Translating a Subset of English to

Defeasible Logic Programs

Cesar V. Dragunsky Alejandro J. Garcia

Computer Science Department
Universidad Nacional del Sur
Av. Alem 1253, (8000) Bahia Blanca, Argentina

cvd@cs.uns.edu.ar ajgl@cs.uns.edu.ar

Abstract

Defeasible Logic Programming (Del.P) is an extension of Logic Programming captur-
ing common-sense reasoning features. The DeLl.P language can manage defeasible reason-
ing, allowing the representation of defeasible and non-defeasible knowledge. Since Del.P
syntax is based on a PROLOG-like notation, the task of writing a DelLP program is sim-
ilar to that of writing a Prolog one. Hence, writing a DelLP program could be hard for
someone unfamiliar with this kind of syntax.

In this paper we present a window-based system that assists a user in the writing
of DelLP programs. The system allows the user to write sentences in restricted English
and then translates these sentences to DelL.P syntax. The system is strongly based on
a natural language interpretation module for translating a subset of English to DeL.P.
The translator has the capability of learning new words directly from the sentences being
parsed. Thus, the system lexicon is built dynamically while the program is being written.
This adaptive feature makes the system usable in any application domain.

KEYWORDS: ARTIFICIAL INTELLIGENCE, NATURAL LANGUAGE UNDERSTANDING

1 Introduction

In this paper we present the system IDLE (Interface for Defasible Logic in English). IDLE is a
window-based system that assists a user in the writing of DelLP programs. The system allows
the user to write sentences in restricted English and then translates these sentences to Del.P

syntax. IDLE is strongly based on a natural language interpretation module for translating a
subset of English to DeL.P.

Defeasible Logic Programming is an extension of Logic Programming capturing common-
sense reasoning features. The Del.P language can manage defeasible reasoning, allowing the
representation of defeasible and non-defeasible knowledge. Since Del.P syntax is based on a

ProLOG-like notation, the task of writing a DeLP program is similar to that of writing a Prolog
one. Hence, writing a DelLP program could be hard for someone unfamiliar with this kind of
syntax.

The IDLE system has the capability of learning new words directly from the sentences being
parsed. Thus, the system lexicon is built dynamically while the program is being written. This
adaptive feature makes the system usable in any application domain.

This paper is organized as follows: section 2 gives a brief introduction to Del.P, focusing
in its syntax. Section 3 introduces the basic English statements that will be used for the
translation to Del.P rules. In section 4 the grammar for parsing the mentioned statements is
given. Later in section 5 we explain how IDLE will build its own lexicon. Section 6 describes
the implementation of the system, and in section 7 include the drawn conclusions.

2 Defeasible Logic Programming Syntax

We include here a brief description of the syntax of Del.P, and refer the interested reader
to [4, 5| for details. The Del.P language is defined in terms of two disjoint sets of rules: a
set of strict rules for representing strict (sound) knowledge, and a set of defeasible rules for
representing tentative information. Formally,

Definition 2.1 (Strict Rule) A Strict Rule is an ordered pair, conveniently denoted
Head < Body, whose first member, Head, is a literal, and whose second member, Body,
s a finite set of literals. A literal “L” is an atom “A” or a negated atom “~A”, where “~7”
represents the strong negation. A strict rule with the head Ly and body {Ls,..., L.} can also
be written as: Lo < L1,...,L,. As usual, if the body is empty, then a strict rule becomes
“L < true” (or simply “L”) and it is called a fact.

The syntax of strict rules correspond to basic rules [7] in Logic Programming, but we call
them ‘strict’ to strengthen the difference with the ‘defeasible’ ones (see below). Some examples
of strict rules follow. Observe that strong negation may be used in the head of the rules.

bird(X) < duck(X)
~innocent < guilty
~duck(X) < ~bird(X)
dead(X) < ~alive(X)

In Del.,P Defeasible Rules add a new representational capability for expressing a weaker link
between the head and the body in a rule. A defeasible rule “Head —< Body” is understood
as expressing that “reasons to believe in the antecedent Body provide reasons to believe in the
consequent Head” [8|.

