
MDA based Hypermedia Modeling Methodology using

reusable components

Pablo Vera1, Claudia Pons2, Daniel Giulianelli1, Rocío Rodríguez1

1 National University of La Matanza

Department of Engeniering and Technological Research

San Justo, Buenos Aires, Argentina

{pvera, rrodriguez, dgiulianelli}@ing.unlam.edu.ar
2 National University of La Plata

LIFIA – Research and Education Laboratory on Advance Computing

La Plata, Buenos Aires, Argentina

cpons@lifia.info.unlp.edu.ar

Abstract. This paper shows a modeling and developing methodology for

mobile web applications using the MDA (Model Driver Architecture) approach.

It´s based on a conservative extension of UML allowing modeling with any

existing tool capable of exporting the model to XMI (XML Metadata

Interchange), the standard exchange format for UML diagrams. The

methodology is based on the four main activities of the hypermedia modeling:

conceptual modeling, navigation modeling, abstract interface design and

implementation, but it simplifies the interface and navigation modeling based

on reusable components. These components will be easily automatically

converted into the application source code which with the use of different

templates can target different platforms and also have a front-end and back-end

system on different platforms for the same application.

Keywords: MDA, Mobile Web Applications, Mobile, UML

1 Introduction

1.1 Hypermedia Modeling

Modeling of hypermedia systems is a practice that started several years ago when the

web was starting to be massively adopted. One of the first works on this area is

OOHDM (Object Oriented Hypermedia Design Method) [8] which established four

main activities on the hypermedia design. These activities are: conceptual modeling,

navigation modeling, abstract interface design and implementation.

Conceptual design established the different classes that will compose the

application´s domain model. The most used technique is UML diagram classes like in

OOHDM and UWE (UML Based Web Engineering) [5]. Other works uses entity

relation diagrams like in WebML (Web Modeling Language) [1] and RMM

(Relationship Management Methodology) [3].

Navigation design consists of building a model that shows the different path that

the user can take when using the application. This point is proper to hypermedia

systems where the user has a non linear system where he or she can follow different

links for browsing system entities, like for example, hypertext in a website. Most of

existing methodologies uses extended UML classes’ diagrams that include stereotypes

to mark navigation classes. So navigation is derived from structural models. MDHDM

(Model Driven Hypermedia Design Method) [7] complements navigation using

process models that enable business logic to guide user navigation making it more

dynamic.

Next activity is abstract interface design that defines, the way that the user will see

and will interact with the application. OOHDM uses ADV (Abstract Data Views) [2]

where different objects are grouped to create a screen mockup. WebML defines its

own graphic notation to define the mockups. This notation is based on XML which

makes the process of transforming the mockups into usable code easier, for example

HTML.

Finally, implementation is about the development of the application based on the

models. At this point the different methodologies attempt to automate as much as

possible the resulting code. WebML do it using XSLT transformations (Extensible

Stylesheet Language Transformation) [11]. OOHDM establish the required mapping

that must be made from each of the models to generate code and proposes a tool that

allows designing an application using the model for generating the application code.

MDHDM performs transformations to create Java source code.

1.2 Mobile Web Applications

The most widespread hypermedia systems are websites where the user can visualize:

images, text, multimedia components besides browsing the pages through hypertext.

A web application is a webpage including some type of server side scripting. A

particular case of web applications are those specially design for mobile devices and

the most common of mobile devices are cell phones. Despite the great evolution of

cell phones that have high processing power, they still have the following limitations

and needs: (1) Small screen; (2) The need of simple controls; (3) Simply and directly

display information, without the complex screen layouts of conventional web sites;

(4) Reduced, practical and intuitive navigation system; (5) Simple text input.

W3C consortium (World Wide Web Consortium) has a guide of best practices of

mobile web sites [10] and mobile web applications design [9] which provides the best

way to settle the points mentioned above to achieve a usable website from any mobile

device.

