Design and I mplementation of a Genetic Algorithm with
Integer Number Coding for the Evolution of FPGASsin
Space Applications

Juan Pablo Capossjaluan Jorge Quiro§aFrancisco Paz

! Departamento de Electrotecnia, Facultad de Ingienidsniversidad Nacional del Comahue,
Neuquén, Argentina
j uanpc_23@ot mai | . com
2 Departamento de Electrotecnia, Facultad de Ingenid&Jniversidad Nacional del Comahue,
Neuquén, Argentina
qui r ogaj uanj or ge@ahoo. com ar
3 Departamento de Electrotecnia, Facultad de Ingeni¢Jniversidad Nacional del Comahue,
Neuquén, Argentina
panchopazbusti | | o@nai | . com

Abstract. In [1] a form of representation of logic circulty chains of integer
numbers is presented. That type of representatiogasy to simulate and to
export to FPGA hardware in such a way that, by ragldi genetic algorithm
(GA), it can be used in an evolutionary processcaBise regular GAs utilize
binary number coding, one was designed, with albjterators and processes,
that uses integer number coding. This evolvablesare (EH) process was
tested with more than 200 hours of runs to detezntiire effectiveness of the
integer coded GA. Results show that, given the prapeditions, the GA is
effective in finding solutions that fulfill the regqed needs of the target system
and that this particular EH platform is suitable fpplications where fault
tolerance capability is required, such as spades\s

Keywords. Genetic Algorithms, Evolvable Hardware, FPGA, Edullerance.

1 I ntroduction

Although real number representation, or, more gedgj integer or natural number
representation, is often used in GAs becauseideial to encode a wide spectrum of
optimization problems, it has drawbacks when comgbaagainst binary number
representation. According to Holland’s theory of & £he main disadvantage is that it
reduces the number of schemata which disfavorsgityeand probability of forming
good building blocks, which are the part of theothosome that produces high
aptitude. Lastly, integer number coding has a malurter longitude than its binary
counterpart.

2 Outline of the Algorithm

The basis of the GA design was taken from the cbemme model presented in [1].
Because, as mentioned before, regular GAs implerbarary coding, the integer

coded chromosome demanded a redesign of each G/atopand process to make
them compatible with each other. In order to swstlfi, appropriate crossover and
mutation operators were designed and, secondlyestiike evaluation, selection and
replacement were implemented to work with vectdisteger numbers.

The GA was designed with the following parameterki¢h should be considered as
standard):

* One point crossover

* Roulette wheel selection
« 100% replacement

» Elite equal to one

The evaluation of each individual (i.e., possiliduton to the optimization problem)
is the degree of similarity, expressed as a peagentbetween the represented
circuit’s output (obtained by simulation) and theget output signal. An aptitude of a
100% indicates the complete similarity between gimulated and the target output
signals and an aptitude of 0% indicates the comptissimilitude between the
previously mentioned signals.

3 Genetic Operators

3.1 Crossover

As mentioned before, one point crossover was impfged. Figure 1 shows where
the crossover point separates, on the one handjcestA and B (which encode
routing) and, on the other, matrix U (which encotlestype of logic gate being used
in the circuit). This way, the first descendanherits the first progenitor's U matrix

M & By T Az Ba

|

U Az B Uz &1 By
Fig. 1. One point crossover operator for integer numbdingp

and matrices A and B from the second one; meanliiesecond descendant inherits
the second progenitor’'s U matrix and matrices A Bricom the first one.

3.2 Mutation

The mutation operator, as Figure 2 shows, workstl¥fi choosing randomly a gene to
mutate and, secondly, modifying it, also randoraygording to the possible values of
the alphabet in use without the possibility of rareg the previous allele.