Definition 2.2 (Defeasible Rule) A Defeasible Rule is an ordered pair, conveniently denoted
Head —< Body, whose first member, Head, is a literal, and whose second member, Body, is a
finite set of literals. A defeasible rule with head Lo and body {Li,...,L,} can also be written
as: Lo —< Ly,..., L,. If the body is emptly, we write “ L —< true” and we call it a presumption.

”

Syntactically, the symbol “—~<” is all that distinguishes a defeasible rule from a strict one.
Pragmatically, a defeasible rule is used to represent defeasible knowledge, i.e., tentative infor-
mation that may be used if nothing could be posed against it. Thus, whereas a strict rule is used
to represent non-defeasible information such as “ bird(X) < penguin(X) ”, which expresses
that “all penguins are birds.”, a defeasible rule is used to represent defeasible knowledge such
as “ flies(X) — bird(X)”, which expresses that “birds are presumed to fly” or “usually, a bird
can fly.” A DeLlP program is a finite set of defeasible and strict rules (see Example 2.1).

Example 2.1 Here follows a Del.P program:

dog(spike)

bull(joe)

~carnivore(X) < bull(X)

has_horns(X) <+ bull(X)

~dangerous(X) — ~carnivore(X)
dangerous(X) —< ~carnivore(X), has_horns(X)
dangerous(X) —< not~dangerous(X)

In DeLl.P, answers to queries will be supported by arguments. Informally, an argument is
a derivation that uses strict and defeasible rules, and satisfies certain properties. In Del.P,
an argument may be defeated by other arguments. A query ¢ will succeed if the supporting
argument for it is not defeated; it then becomes a warranted conclusion. Since the goal of this
paper is to define a translation of English sentences to DelL.P syntax, the details of the inference
mechanism of DelLP is clearly out of the scope of this paper. We refer the interested reader
to [5, 4] for details.

Here follows another example of a DelLP program used in a different application domain.

Example 2.2

sell_stock(T) — advice(T, sell)

~sell_stock(1T") — advice(T, sell), speculate(T’)

speculate(T) —< negative_profit(T’)

~speculate(T") —< negative_profit(T), toorisky(T)
too_risky(T") —< market(down)

too_risky(1T") — breaking(T")

negative_profit(T) < pricepaid(T, P),lastsale(T, L), L < P
pricepaid(ms ft, 101)

3 Characterization of English Sentences needed for con-
structing DeLP rules

According to the definitions presented in the previous section, a rule has the form
“Lo < L1,Lo,..., L, or “Lo —< L1, Lo, ..., L, , where each L; is a predicate. In other words,

predicates are the atomic elements for building Del.P rules. In order to introduce how to trans-
late restricted English to DelLP syntax, we will first show how simple statements can be trans-
lated to Del.P predicates. Then, facts, presumptions and rules will be obtained generalizing
these ideas.

To understand how the categories for the underlying grammar were identified, observe that
a predicate like dog(spike) intends to mean the sentences “spike is a dog”, and a predicate like
eats(john, grapes) represents “john eats grapes”. Similarly, we have identified seven classes
of sentences that can be translated to DelLP predicates. These classes are shown in the first
column of Table 1. In each row we also include an example in English and the corresponding
Del.P predicate. We include below a brief explanation of each statement class.

| Statement Type || English example | translated DeLlLP predicate |
ISA Statement John is a parrot parrot(john)
Adjectival Statement John is green green(john)
Intr. Verbal Statement John sleeps sleeps(john)
Trans. Verbal St. w/Subject John eats grapes eats(john, grapes)
Trans. Verbal St. w/o Subject | Shut the door shut(door)
Composite Statement John is a green parrot green(john)
parrot(john)
Prepositional Statement John is the father of Mary | father(john,mary)

Table 1: Representative statements and their translations to DelLP predicates

ISA Statements

These statements have the form “X is a (', stating that an individual X belongs to class C|
just like in “John is a Parrot’. Statements of this kind are important and very frequent.

Adjective Statements

These are of the form “X s ()7, and state that individual X has the quality (). Phrases like
“John is green” belong in this kind.

Intransitive Verbal Statements

These statements are of the form “Noun verd”, and they express that the action verd is per-
formed by the individual Noun. Here, ‘Intransitive’ means that no third party is involved in
the action. An example of this class is “John sleeps”.

Transitive Verbal Statements with Subject

These are the typical simple sentences in English. They have the form “Subject verb Noun” and
express that Subject exerts action verb affecting individual Noun. In the example, the sentence
“John eats grapes”, shows John performing an action — eating — on the grapes.