2 Proposed Modeling Methodology

Based on the premise of designing a suitable web application for mobile devices, a

new hypermedia modeling methodology is proposed. The methodology simplifies the

interface and navigation design based on reusable components. These components

will be easily automatically converted into the application source code. Mobile web

applications were chosen because of the screen limitations making it simple to create

common components with reduced functionality and avoiding defining complex

layouts that cannot be shown in a mobile device or if they can be shown they are not

usable at all. Nevertheless it could be applied to model traditional web applications

especially on backend systems where the layouts generated by this tool will be

enough for an internal system used by some administrators.

The methodology is based on the activities proposed by OOHDM but unifying

navigation and user interface modeling and it final goal is to generate an application

completely automatically from the models. All models are defined in UML, creating a

conservative extension of the language. Figure 1 shows the stages of the methodology

which is based on MDA approach by creating diagrams and transforming them with

an automatic tool through different stages. Models created by the user are marked in

the figure with a person icon.

Fig. 1. Methodology Stages

The following sections explain each stage of the proposed methodology.

2.1 Conceptual Modeling

Like in methodologies previously mentioned the conceptual design will be made

using an UML class diagram but extending it to make the database generation from it

easier.

(A) Special properties: From class properties two main attributes will be remarked:

the unique identifier of the object and the descriptor. The identifier corresponds

with a unique key that identifies uniquely the class instance or the database

register when using a relational data model. The identifier will be also used to

map the relations between the different tables of the database. The descriptor will

be the property that contains a user readable description of the object, for

example a person´s name, a book´s title, etc. A class may not contain a

descriptor in some cases but the identifier is always required. To identify those

properties, two stereotypes were created: <identifier> and <descriptor>.

(B) Enumeration Classes: In some applications it will be necessary to identify those

classes representing limited values, like for example the different states of an

invoice, a list of allowed actions, etc. That´s the reason why is necessary the use

of classes of enumeration type that must be distinguished from other classes

because they will have a special treatment when generating the source code from

Derived Navigation

and UI Model (UML

Component diagram)

Conceptual Model

(UML Class diagram)
Transformation

Tool

1 2

Navigation and UI
Model (UML

Component diagram)

Valid States Model

(UML state chart

diagram)

4
3

5

Database

Application

Source Code

them. In order to identify those classes the UML stereotype <enumeration> will

be used.

(C) Special Data Types: In order to improve user experience when using the

application, especially from a mobile device, two special data types will be used:

phoneNumber which is a string representing a telephone number allowing to

render a link to automatically make a phone call to that number; address: this

data type will allow using the GPS device available on advance mobile phones

and take the exact location where the user is located. If the GPS is not available

or is temporally out of service, it will be possible to enter the address like a

string. Also this data type will allow using the GPS to navigate to that location.

2.2 Navigation and User Interface Design

This activity will use UML component diagrams. A set of components is defined. All

components are extended with stereotypes and tagged values to allow configuring

them to be adapted to the needs of the applications being modeled.

Two common tagged values are present in all the components: id: is a value that

uniquely identifies a component. It will be useful when referring the component from

others for example with designing navigation; navigation: it defines the navigation

bar that must be present in all components or web pages of the application. It´s

important to consider that because when creating a mobile web application,

navigation system must be simple and must be present in all web pages. Based on

W3C guidelines and best practices the configuration of the navigation is added on

each component.

Another tagged value present in most of the components is MainEntity which is

used to establish the main class of the domain model from which to component will

be based. For example an operation of data update will be based on a particular

domain entity, whether you can combine data from several classes it always originates

from an entity that is the base of the query.

(A) Components: The defined components are: Login, List, Search, Menu,

CRUD (Create, Read, Update, Delete), and UpdateView. Below is the

explanation of each one:

 Login: a component to authenticate the user on the system. It´s tagged values

are: MainEntity, RedirectToComponent, User and Password where the

latter two defines the properties of the domain class where the user credentials

will be checked. Authenticated user will be accessible from rest of the system

components using the special variable called LOGGEDUSER. The

RedirectToComponent value has the id of the component where the user

will be redirected after a successful login.

 List: Represents a list of information that can be visualized like a grid or a

table with rows and columns showing entities information. It´s tagged values

are: MainEntity, FixedFilters, Columns and Sort.