2100.
[...2130...] — [...2110..] possible outcomes
2120...] | with alphabet 0,1,2,3

gene to be mutated

Fig. 2. Mutation operator for integer number coding

4 Sear ch Space

The search space or problem domain is proportimngde size of the circuit that is to
be evolved. For example, for a circuit that hagéhinputs (M=3) and one layer of
logic gates (N=1), it results, for matrix U, in aasch space of 729 {9 and, for
matrices A and B, a search space larger than 262¢tB-1)"-*N"Y). This shows
that, even though the amount of permutations ofirméat is modest, the number of
different ways to interconnect those gates withitipeits and outputs is great.

5 Evolutionary Process

Once the GA was designed and implemented in a gnaging language, it was put
to the test with different objectives of varied fitifilty, thus developing an EH
process. The first objective given to the GA wasriplement the circuit expressed by
Equation 1. As shown, it is a regular logic systeith three functions: one AND, one

Y= XU X
Y, = X+ X, 1)
YS:XI* X3

OR and one XOR. However, if U matrix's search spiacanalyzed, i.e., the search
space of the matrix that encodes the intermediater lof logic gates, it turns out that
only a handful of gate combinations will yield tegpected result. This is explained
because there are no alternatives to implemerdebized logic function. Later it will
be clear that the AG’s effectiveness to find a goexiilt will be affected by this fact.
The second objective of the EH process was to imeig the logic function given by
Equation 2. It is a simpler logic function when qmared to Equation 1 because it has
two NOT gates and one AND gate. There are seveags\d NOT logic function can

be implemented with logic gates, for example witANND and NOR gates (also
known as universal logic gates). Due to this, theme also several alternatives to
reach the desired goal. For this objective, 11%hef possible gate combinations
could, if interconnected in a proper manner, prewidth the right result.

Y, =X,
Y, =X)
Y, = Xt X

The last objective, and the simplest of the thoeasists only of two outputs instead
of three -like the other two- and two logic functs an OR and a NOT (see Equation
3). In this case it is clear that the number ofegadmbinations that can yield the
correct result is the biggest of all, namely 44%.

{foﬁxs

v, =X ®)

6 Analysisof the Successful Circuits
In Figure 3 the generic logic circuit to be evolveah be seen. It consists in three

input and three output buffers (M=3), plus onerimtediate layer (N=1) of three logic
gates, which can be any of the nine available types

| un —> T

Un

X3—> | us —> Ty

Fig. 3. Generic logic circuit to be evolved by the GA

¥ —

M —

Vv
Y

Figure 4 shows one of the circuits that meet th& fibjective and the chromosome
that encodes it (U, A and B vectors one after theer). As mentioned above, there
aren’t many alternatives to implement the objectdgic function, a fact that puts the
GA in a disadvantageous position. Actually, onlgu8 of 729 possible permutations
of U matrix can, if interconnected properly, acliebjective 1. This could have been
different if, for example, a second layer of intediate logic gates would have been
added to the circuit (N=2). Thus, the AND and ORtegacould have been
implemented with NAND and NOR gates. Also, if arestihayer of gates is added

(N=3), the XOR gate could have been implementet witiversal logic gates, but not
without a high computational cost.

—L—1 1 >

) >

L)

[37412332112121230103010101Q0]

Fig. 4. Logic circuit that implements Equation 1's logimttion
The second successful case we will analyze isggtt in Figure 5, where the logic
circuit and the chromosome that encodes it are shéw interesting particularity of

the circuit is that it uses an alternative impletaéon of the NOT gate (by using
NOR gate) and, also, a NOT gate in itself.

>—f > |

WY

]

[623212213121212101030001010]]

Fig. 5. Logic circuit that implements Equation 2’s logimttion

Lastly, in Figure 6 one of the circuits that implems Equation 3's logic function is
presented, along with the chromosome that encadds the circuit, yet another
different form to implement a NOT gate with a NO&ecan be seen.

