example, s1 incorporates the definitions included in OnlyLetters,
Capitalize and CollectionStream; these units of behavior definition are in-
cluded in the linearised list of ancestors in the given order. If we evaluate
sl.writeAll1("hello34"), then the method writeAll of Capitalize is ex-
ecuted; notice that this refers to s1. Moreover, the method lookup for the
this.write call begins with OnlyLetters.

In the second place, delegation is achieved avoiding the need of manually
written code, taking advantage of the method lookup mechanism.

Delegation-based implementation Still another rendering of the decorator
pattern can be built by using delegation-based behavior sharing, cfr. Section
2.3. The corresponding implementation is shown in Figure 5. A decorator is
implemented as an object which is added as mimic to the original object. The use
of prependMimic! allows the decorator to be the first receiver of the messages.

We remark that in this implementation, decorators can be added or removed
at any moment without changing the identity of the object. Moreover, the addi-
tion of decorators as mimics does not alter the object identity of the decorated
object: the mimics lie “behind” the mimicked object. The super keyword al-
lows a decorator to refer to the previous object w.r.t. the linearisation semantics

12 whose conclusion is that “Scala does not offer something new with respect to the
Decorator pattern”
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CollectionStream = Stream mimic do(
initialize = method(self data = [])
write = method(elem, data append!(elem))
writeAll = method(elems, elems each(elem, write(elem))))

Capitalize = Origin mimic do(
writeAll = method(elems, write(elems head upper)
super (elems tail)))

OnlyLetters = Origin mimic do(
write = method(elem, if(elem isLetter, super(elem))))

sl = CollectionStream mimic do(prependMimic!(Capitalize)
prependMimic! (OnlyLetters))

Fig. 5. Delegation-based inheritance implementation of the decorator pattern

of mimics, thus giving decorators the ability of invoking the overrided behav-
ior. Therefore, method lookup works in this example analogously to what we
have described for the mixin-based implementation. Finally, we notice that this
method lookup also avoids the need to write explicit delegation code. Therefore,
all the drawbacks described for the classical implementation are avoided.

4 Conclusions and Further Work

In this work we have analysed some possible implementations of the decorator
patterns using alternative variants of the object-oriented paradigm. Exploiting
the possibilities to share and refine behavior present in the alternative variants,
we found implementations of the decorator pattern that are easier to code and
maintain than the classical implementation, and also allow forms of use that
would be more difficult to obtain using the traditional variant of the object-
oriented paradigm.

Not surprisignly, mixins are much more flexible than single inheritance. In a
single-inheritance model, a subclass represents a slice of behavior that is added
to a specific superclass. On the other hand, a mixin represents a slice of behavior
that can be applied to an individual object. Therefore, mixins proved to be a
very useful tool to define small behavioral units that can be later composed in
multiple ways. Modelling decorators as mixins preserves object identity, in the
sense that all references to self in the code of all behavioral units used to build
the decorator will point to the same object.

Delegation-based inheritance outweighs the advantages of mixin-based inher-
itance, by defining sharable behavior as individual objects rather than as classes
or mixins. The most visible advantage of this kind of inheritance is the possibil-
ity of dynamically changing the behavior of an object. The decorator example
shows that, in some situations, delegation-based inheritance simplifies dynamic
changes to the behavior of an object, which would be more complicated in the
traditional view of object-oriented programming.
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In both alternative models analysed in this work the preservation of the self
variable plays a central role. One of the design principles defined by Gamma et.
al. states that, in order to improve object oriented design, you should sometimes
replace inheritance by delegation. Still, in the traditional view of object-oriented
programming, delegation has to be done manually and the self variable is not
preserved. Our example shows that a behavior sharing mechanism that preserves
the identity of self serves as a basis for more flexible combinations of behavioral
units. Each time that in the definition of the behavior of an object a message
m is sent to self, both analized alternatives makes it possible to compose the
definition of that object with an additional behavioral unit, which overrides ex-
actly the behavior asociated with m without requiring any change to the original
behavioral units. This way of overriding behavior can be seen as an extended
version of the Template Method design pattern [5].

In future work, we plan to extend the kind of analysis performed in this article
to other design ideas, including other design patterns. We think that this may
contribute to the creation of a conceptual framework that fosters the explotation,
in the software industry, of the advantages provided by the alternative models
of the object-oriented paradigm.
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