─ FixedFilters defines the data filters to be applied to obtain the list. These

filters are applied over the properties of the main entity being able to access

related classes using object notation.

─ Columns defines each of the columns to be shown in the list, it refers to the

properties of the main entity and its related entities, but additionally it´s possible

to apply functions to generate calculated data. The columns will also be able to

contain links to other components or external pages.

─ Sort defines the properties by which the list will be sorted. It´s also possible to

specify a calculated column name previously detailed in the columns list.

 Search: this component is similar to a List component, except for its

capacity of adding filters that instead of being predefined are entered by the

user when using the application, allowing performing a query over the data.

The result of that query will be a list of information. It´s tagged values are:

MainEntity, SearchFilters, FixedFilters, Columns and Sort. Most of

the tagged values are identical to the ones defined in the List component.

The only added tagged value is SearchFilter that includes search filters

entered by the user at runtime. This tagged value specifies the properties on

which the query will be performed, been able to define for each one a different

type of filter allowing the following values: SingleSelection,

MultipleSelection, FreeText, BooleanType, DateRange;

 Menu: is a component that defines a menu with links to other components. It

contains the tagged value Options that defines the different links that will

create the menu options to be shown to the user.

 CRUD: this component is responsible of creating, showing, updating or deleting

an object of a class. It´s tagged values are: DefaultValuesCreate,
MainEntity, SkippedPropertiesCreate, DefaultValuesUpdate,

SkippedPropertiesUpdate. If there is certain information that must be

completed in the object but it´s not required by the user,

DefaultValuesCreate or DefaultValuesUpdate are used, allowing for

example to automatically complete the user who created the record and the

date and time of modification. SkippedPropertiesCreate or

SkippedPropertiesUpdate are those properties that must remain untouched,

for example: when updating a record the creating date of the record remains

untouched. The behavior of the component will be given by a parameter that

will contain the link causing its activation. This link should have the parameter

Action, being the possible values of that parameter C, R, U and D, where each

of the letters indicates a possible action: C (create), R (read/show), U (update)

and D (delete). Aditionally this component must receive the parameter

ObjectID for update, read and delete operations that will refer to the primary

key of the object where the action will be performed.

 UpdateView: represents an update operation with special characteristics.

Many times the update of an object is made in parts. For example when an

object changes from different states, usually some properties must be filled

and others doesn´t. It´s tagged values are: UpdateProperties,

DisplayProperties, CreateEntity, DefaultValuesUpdate,

SkippedPropertiesUpdate. UpdateProperties are the properties that

will be asked the user to update on this operation. DisplayProperties are

the properties that will be shown to the user in a readonly mode.

DefaultValuesUpdate and SkippedPropertiesUpdate are similar to the

ones of CRUD component. CreateEntity is an optional tag that is used when

the update of the main entity cause the creation of an object of a related class.

This is useful for example for log entries.

(B) Links: Are defined by a function with parameters of the form: Link ([link

text], [destination], [parameters], [access key]). An additional

function is defined to create optional links called OptionalLink.

(C) Functions: Are mostly used on List and Search components. They are used to

generate columns with data that cannot be directly retrieved from a class

attribute, but through a calculation on related classes. Functions always work

starting from the main entity of the component searching that entity on the related

classes. So the filter relating the main entity with the related class is implicit.

Defined functions are: Sum, Count, Exist, Not Exist, Eval, GetId
and Retrive.

2.3 Modeling Valid States

Usually applications have objects that changes from one state to another and the valid

states has a sequence that must be followed. For that cases the UML states diagram

will be used applied to a property of a class, showing the valid sequence (usually

expressed by the enumeration values of a class). On the Implementation activity

business rules will be created to ensure that the sequence is followed, if not an error

message will be thrown to the user when trying to set an invalid status to an object.

2.4 Implementation

The implementation activity consists in the building of the application code starting

from the models, using Model Driven Architecture (MDA) [4]. All models are based

on UML so it´s possible to make the modeling using any existing tool that has the

ability to export the model to XMI [6]. XMI is the standard exchange format for UML

diagrams. XMI is based on XML so it can be read with any UML Parser.