>—R) O
—A>— > |
— >

D :

[641221102121202203000101000]

Fig. 6. Logic circuit that implements Equation 3's logimttion

7 Results, Effectiveness of the Algorithm

Table 1 presents the results of the different roasied out for each one of the
objectives previously discussed. GA’s parametersreshfor all runs and objectives,
as follows:

» Population size 100
< Generations (iterations) 100
 Mutation 3%

Parameter selection was made by performing iniéis runs and by considering the
size of the search space. Mutation rate is a coetsial issue because some authors
consider it should be low (less than 1%) and othersider a low mutation rate to be
counterproductive. Thus, the chosen parameter vala&ompromise selection.

As anticipated, the GA'’s effectiveness in findiing tcorrect circuit for objective 1 is
low. This is explained because the set of goodtismisi is very small when compared
to the entire search space. Table 1 shows thakeweral runs with unsuccessful
results, the average aptitude of the populatioregsial, or almost, to the best
individual's aptitude. Thus, all individuals ingtpopulation are equal, a fact that
results in no new genetic information generatedHsy crossover operator. In other
words, the AG has been attracted to a local maximaaoh is trapped in it, leaving
remote chances of it reaching a global maximum.

Results obtained for objective 2 are slightly betteainly due to the fact that there
are several ways to implement the NOT logic funttidowever, arguments similar
to the first case can be stated to explain therskcase’s GA performance.

1 Additionally, 10 runs where carried out with atation rate of 5% only of objective 3

Table 1. Summary table of the GA’s run resdlts

Objective Run E?Z% Generations Mutation Success? Ap‘)gti?l?}je Jumps Apﬁ\i/tg.de
1 yes 99.2 4 99.06

2 no 88.33 2 74.34

3 no 74.83 2 74.58

4 yes 99.2 4 96.34

5 no 775 0 77.18

1 6 100 100 3 no 91 3 85.25
7 no 77.5 0 77.18

8 no 91 3 85.25

9 no 775 0 77.18

10 no 775 0 77.18
20.00% 85.356 1.8 82.354

1 yes 99.33 5 86.47

2 no 93.9 5 93.2

3 yes 99.33 4 93.37

4 no 77.79 3 76.59

5 no 88.5 3 87.84

2 6 100 100 3 no 82.93 1 81.3
7 no 82.93 2 74.23

8 no 77.5 0 77.75

9 no 88.5 2 88.17

10 yes 99.33 6 98.16
30.00% 89.004 3.1 85.708

1 yes 99.46 2 97.61

2 no 94.03 0 93.7

3 no 94.03 1 94.03

3 4 yes 99.46 3 98.47
. 5 no 94.03 2 92.82
(mgf;;;'on e 10 100 3 no 9403 0 93.39
7 no 94.03 2 92.82

8 yes 99.46 4 98.47

9 yes 99.46 3 98.9

10 yes 99.46 2 92.51
50.00% 96.745 1.9 95.272

1 no 94.03 1 91.32

2 yes 99.46 1 99.46

3 yes 99.46 3 97.4

3 4 yes 99.46 1 92.18
. 5 no 94.03 2 92.11
(mgﬁz;'o” 6 100 100 5 yes 99.46 3 9234
7 yes 99.46 4 89.69

8 no 94.03 2 88.25

9 yes 99.46 2 91.98

10 no 94.03 1 87.93

60.00% 97.288 2 92.266

2 In all successful runs the best individual’s mte isn't 100% due to slight differences

between the simulated output and the objectiveasigfet, all implement the right logic.

For objective 3 results are sensibly better. Siccates of 50 and 60% were obtained
for mutation rates of 3 and 5% respectably (at ploisit it is important to remark that
an increase in mutation rate didn't have any effectthe previous two objectives).
Besides, an increase in the average aptitude ceaparthe other two objectives was
obtained.