Transitive Verbal Statements without Subject
This kind of sentences are used for expressing either an imperative statement (as in “shut

the door”) or an action to be executed by the agent that interprets the program, like in
“sell_stock(T") —< advice(T, sell), speculate(T")” in Example 2.2.

Composite Statements

These sentences are a mixture of adjectival and ISA statements, that simplify data input. For
example, instead of writing the following four statements:

John is a parrot.
John is green.
John s lazy.
John is naughty.

it is possible to write directly John is a green, lazy, naughty parrot.

Prepositional Statements
These statements assert that a given relation holds among certain individuals, like in “John
is the father of Mary’. Another example is “the last sale of T was P’, represented as

“lastsale(T, P)” in Example 2.2. This class of statements are fundamental because they intro-
duce multi-ary predicates.

4 A Grammar for IDLE

Automatic translation requires a parser, which in turn must be defined based on a grammar.
In this section we will first introduce a grammar for IDLE, and then we will explain how to use
it for parsing English sentences that will be translated into DelLP rules.

4.1 The Grammar

Here follows a context free grammar obtained from the statement classification described in the
previous section. Observe that each production of the grammar is commented on same line.

Stat — (ISASJAJjS|IVS|TVSwS|TVSwoS|CS|PS) {Statement}

ISAS —CW is aISAP {ISA Statement}

AdjS —CW is AdjP {Adjectival Statement}

IVS —-CW IV {Intransitive Verbal Statement}

TVSwS —CW TV (Nx CW)* {Transitive Verbal Statement with Subject}
TVSwoS =TV (Nx CW)* {Transitive Verbal Statement without Subject

CS —CW is a AdjP* ISAP {Composite Statement }

PS —CW is [the|a] PP (Prep CW)* {Prepositional Statement}

ISAP —CW {ISA Predicate}
AdjP —SW {Adjectival Predicate}
v —SW {Intransitive Verb}
TV —SW {Transitive Verb}
N —SW {Noise}
pp —SW {Prepositional Predicate }
Prep —about|abovelafter|against|as|around|
at|before|below|from|for|in|into|on|onto|
since|to|under|upon: - - {Preposition}
CW —[A-Z]([a-z]|[A-Z])* {Word starting with capital Letter}
SW — [a-7]([a-z]|[A-Z])* {Word starting with small letter}

The richness provided by this system does not lie in its language’s syntax, but rather in its
lexicon. The lexicon is left out of the specification on purpose. It grows as the system gets
acquainted with the language through usage by means of interaction with the end-user, as we
will see in section 5.

Example 4.1 To illustrate how a simple sentence is parsed by this grammar, consider for
example the Composite Statement “John is a green Parrot”’. For the sake of simplicity, we will
assume in this example that the lexicon of the system has an entry for the nouns John and
Parrot, and for the adjetive green. In section 5 we will show how the lexicon will be updated
dynamically.

While parsing, the system first identifies a word starting with a capital letter, and then tries
to use any of the productions starting with ‘CW’. The word “is” after “John” suggest that one
of the following productions should be used: ISAS, AdjS, CS, or PS. However, the next word
“a”, allows the system to leave the AdjS hypothesis out.

Since “green” is known to be an adjective, this sentence must have the form of a CS, or the
parser will reject it. The parser will then find the noun ‘Parrot’, and the sentence is correctly
parsed as a Composite Statement.

4.2 Combining Grammatical Statements to Form English Sentences

We have shown above how to generate a predicate from a statement. Generating a fact or a
presumption is simple if the type of knowledge being represented (strict or defeasible) is given
beforehand. The same will happen for distinguishing strict and defeasible rules. In section 6
we will show how the user will specify the type of knowledge of the sentence. But first we must
explain how the system identifies a rule.

Writing a rule involves specifying its head and body. The head is a statement so the system
knows how to translate it to a predicate. The head will be separated from the body by the
keyword ‘if’, and the body is a list of statements separated from each other by the keyword
‘and’. Each of these statements will be processed as explain before. According to this, the
grammar introduced above will be extended with the following production:

Rule — Stat | Stat if Stat (and Stat)*.
Let us illustrate this ideas with some examples:

Example 4.2 Suppose that a user writes the sentence John is a Parrot and specifies that the
type of knowledge is “strict”, then the system generates the fact: parrot(john).