The starting point is the Domain Model which resulting XMI will be used to

perform the first transformation resulting in a partial Component Model including

CRUD components for each non enumeration classes and a Menu linking those

components. Then the component diagram will be completed by the user.

Once the component diagram is finished, its XMI will be imported in the

transformation tool to generate the application source code and the database script.

The transformation for generating the application source code will be based on a

template. A template must be selected to choose the desire resulting source code. This

will allow generating code for different platforms using the same models.

So using templates approach will give the opportunity not only to generate code for

creating a web application but also a native application can be created programming

the appropriate template.

3 Using the methodology

This section shows a brief example of an application modeled with this methodology.

The application is a mobile system for taxi drivers where the driver can use the cell

phone to see and accept available trips. A driver can accept more than one trip at the

same time because of proximity issues but only on trip will be started at the same

time.

The application will have a mobile frontend and a standard web backend for

administration. The administrator will add new trips to the system and the drivers will

access those trips from their mobile devices. Figure 2 shows the classes of the domain

model.

Fig. 2. Domain Model (UML Class Diagram)

The XMI of the model on Figure 2 will be automatically transformed in a first

version of the domain model including List and CRUD components of all non

enumeration classes and also a Menu component is generated pointing those

components. Figure 3 shows the Navigation and User Interface diagram for the

Administration system. Components painted with darker color will be automatically

generated, so only three components must be manually created and only minimal

changes must be applied to Trip list to create a filtered list of trips called Current

Trips.

Fig. 3. Navigation and User Interface Model for Administration system (UML Component

Diagram)

Modeling the mobile system will require the creation of an additional Component

diagram where a few components can be copied from the Administration Model.

Figure 4 shows the resulting model for the mobile system. The components

diagram will be imported in the code generating tool allowing selecting different

templates for each one to target different platforms.

Fig. 4. Navigation and User Interface Model for mobile system

As an example the following tables shows the tagged values required for

configuring some of the components of the mobile model.

Table 1: Tagged values for “System Access“ component of type Login

Tag Value
Id cpnLogin

RedirectToComponent cpnMainMenu

MainEntity Driver

User UserName

Password Password

Table 2: Tagged values for “MainMenu“ component of type Menu

Tag Value
Id cpnMainMenu

Navigation Link(“Logout”, cpnLogin,,0)

Options Link("Pending Trips", cpnPendingTrips,,1);

Link("My Current Trips", cpnCurrentTrips,,2);

Link("My Finished Trips", cpnFinishedTrips,,3);

Table 3: Tagged values for “My Current Trips“ component of type List

Tag Value
Id cpnCurrentTrips

Navigation Link(“Main Menu”, cpnMainMenu,,0)

MainEntity Trip

FixedFilters Driver = LOGGEDUSER AND TripStatus in

(TripStatus.Accepted, TripStatus.Started)

Columns CustomerAddress;

DestinationAddress;

Retrieve(min(EventDateTime), TripLog,

TripStatus=TripStatus.Pending, "Request Date");

OptionalLink("Start", cpnStartTrip, "ObjectID =

TripID",TripStatus=Accepted AND not Exist

(TripStatus.Started));

OptionalLink("Finish", cpnFinishTrip, "ObjectID =

TripID",TripStatus=Started);

OptionalLink("Decline", cpnDeclineTrip, "ObjectID

= TripID",TripStatus=Accepted);

Sort “Request Date” ASC

Table 4: Tagged values for "Accept Trips“ component of type UpdateView

Tag Value
Id cpnAcceptTrip

Navigation Link(“Main Menu”, cpnMainMenu,,0);

Link("Back", cpnPendingTrips,,9);

MainEntity Trip

CreateEntity TripLog

DisplayProperties CustomerAddress;

DestinationAddress;

Retrieve(min(EventDateTime),TripLog,

TripStatus=TripStatus.Pending,"Request Date");

CustomerPhone

UpdateProperties TripLog.Remarks

DefaultValuesUpdate TripStatus = TripStatus.Accepted;

Driver = LOGGEDUSER;