8 Efficiency of the Algorithm

A way to measure the efficiency of the GA is to pame two things: the size of the
search space and the amount of circuits that atedén each run. Taken the search
space of matrices A and B (>262%)1@nd the amount of circuits tested in each run
(100, although is clear that many are repeated) itstannt that, explicitly, only less
than 4% of the search space needed to be explorediér to reach a solution that
meets with the requirements of the proposed objecti

9 Problems and Per spectives

One of the most important problems to consideteés time it takes for the GA to
complete an entire run, which is, in average, fnirs in a home computer and
bearing in mind the circuit to implement is ratlarall. One way around this problem
is to reduce the amount of circuits being testédwduld be doable because the
crossover operator not always produces new gemetierial. Thus, a sort of marking
has to be developed to indicate when an individuaftitude is already known.
Although significant, the time problem is less impmt when the size of the
hardware necessary to run the GA is taken into ideration, especially in space
applications, where room is a great constraintdesign. A solution would be to
relocate the genetic processor outside the paytbad,controlling the reconfigurable
hardware on board via telecommunications (if adép with either an intrinsic or
extrinsic evolutionary process.

Once the GA is implemented, has its parameterstetjiland has a routine capable of
transforming a vector of integer numbers codinggid circuit into VHDL digital
circuit description language (i.e., VHDL exportetnext step would be to implement
an intrinsic evolutionary process, also narfiedrdware in the loop” Furthermore,
larger circuits can be tested; more complex logiecfions implemented and fault
tolerant capabilities can be tested.

10 Conclusions

Firstly, for the GA to perform with high levels efffectiveness, the FPGA circuit
must have a certain amount of redundancies. If rdlationship between the
complexity of the logic function to implement arftetamount of redundancies isn't
adequate, the effectiveness of the algorithm wdl low (the more complex the
function to implement, bigger the amount of redurdias that will be needed). On

the other hand, if bigger circuits are used, theetneeded for the GA to finish an
entire run will be greater (scalability problemgesg]). There has to be a proper
compromise between these two requirements.

Secondly, due to the FPGA's versatility and the &éffectiveness, this EH platform
can be used as a multifunctional redundant syst®e (1] and [2]) to improve
reliability in systems where fault tolerance isesgal to survival, like satellites.
Lastly, with a large number of runs performed, adjédea of the best algorithm
parameters was obtained.

11 References

1. Paz F., Quiroga J.J., Capossio J.P.: Disefio de Uaf¢tma de Simulacion para la Im-
plementacion de Algoritmos Genéticos en Mddulos Rddotes Multifuncionales para
Aplicaciones Espaciales. VI Congreso Argentino dendégia Espacial (2011).

2. Capossio J.P., Quiroga J.J.: Evolvable Hardwardrfroving System Reliability in a
Nanosatellite. 7 International Conference on Electric and Electrsnigngineering
Research, Mexico (2010).

3. Capossio J.P., Quiroga J.J., Paz F.: Andlisis derdotia a Fallos Mediante Hardware
Evolucionable y Mddulos Redundantes Multifuncionglasa Aplicaciones Espaciales. VI
Congreso Argentino de Tecnologia Espacial (2011).

4. Coello Coello C.A., Christiansen A.D., Hernandez Aguirre A.: Towards dknated
Evolutionary Design of Combinational Circuits (2001).

5. Coello Coello C.A., Hernandez Luna E., Hernandez &guh.: A Comparative Study of
Encodings to Design Combinational Logic Circuits dgsiarticle Swarm Optimization
(2004).

6. Coello Coello C.A., Hernandez Aguirre A.: Design ofmtmnationl logic circuits through
an evolutionary multiobjective optimization aprog2001).

7. Stomeo E., Kalganova T., Lambert C.: A Novel Genetigorithm for Evolvable
Hardware. 2006 IEEE Congress on Evolutionary Comjmutat

8. Vassilev V. K., Miller J. F.: Scalability Problemsf Digital Circuit Evolution -
Evolvability and Efficient Designs. Proceedingstioé Second NASA/DoD Workshop on
Evolvable Hardware (2000).