However, if a user writes the sentence John is a Parrot but specifies that the type of
knowledge is “defeasible”, then the system generates the presumption: parrot(john) —< true.

In the case that a user writes the sentence John is a bird if John is a parrot and specifies
that the type of knowledge is “strict”, then the system is able to generate the strict rule:
bird(john) < parrot(john).

When a user writes the sentence John is a Parrot if John is green and John talks and
specifies that the type of knowledge is “defeasible”, then the system has enough information
for generating the defeasible rule: parrot(john) —< green(john),talks(john).

5 Learning in IDLE: an Adaptive Lexicon

The meaning of a word usually depends on the context. Hence, it is not possible to build
a general-purpose lexicon for a natural language interpretation system: the word database is
inevitably restricted by the application domain. As this system is not tailor-made for any
particular application, it is difficult to provide in advance a complete lexicon for it.

In IDLE the lexicon will be built dynamically by interacting with the user every time an
unknown word is found. However, the system has a very reduced built-in lexicon with enough
entries for identifying the different classes of sentences, for example words like “is”, “a”, “the”,
“f7, ete.

For updating the lexicon, the interpreter has the capability of learning new words by in-
teracting with the user at the time it encounters a word it does not know. When the system
finds an unknown word, the user is prompted for information about it, according to what the
parser thinks the word might be. All possible categories for the word (noun, adjective, verb)
will be guessed by the place in the sentence that the word occupies. The system will first ask
whether its guess was correct, and the user may reject or accept the system proposal. In case
of accepting, other information will be required depending on the word category. The other
categories will be attempted as the user rejects system proposals.

Example 5.1 To illustrate the lexicon updating process, suppose that the system is parsing
the sentence “John is a green Parrot”, and the word “green” is not in the lexicon. When the
system finds the word “green” after having parsed up to “John is a”, it will use the grammar for
inferring the possible categories for the unknown word. If the sentence is parsable at all, then
“green” must be either a prepositional predicate (using the PS production) or an adjectival
one (using the CS production). First the system will prompt the user whether it can assume
that “green” is a prepositional predicate. If the user says ‘yes’, the sentence will not parse
because the remainder of it does not have the form of a Prepositional Statement (PS). But if
the user says ‘no’, a new proposal will be made. The grammar dictates that this word could

also be an Adjectival Predicate (AdjP), so the user will be prompted as to whether this is the
correct category for this word. If the answer is ‘no’, the sentence will be rejected because there
are no more productions to try. However, if ‘yes’ is answered, the new word “green” will be
incorporated to the lexicon as an adjective, and the sentence will be parsed successfully.

6 The IDLE System

In a DeLlL.P program two different kinds of knowledge may be represented: strict or defeasible.
In turn, for each kind, the programmer may write rules or unconditional statements. As stated
before, generating a fact or a presumption is simple if the kind of knowledge being represented is
given beforehand. The same holds for distinguishing strict and defeasible rules. In this section
we will show how the user will write a Del.P program and how s/he will specify the type of
knowledge of a sentence.

6.1 An Interface for Knowledge Acquisition

For writing a DelLP program the user will have several options: s/he may write rules directly
in DelLP syntax, write sentences in English, use the “Add individual” feature explained be-
low, or transform strict knowledge to defeasible and vice versa. The distinction among facts,
presumptions, strict rules and defeasible rules, will be accomplished by using the graphical
interface.

File Edit Help

Preszumptions

dohin is & Parrot

o ohn is green
_ lohn likes Crackers

O OT—
if John is a Parrot

s

[
[
L

Figure 1: IDLE Systems’s Main Window

The system interface will provide menus for all the basic file management and text edition
tasks (see Figure 6.1). The main window consists of four areas, one for each kind of program
clause. Each area provides the following options:

“Write in DLP”. This option enables a skilled DLP programmer to write clauses directly in
DLP syntax.

“Write in English” This is the option that constitutes IDLE’s raison d’etre. It allows the
user to write the English phrases that will be translated into DLP by the IDLE system.