TripLog.Driver = LOGGEDUSER;

TripLog.EventDateTime = NOW

Table 5: Tagged values for "My Finished Trips“ component of type Search

Tag Value
Id cpnFinishedTrips

Navigation Link(“Main Menu”, cpnMainMenu,,0);

MainEntity Trip

FixedFilters DriverID=LOGGEDUSER;

Columns CustomerAddress;

DestinationAddress;

Price;

Retrieve(EventDateTime, TripLog,

TripStatus=TripStatus.Finished, "Date");

TripStatus;

Link(“Trip Log”,cpnTripLog, ObjectID=TripID;action=R);

SearchFilters TripStatus: SingleSelection;

CustomerAddress: FreeText;

DestinationAdrress: FreeText;

Date: DateRange;

Sort “Date” ASC

Table 6: Tagged values for "View Trip“ component of type CRUD

Tag Value
Id cpnViewTrip

Navigation Link(“Main Menu”, cpnMainMenu,,0);

Link(“Back”, BACK,9);

Link(“Trip log”, cpnTripLog, ObjectID = TripID

,1);

MainEntity Trip

To complete the model a UML state chart diagram is created for the

Trip.TripStatus property to ensure following a valid sequence when updating a Trip

(see figure 5). This is necessary because two or more drivers could try to accept the

same trip at the same time but only one should be able to do it.

Fig. 5. UML state chart diagram for valid Trip.TripStatus sequence

4 Conclusions and Future Work

This methodology allows modeling applications in an easy way by using just a few

diagrams. All diagrams are based on UML and all the proposed extensions are

conservative so the modeling could be made with any modeling tool supporting XMI

to export the models. By using templates to generate the source code is possible to

have different implementations with the same model to target different platforms as it

was shown in the example with a mobile web application front end and a standard

web application for the backend.

The future work includes:

─ Programming the transformation tool and increasing its automation by

connecting to the database engine and executing the resulting script and

allowing automatic build and deploy of the application.

─ Defining different templates for generating source code for different platforms.

5 References

1. Ceri S., Fraternali P., Bongio. “Web Modeling Language (WebML): a modeling language

for designing Web sites”, Computer Networks, Volume 33, Issues 1–6, (2000), pp 137-157.

2. Cowan D. and Lucena C.. “Abstract Data Views: An Interface Specification Concept to

Enhance Design for Reuse”. IEEE Trans. Softw. Eng. 21, 3 (1995), pp. 229-243.

3. Isakowitz, E. Stohr A. and Balasubramanian P. “RMM: a methodology for structured

hypermedia design”. ACM (1995), 34-44.

4. Kleppe A., Warmer J., Bast W. “MDA explained: the model driven architecture: practice and

promise”. Addison-Wesley Professional (2003)

5. Koch, Knapp, Zhang, Baumeister.Uml-Based Web Engineering, Chapter 7 “Web

Engineering: Modelling and Implementing Web Applications”, Springer London (2008), pp

157-191

6. OMG, “MOF 2 XMI Mapping”, Version 2.4.1 (2011), http://www.omg.org/spec/XMI/

7. Pineda C. “Un Método de Desarrollo de Hipermedia Dirigido por Modelos”. Tesis Doctoral.

Universidad Politécnica de Valencia. (2008)

http://riunet.upv.es/bitstream/handle/10251/3884/tesisUPV2961.pdf

8. Schwabe D. y Rossi G. “An object oriented approach to Web-based applications design”.

Theor. Pract. Object Syst. Volume 4, Issue 4 (1998), pp 207-225.

9. W3C, “Mobile Web Application Best Practices”, 2010, http://www.w3.org/TR/mwabp/

10. W3C, “Mobile Web Best Practices 1.0”, 2008, http://www.w3.org/TR/mobile-bp/

11. W3C, “XSL Transformations (XSLT)”. Version 1.0 (1999). http://www.w3.org/TR/xsl

http://www.omg.org/spec/XMI/
http://www.w3.org/TR/mwabp/
http://www.w3.org/TR/mobile-bp/
http://www.w3.org/TR/xsl