“Add individual” (This option is only valid for facts and presumptions) Observe that ‘Ad-
jectival’ and ‘ISA’ statements can be seen as defining classes. Adding an individual to a
so defined class using the “write in English” option involves specifying a class ¢ and the
individual 4, that will be translated to the fact ¢(¢) or presumption ¢(7) — true. Using
this feature the system will offer an alphabetically sorted list of classes to select from,
and the user will input an individual to add to the selected class.

“Make ...”. Usually knowledge about the real world changes, and very often this change
affects only the type of rule. Thus, a strict rule may become a defeasible one, or vice
versa, and similarly, a fact may become a presumption, or vice versa. This option enables
these transformations to be effected by a few simple mouse clicks.

6.2 Rule Construction Assistance

Writing facts or presumptions is not too error-prone. However, writing complex rules usually is.
For example, one of the most common sources of error in Prolog programs is misspelling. Mis-
spelling can be perceived by an automatic system by detecting singleton (unbound) variables,
or atom or predicate names appearing for the first time in a rule.

A well-known warning policy built into many plain Prolog interpreters in existence today
consists of issuing a warning message for every occurrence encountered of a variable appearing a
single time within the scope of the rule that contains it, along with the name(s) of the offending
variable(s). This policy will be implemented in IDLE.

It is widely known that Prolog — as well as DLP — does not allow for the declaration of
symbols: they are just interpreted as they are encountered, and all binding of equally named
symbols happens through unification. In IDLE we will keep track of symbols that have already
been used in previous rules. When a new symbol appears in a statement that is being input,
the system will look it up in its tables, remaining silent if it shows up, but warning the user
and prompting whether s/he wishes to declare the symbol as new in case it does not. This
may make the system a bit too talkative while the first statements are being input, but it will
tend to stay more and more quiet as it gets acquainted with the program lexicon. Anyway, a
symbol declaration feature will be available, for declaring symbols without writing a single rule,
and the warning and prompting feature will have a toggle command to turn it off altogether
while the first statements are being written if so desired. When turned on, it will check the
so-far-written program and automatically declare the symbols it finds there as preexistent.

7 Conclusions

In this paper we have presented IDLE, a window-based system that assists a user in the writing
of DelLP programs. The system allows the user to write sentences in restricted English and
then translates these sentences to DelLP syntax. IDLE is strongly based on a natural language
interpretation module for translating a subset of English to DelLP. The IDLE system has the
capability of learning new words directly from the sentences being parsed. Thus, the system
lexicon is built dynamically while the program is being written. This adaptive feature makes
the system usable in any application domain. A graphical interface will offer the user several
options for writing a DelLP program. Rules may be written directly in Del.P syntax, in English,
by using the “Add individual” feature, or by making strict knowledge defeasible and vice versa.
Therefore, by using this system, the range of potential users for Del.P is expected to grow
substantially. The system will also allow people without solid logic programming background
the possibility of using by themselves a very powerful, but rather complex reasoning system.

References

[1] James Allen. Natural Language Understanding. Benjamin Cummings, 1987.

[2] Veronica Dahl. Translating spanish into logic through logic. American Journal of Compu-
tational Linguistics, 13:149-164, 1981.

[3] Veronica Dahl. Natural language processing and logic programming. Journal of Logic
Programming, 12:1-80, 1994.

[4] Alejandro J. Garcia. Defeasible logic programming: Definition and implementation. Mas-
ter’s thesis, Dep. de Ciencias de la Computacion, Universidad Nacional del Sur, Bahia
Blanca, Argentina, July 1997.

[5] Alejandro J. Garcia, Guillermo R. Simari, and Carlos I. Chesnevar. An argumentative
framework for reasoning with inconsistent and incomplete information. In Workshop on

Practical Reasoning and Rationality. 13th biennial European Conference on Artificial Intel-
ligence (ECAI-98), August 1998.

[6] Gerald Gazdar and Chris Mellish. Natural Language Processing in Prolog: An Introduction
to Computational Linguistics. Addison-Wesley, 1989.

[7] Vladimir Lifschitz. Foundations of logic programs. In G. Brewka, editor, Principles of
Knowledge Representation, pages 69-128. CSLI Pub., 1996.

[8] Guillermo R. Simari and Ronald P. Loui. A Mathematical Treatment of Defeasible Reason-
ing and its Implementation. Artificial Intelligence, 53:125-157, 1992.

